计量经济学复习笔记要点
- 格式:doc
- 大小:199.50 KB
- 文档页数:6
计量经济学复习笔记第⼀章统计概念1.什么是计量经济学计量经济学是对经济的测度,利⽤经济理论、数学、统计推断等⼯具对经济现象进⾏分析的⼀门社会科学。
2.计量经济学的⽅法论(计量经济分析步骤)(1)建⽴理论假说。
(2)收集数据。
(3)假定数学模型。
(4)设⽴统计或计量模型。
(5)估计经济模型参数(6)核查模型的适⽤性:模型设定检验。
(7)检验源⾃模型的假定(8)利⽤模型进⾏预测4.数据类型(1)时间序列数据:按时间跨度获得的数据。
特征是⼀般变量如、下标为t。
(2)截⾯数据:同⼀时点上的⼀个或多个变量的数据集合。
如:各地区2002年⼈⼝普查数据。
(3)合并数据:既包括时间序列数据有包括截⾯数据。
例:20年间10个国家的失业数据。
20年失业数据是时间序列,10个国家⼜是截⾯数据。
(4)⾯板数据:同⼀个横截⾯的单位的跨期调查数据。
例:对相同的家庭数量在⼏个时间间隔内进⾏的财务状况调查。
5.理解回归关系回归关系是⼀种统计上的相关关系,并不意味着⾃变量和因变量之间存在着因果关系。
第⼆章线性回归的基本思想1.回归分析的含义: 回归分析是反映的⾃变量和因变量之间的统计关系,回归分析是在⾃变量给定条件下的因变量的变化,是⼀种条件回归分析E(|)=+2.随机误差项的性质(为什么要引⼊随机误差项)(1)随机误差项代表着未纳⼊模型变量对因变量的影响(2)即使模型包括了影响因变量的所有因素,模型也有不可避免的随机性。
(3)还代表着度量误差(4)模型设定应该尽可能简单,只要不遗漏重要变量,把因变量的次要影响因素归于随机项。
(奥卡姆剃⼑原则)3.参数估计⽅法———普通最⼩⼆乘法的基本思想选择参数使得残差平⽅和最⼩——Min =Min ()=Min ()4.根据Ols 法得出参数称为最⼩⼆乘估计量,最⼩⼆乘估计量的性质:(1)Ols ⽅法获得样本回归直线过样本均值点(,)(2)残差的均值总为0,(3)残差项与解释变量的乘积求和为0,即残差项与解释变量不相关。
计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
计量经济学复习重点第一章1. 计量经济学的性质计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论(计量经济研究的基础)数据:对所研究对象经济行为观测所得到的信息(计量经济研究的原料或依据)方法:模型的方法与估计、检验、分析的方法(计量经济研究的工具与手段2. 计量经济学与相关学科的联系与区别联系:●计量经济学研究的主体—经济现象和经济系的数量规律●计量经济学必须以经济学提供的理论原则和经济运行规律为依据●经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容3. 学习计量经济学的必要性4. 计量经济学研究的基本思路和步骤模型设定(选择变量和数学关系式)、估计参数(确定变量间的数量关系)、模型检验(检验所得结论的可靠性)、模型应用(作经济分析和经济预测)5. 模型的设定、参数估计、模型检验的要求模型设定要求●要有科学的理论依据●选择适当的数学形式(单一方程、联立方程线性形式、非线性形式)●模型要兼顾真实性和实用性●包含随机误差项●方程中的变量要具有可观测性参数估计要求参数的估计值:所估计参数的具体数值参数的估计式:估计参数数值的公式6. 模型中的变量及其类型从变量的因果关系区分:被解释变量(应变量)——要分析研究的变量解释变量(自变量)—说明应变量变动主要原因的变量(非主要原因归入随机误差项)从变量的性质区分内生变量—其数值由模型所决定的变量,是模型求解的结果外生变量—其数值由模型以外决定的变量(相关概念:前定内生变量、前定变量)注意:外生变量数值的变化能够影响内生变量的变化,内生变量却不能反过来影响外生变量7. 计量经济研究中数据的类型时间数列数据(同一空间、不同时间)、截面数据(同一时间、不同空间)、混合数据(面板数据 Panel Data)、虚拟变量数据8. 参数估计的方法类型单一方程模型最常用的是普通最小二乘法、极大似然估计法等联立方程模型常用二段最小二乘法和三段最小二乘法等9. 建立计量经济模型的依据第二章1、变量间的关系:函数关系——相关关系相关系数——对变量间线性相关程度的度量◆相关关系的类型●?从涉及的变量数量看简单相关、多重相关(复相关)●?从变量相关关系的表现形式看线性相关——散布图接近一条直线、非线性相关——散布图接近一条曲线●??从变量相关关系变化的方向看正相关——变量同方向变化,同增同减、负相关——变量反方向变化,一增一减不相关2、现代意义的回归:一个被解释变量对若干个解释变量依存关系的研究实质:由固定的解释变量去估计被解释变量的平均值3、总体回归函数(PRF):将总体被解释变量Y的条件均值表现为解释变量X 的某种函数样本回归函数(SRF):将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。
1、经济变量:用来描述经济因素数量水平的指标。
2、解释变童:用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变额为发热所引5动做出解释。
3、被解释变量:是作为研究对象的变量。
它的变动是由•解释变量做出廉释的4、控制变量:在计量经济模型中人为设置的反映政黃要求、决策者意愿、经济系统运行条件和状态等方面的变量。
5、计量经济模型:为了研究分析某个系统中经济变量之问的数量关系而采用的随机代数模型。
6、相关关系:如果一个变量y的取值受另一个变量或另一组变量的彩响.但并不由它们惟一确定,则y与这个变量或这组变量之问的关系就是相关关系。
7、最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法。
8、拟合优度:样本回归直线与样本观测数据之问的拟合程度。
(9、残差:样本回归方程的拟合值与观測值的误差。
10、显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检豔程序。
11、偏相关系数:在Y. X|. 1三个变量中,当儿既定时,表示Y与X2之问相关关系的指标。
12、异方差性:在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称葩机项U1具有异方差性。
13、序列相关性:对于模型Xi = % + 妙九 +色乜+•••+%%+“i = 12 …屮菠机误差项互相独立的基本假设表现为C"(冷"” =0 /> j,i,j = \2…』(I分)如果出现Cov(比,“ J) H 0 i H人i J = 12…屮即对于不同的样本点•随机误差项之问不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性。
14、自回归模型:15、广乂最小二乘法:是最有普遍意义的最小二乘法,普通最小二乘法和加权最小二乘法是它的特例。
16、相关系数:度量变量之问相关程度的一个系数,一般用P表示。
17、多重共线性:解释变量之问存在完全或不完全的线性关系。
1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。
普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。
2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。
从此意义看,加权最小二乘法也称为广义最小二乘法。
3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。
4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。
5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。
6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。
7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。
第1章计量经济学的性质与经济数据1.1复习笔记考点一:计量经济学★1计量经济学的含义计量经济学,又称经济计量学,是由经济理论、统计学和数学结合而成的一门经济学的分支学科,其研究内容是分析经济现象中客观存在的数量关系。
2计量经济学模型(1)模型分类模型是对现实生活现象的描述和模拟。
根据描述和模拟办法的不同,对模型进行分类,如表1-1所示。
(2)数理经济模型和计量经济学模型的区别①研究内容不同数理经济模型的研究内容是经济现象各因素之间的理论关系,计量经济学模型的研究内容是经济现象各因素之间的定量关系。
②描述和模拟办法不同数理经济模型的描述和模拟办法主要是确定性的数学形式,计量经济学模型的描述和模拟办法主要是随机性的数学形式。
③位置和作用不同数理经济模型可用于对研究对象的初步研究,计量经济学模型可用于对研究对象的深入研究。
考点二:经济数据★★★1经济数据的结构(见表1-3)2面板数据与混合横截面数据的比较(见表1-4)考点三:因果关系和其他条件不变★★1因果关系因果关系是指一个变量的变动将引起另一个变量的变动,这是经济分析中的重要目标之计量分析虽然能发现变量之间的相关关系,但是如果想要解释因果关系,还要排除模型本身存在因果互逆的可能,否则很难让人信服。
2其他条件不变其他条件不变是指在经济分析中,保持所有的其他变量不变。
“其他条件不变”这一假设在因果分析中具有重要作用。
1.2课后习题详解一、习题1.假设让你指挥一项研究,以确定较小的班级规模是否会提高四年级学生的成绩。
(i)如果你能指挥你想做的任何实验,你想做些什么?请具体说明。
(ii)更现实地,假设你能搜集到某个州几千名四年级学生的观测数据。
你能得到它们四年级班级规模和四年级末的标准化考试分数。
你为什么预计班级规模与考试成绩成负相关关系?(iii)负相关关系一定意味着较小的班级规模会导致更好的成绩吗?请解释。
答:(i)假定能够随机的分配学生们去不同规模的班级,也就是说,在不考虑学生诸如能力和家庭背景等特征的前提下,每个学生被随机的分配到不同的班级。
计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究主体是经济现象及其发展变化的规律。
2、运用计量分析研究步骤:模型设定一一确定变量和数学关系式估计参数一一分析变量间具体的数量关系模型检验一一检验所得结论的可靠性模型应用一一做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。
被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。
内生变量:其数值由模型所决定的变量,是模型求解的结果。
外生变量:其数值由模型意外决定的变量。
外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。
前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响, 但能够影响我们所研究的本期的内生变量。
前定变量:前定内生变量和外生变量的总称。
数据:时间序列数据:按照时间先后排列的统计数据。
截面数据:发生在同一时间截面上的调查数据。
面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E (人3 )= 3 随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,3估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3线性回归模型模型(假设)一一估计参数一一检验一一拟合优度一一预测1、模型(线性)(1)关于参数的线性模型就变量而言是线性的;模型就参数而言是线性的。
Yi = 3 1+ 3 2lnX i+u线性影响随机影响Y i=E (Y|X i) +u E (Y|X i) =f(X i)= 3 1+3 2lnX 引入随机扰动项,(3)古典假设A零均值假定 E ( U i |X i) =0B同方差假定Var(u i|XJ=E(u i2)=2(TC无自相关假定Cov(u i ,u j)=0D随机扰动项与解释变量不相关假定Cov(u i ,X i )=0E正态性假定u~N(0, d 2)F无多重共线性假定Rank(X)=k2、估计在古典假设下,经典框架,可以使用OLS方法:OLS 寻找min Ee i2人B iois = (Y均值)-人B 2(X均值)人B 2ois = Ex i y〃Ex i23、性质OLS回归线性质(数值性质)(1)回归线通过样本均值(X均值,Y均值)(2)估计值人Y的均值等于实际值Y的均值(3)剩余项e i的均值为0(4)被解释变量估计值人Y与剩余项8不相关Cov(人Y,ej=0(5)解释变量X与剩余项8不相关Cov(e i,X i)=0在古典假设下,OLS的统计性质是BLUE统计最佳线性无偏估计4、检验(1) Z检验Ho: B 2=0原假设验证B 2是否显著不为0标准化:Z= (A B 2- B 2) /SE (A B 2)〜N( 0,1 ) 在方差已知,样本充分大用Z检验拒绝域在两侧,跟临界值判断,是否B2显著不为0(2) t检验一一回归系数的假设性检验方差未知,用方差估计量代替 A d 2=Ee i2/(n-k) 重点记忆t =(人卩2- B 2) / A SE (A B 2)〜t (n-2)拒绝域:|t|>=t 2/a( n-2)拒绝,认为对应解释变量对被解释变量有显著影响。
考研经济学计量经济学的重点复习计量经济学是经济学研究中的重要分支,通过运用数理统计方法对经济现象进行定量分析和预测。
对于考研经济学专业的学生来说,掌握计量经济学的核心概念和方法对于提高解题能力和研究能力至关重要。
本文将从历年考研试卷的出题特点出发,总结计量经济学的重点复习内容,助您顺利备考。
一、计量经济学基本概念1. 计量经济学的定义和基本内容- 计量经济学的定义- 计量经济学的研究对象和特点- 计量经济学的基本方法和步骤2. 经济数据的类型和基本统计概念- 定量数据和定性数据- 总体和样本的概念- 统计量和参数的区别与联系3. 计量经济学的基本假设和模型- 随机性假设和确定性假设- 线性回归模型的假设和表达式- 经济学假设与计量经济模型的关系二、简单线性回归模型1. 简单线性回归模型的基本原理- 变量关系的线性假设- 残差项和估计项的定义及意义- 最小二乘估计法的推导和求解2. 简单线性回归模型的假设检验- 相关系数和回归系数的显著性检验 - 模型整体显著性检验- 拟合优度和解释方差的检验3. 简单线性回归模型的统计推断- 参数估计的抽样分布与性质- 参数的置信区间及解释- 参数的假设检验及结论三、多元线性回归模型1. 多元线性回归模型的基本原理- 多元回归模型的定义和表示- 模型的估计和解释- 多重共线性问题及处理方法2. 多元线性回归模型的假设检验 - 回归系数的显著性检验- 模型整体显著性检验- 拟合优度和解释方差的检验3. 多元线性回归模型的统计推断 - 参数估计的抽样分布与性质- 参数的置信区间及解释- 参数的假设检验及结论四、计量经济学的拓展内容1. 异方差问题和加权最小二乘估计 - 异方差性的检验和处理方法- 加权最小二乘法的原理和应用2. 非线性回归模型- 非线性回归模型的基本形式- 参数估计和统计推断方法- 模型的应用与分析3. 模型诊断和残差分析- 残差的定义和性质- 异常观测值和影响观测值的识别方法- 模型诊断和改进的常用方法总结:通过对历年考研试卷的分析可以看出,计量经济学在考研经济学专业中的分量较大。
计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
第三步:求一阶导数等于零,二阶导数大于零来得出估计方程中的对数。
第四步:同样求出统计量t 、F 进行假设检验。
解释回归结果的步骤:第一步:根据判定系数来判断方程回归结果的好坏。
R2 越接近于1,方程回归就越好。
第二步:根据F 值来判断方程中的系数是不是同时等于零,如果拒绝F 的原假设,则可以判断回归的方程整体是线性相关的。
第三步:根据第二步的判断结果来分别分析每一个参数的t 值。
t 值是用来检验具体的参数是否为零的统计量。
第四步:根据回归结果的分析来得出解释变量与被解释变量的线性关系。
R ²的计算公式:F 检验的步骤:第一步:原假设:所有的系数都同时等于零;备择假设:至少有一个系数不为零。
第二步:计算F 统计量。
第三步:根据允许的失误率,查F 统计量表对应的值。
第四步:比较F 值。
大于则拒绝原假设,小于则接受原假设。
第二种方法:比较F 值所对应的P 值,如果P 值小于允许的误差,则拒绝原假设;如果P 值大于允许的误差,则接受原假设。
∑∑∑∑---=--=-==222222)()ˆ(1)()ˆ(1R Y YY Y Y YY Y R TSSESS TSSRSS ii i ii )1(--=K N ESS KRSS F建立和应用计量经济学模型步骤:1理论模型的设定和建立2收集数据3估计参数4检验模型5应用模型第三部分 回归分析中所遇到的问题一、异方差概念:对于不同的样本点,随机误差项的方差不再是常数,而互不相同,即,则认为出现了异方差性。
(往往存在于横截面数据中)类型:同方差时假定:σi2 = 常数 ≠ f(Xi) 异方差时假定:σi2 = f(Xi)(1) 单调递增型:σi2随X 的增大而增大(2) 单调递减型:σi2随X 的增大而减小 (3) 复杂型: σi2与X 的变化呈复杂形式后果:1、参数估计量非有效(即不是最优的)2、变量的显著性检验失去意义3、模型的预测失效Var i i()μσ=2检验的方法(图示法与怀特检验):1、图示法:(1)用X-Y 的散点图进行判断(2)用 与X 的散点图进行判断: 看是否存在明显的散点扩大、缩小或复杂型趋势(即不在一个固定的带型域中)。
2、怀特(White )检验:怀特检验不需要排序,且适合任何形式的异方差 怀特检验的基本思想与步骤(以二元为例):然后做如下辅助回归:怀特检验的原假设: H0: 所有的方差都相同,不存在异方差备择假设: H1: 方差不相同,存在异方差。
怀特检验的判断方法:比较 n*R-squared 所对应的p 值,判断方法与t 、F 检验是一致的。
P 值小于允许的误差,则拒绝原假设,方程存在异方差; P 值大于允许的误差,则接受原假设,方程不存在异方差。
异方差的修正:模型检验出存在异方差性,可用加权最小二乘法进行估计。
加权最小二乘法的基本思想:是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS 估计其参数。
在实践中,经常用残差绝对值的倒数作为权数。
(即方程两边同时乘以1/abs )。
二、自相关概念:总体回归方程的误差项之间存在着相关。
类型:一种是正的自相关,也就是当前一个误差项为正值,后一个误差项也是正值;当前一个误差项为负值时,下一个误差项也是负值另一种叫做负的自相关,也就是前一个误差项为正值,下一个误差项为负值;当前一个误差项为负值时,下一个误差项为正值。
后果:(1)参数估计量非有效性。
OLS 估计得到的仍为线性、无偏估计。
但不再具有效性。
(2)变量的显著性检验失效(3)模型预测失效检验的方法(图示法与DW 检验): 1. 图示法:iii ii ii i XX X X X X e εαααααα++++++=215224213221102~iii i XX Y μβββ+++=221102i e 0),cov(),cov(≠=j i j i Y Y εε误差εt 并不频繁地改变符号,而是几个正之后跟着几个负,几个负之后跟着几个正,则呈正自相关。
扰动项的估计值呈锯齿型(一个正接一个负),随时间逐次改变符号,表明存在负自相关。
2.DW 检验:判断自相关最著名的检验。
定义:一阶序列相关的检验:检验步骤:(1)提出假设,H0:ρ=0,即不存在一阶自相关; H1:≠ρ0,即存在一阶自相关。
(2)构造统计量DW 。
(3)检验判断。
根据临界值dL 和dU ,判断。
判断准则:根据DW 值判断自相关时,需要临界值。
24d L d U4-d L 4-d U ()∑∑==--=Tt t Tt t t DW 12221ˆˆˆεεε111≤≤-+=-ρνρεεt t t杜宾和瓦尔森给出了DW 的两个临界值下限dL 和上限dU3.修正:准差分法。
(克服序列相关的有效方法)三、多重共线性1.概念:如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。
其基本假设之一是解释变量是互相独立的。
2.类型:如果存在 c1X1i+c2X2i+…+ckXki=0 i=1,2,…,n 其中: ci 不全为0,则称为解释变量间存在完全共线性。
如果存在 c1X1i+c2X2i+…+ckXki+vi=0 i=1,2,…,n 其中ci 不全为0,vi 为随机误差项,则称为近似共线性或交互相关。
(比较常见)3.后果:(1)完全共线性下参数估计量不存在(2)近似共线性下OLS 估计量非有效 (3)参数估计量经济含义不合理 (4)变量的显著性检验失去意义 (5)模型的预测功能失效4.检验:(1)相关系数法:求出自变量的简单相关系数r ,若|r|接近1,则说明两变量存在较强的多重共线性。
(2)综合统计检验法:若在OLS 法下:R2与F 值较大,但t 检验值较小,没有通过检验的话,则表明各解释变量间存在共线性而使得它们对Y 的独立作用不能分辨,故t 检验不显著。
(3)参数估计值的经济检验:考察参数估计值的符号和大小,如果不符合经济理论或实际情况,说明模型中可能存在多重共线性。
5.修正:1、逐步回归法:方法不仅可以对多重共线性进行判别,同时也是处理多重共线性问题的一种有效方法。
步骤:(1)用被解释变量分别对每个解释变量进行线性回归。
(2)在基本回归模型中逐个增加其他解释变量,重新进行线性回归。
2、差分法(主要用来修正时间序列): 通过差分法,我们设定新的变量如下:将原模型变换为差分模型: 可有效消除存在于原模型中的多重共线性。
一般,增量之间的线性关系远比总量之间的线性关系弱得多。
3、合并变量法(不重要)0),(≠j i X X Cov εββββ++++=3322110X X X Y 133*3122*2111*11*-----=-=-=-=t t t t t t t t X X X X X X X X X Y Y Y εββββ++++=*33*22*110*Y X X X。