计量经济学复习笔记
- 格式:docx
- 大小:386.29 KB
- 文档页数:17
计量经济学1、 P5 计量经济学的研究步骤① 模型设定 ②估计参数 ③模型检验 ④模型应用2、 P11 数据类型① 时间序列数据(同一空间不同时间)② 截面数据(同一时间不同空间) ③面板数据 ④虚拟变量数据3、P18 回归分析① 回归的现代意义:一个被解释变量对若干个解释变量依存关系的研究。
② 回归的实质:由解释变量去估计被解释变量的平均值。
4、P22-25总体和样本 总体回归函数:12()i i i E Y X X ββ=+ 样本回归函数:12ˆˆˆi i Y X ββ=+总体回归模型:12ii i Y X u ββ=++样本回归模型:12ˆˆi i iY X e ββ=++ 5、P22 “线性”的两种解释① 就变量而言是线性的——Y 的条件期望(均值)是X 的线性函数12()i i i E Y X X ββ=+:对参数“线性”,对变量“非线性” ② 就参数而言是线性的——Y 的条件期望(均值)是参数β的线性函数12()ln i i i E Y X X ββ=+:对变量“线性”,对参数“非线性”6、P22 随机扰动项随机扰动项是被解释变量实际值与条件均值的偏差,实际代表了排除在模型以外的所有因素对Y 的影响,i u 是其期望为0有一定分布的随机变量。
7、P23 总体回归线、样本回归线的意义① 样本回归线随抽样波动而变化:每次抽样都能获得一个样本,就可以拟合一条样本回归线。
(SRF 不唯一)② 样本回归函数的函数形式应与设定的总体回归函数的函数形式一致。
③ 样本回归线只是样本条件均值的轨迹,还不是总体回归线,它至多只是未知的总体回归线的近似表现。
8、P25i e :剩余项或残差项① 表达式:ˆi ii e Y Y =- 或 12ˆˆi i iY X e ββ=++ ② 经济含义:被解释变量Y 的实际观测值不完全等于样本条件均值,二者之差用i e 表示 ③ 与随机扰动项的联系:i e 在概念上类似总体回归函数中的i u ,可视为对i u 的估计。
计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。
2、计量经济学是统计学、经济学和数学的结合。
3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。
4、计量经济学是经济学的一个分支学科。
第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。
2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。
3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。
4、参数估计量的评价标准:无偏性、有效性、一致性。
5、OLS估计量的统计特征:线性特性、无偏性、有效性。
6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。
第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。
2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。
3、参数最小二乘估计的性质:线性性质、无偏性、有效性。
4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。
5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。
6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。
1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。
普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。
2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。
从此意义看,加权最小二乘法也称为广义最小二乘法。
3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。
4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。
5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。
6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。
7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。
《计量经济学导论》考研伍德里奇版考研复习笔记第1章计量经济学的性质与经济数据1.1 复习笔记一、计量经济学由于计量经济学主要考虑在搜集和分析非实验经济数据时的固有问题,计量经济学已从数理统计分离出来并演化成一门独立学科。
1.非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。
非实验数据有时被称为观测数据或回顾数据,以强调研究者只是被动的数据搜集者这一事实。
2.实验数据通常是在实验环境中获得的,但在社会科学中要得到这些实验数据则困难得多。
二、经验经济分析的步骤经验分析就是利用数据来检验某个理论或估计某种关系。
1.对所关心问题的详细阐述在某些情形下,特别是涉及到对经济理论的检验时,就要构造一个规范的经济模型。
经济模型总是由描述各种关系的数理方程构成。
2.经济模型变成计量模型先了解一下计量模型和经济模型有何关系。
与经济分析不同,在进行计量经济分析之前,必须明确函数的形式。
通过设定一个特定的计量经济模型,就解决了经济模型中内在的不确定性。
在多数情况下,计量经济分析是从对一个计量经济模型的设定开始的,而没有考虑模型构造的细节。
一旦设定了一个计量模型,所关心的各种假设便可用未知参数来表述。
3.搜集相关变量的数据4.用计量方法来估计计量模型中的参数,并规范地检验所关心的假设在某些情况下,计量模型还用于对理论的检验或对政策影响的研究。
三、经济数据的结构1.横截面数据(1)横截面数据集,就是在给定时点对个人、家庭、企业、城市、州、国家或一系列其他单位采集的样本所构成的数据集。
有时,所有单位的数据并非完全对应于同一时间段。
在一个纯粹的横截面分析中,应该忽略数据搜集中细小的时间差别。
(2)横截面数据的重要特征①假定它们是从样本背后的总体中通过随机抽样而得到的。
当抽取的样本(特别是地理上的样本)相对总体而言太大时,可能会导致另一种偏离随机抽样的情况。
这种情形中潜在的问题是,总体不够大,所以不能合理地假定观测值是独立抽取的。
第一章统计概念1.什么是计量经济学计量经济学是对经济的测度,利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学。
2.计量经济学的方法论(计量经济分析步骤)(1)建立理论假说。
(2)收集数据。
(3)假定数学模型。
(4)设立统计或计量模型。
(5)估计经济模型参数(6)核查模型的适用性:模型设定检验。
(7)检验源自模型的假定(8)利用模型进行预测4.数据类型(1)时间序列数据:按时间跨度获得的数据。
特征是一般变量如 Y t、X t下标为t。
(2)截面数据:同一时点上的一个或多个变量的数据集合。
如:各地区2002年人口普查数据。
(3)合并数据:既包括时间序列数据有包括截面数据。
例:20年间10个国家的失业数据。
20年失业数据是时间序列,10个国家又是截面数据。
(4)面板数据:同一个横截面的单位的跨期调查数据。
例:对相同的家庭数量在几个时间间隔内进行的财务状况调查。
5.理解回归关系回归关系是一种统计上的相关关系,并不意味着自变量和因变量之间存在着因果关系。
第二章线性回归的基本思想1.回归分析的含义: 回归分析是反映的自变量和因变量之间的统计关系,回归分析是在自变量给定条件下的因变量的变化,是一种条件回归分析E(Y i|X i)=B1+B2X i2.随机误差项的性质(为什么要引入随机误差项)(1)随机误差项代表着未纳入模型变量对因变量的影响(2)即使模型包括了影响因变量的所有因素,模型也有不可避免的随机性。
(3)μ还代表着度量误差(4)模型设定应该尽可能简单,只要不遗漏重要变量,把因变量的次要影响因素归于随机项 μ 。
(奥卡姆剃刀原则)3.参数估计方法———普通最小二乘法的基本思想 选择参数使得残差平方和最小——Min ∑e i 2=Min ∑(Y i −Yi ̌)2=Min ∑(Y i −b 1−b 2X i )^24.根据Ols 法得出参数 b 1 b 2 称为最小二乘估计量,最小二乘估计量的性质: (1)Ols 方法获得样本回归直线过样本均值点(X ,Y ) (2)残差的均值总为0,(3)残差项与解释变量的乘积求和为0,即残差项与解释变量不相关。
计量经济学复习笔记(⼆):⼀元线性回归(下)回顾上⽂,我们通过OLS推导出了⼀元线性回归的两个参数估计,得到了以下重要结论:ˆβ1=∑x i y i∑x2i,ˆβ0=¯Y−ˆβ1¯X.注意总体回归模型是Y=β0+β1X+µ,同时我们还假定了µ∼N(0,σ2),这使得整个模型都具有正态性。
这种正态性意味着许多,我们能⽤数理统计的知识得到点估计的优良性质,完成区间估计、假设检验等,本⽂就来详细讨论上述内容。
1、BLUE我们选择OLS估计量作为⼀元线性回归的参数估计量,最主要的原因就是它是最⼩⽅差线性⽆偏估计(Best Linear Unbiased Estimator),这意味着它们是:线性的。
⽆偏的。
最⼩⽅差的。
不过,光给你这三个词,你可能会对定义有所困扰——⽐如,关于什么线性?⼜关于什么是⽆偏的?我们接下来就对OLS估计量的BLUE性详细讨论,包括简单证明。
原本我认为,证明在后⾯再给出会更合适,引⼊也更顺畅,但是我们接下来要讨论的许多,都有赖于OLS估计量的BLUE性,因此我还是决定将这部分内容放在这⾥。
⾸先是线性性,它指的是关于观测值Y i线性,这有什么意义呢?注意到,在之前的讨论中,我们总讨论在给定X的取值状况下的其他信息,如µ的条件期望、⽅差协⽅差等,因此我们往往会在这部分的讨论中将X视为常数(⽽不是随机变量)看待,这会带来⼀些好处。
⽽因为µ∼N(0,σ2)且µi是从µ中抽取的简单随机样本,且µi与X i⽆关,所以由正态分布的性质,有Y i|X i∼N(β0+β1X i,σ2).实际上,由于参数真值β1,β1是常数,所以每⼀个Y i在给定了X i的⽔平下,都独⽴地由µi完全决定,⽽µi序列不相关(在正态分布的情况下独⽴),所以Y i之间也相互独⽴。
这样,如果有⼀个统计量是Y i的线性组合,那么由正态分布的可加性,这个统计量就⾃然服从正态分布,从⽽我们可以很⽅便地对其进⾏参数估计、假设检验等。
数学预备知识第一篇 概率论 第一章 随机变量及其分布一、随机变量的定义设随机试验Ed 样本空间为{}w π=,如果对两个???,都有唯一的实数()x w 与之对应,并且对任意实数X ,??是随机事件,则称事件,则称定义在π上的实单值函数()x w 为随机变量。
通俗的说,在实验结果能取得不同数值的量,称为随机变量它的数值是随机试验结果而它由于试验的结果是随机的,所以它的值也是随机的。
二、分类(连续型和离散型)第二章 事件例子:在一个箱子里放着t 个数字球,-2,1,1,3,3,3,3从中取一个球,取到球上面的数字是随着试验结果不同而变化。
又如:考四、六级,考过记为1,不过记为0。
再如:抛硬币,正面记为1,反面记为0。
引入话题:举一些现实中的例子,如考试,在公交场等车 随机变量-事件-概率-频率-分布率-分布函数-连续随机变量上面我们讲的是一种事件有很多种不同的结果,但在现实中这些出现的结果的可能性并不是相同的。
例子:考六级出现的结果不同,大多数分数集中在50-60和60-70之间,也就是说出现2和3的可能性更大。
ε=0(0-50) ,1(50-60),2(60-70),3(70-80),4(80-100)问题:用什么衡量可能性呢?(概率)我们用的概率都是古典概型,即用事件发生概率来表示概率。
频率的定义:一随机事件的n 个结果互斥且两个结果等可能发生,并且事件A 会有m 个基本结果,则事件A 发生的概率即是()p A ,就是()p A =mn=事件发生的总数/结果总数 两点需要注意:1、试验结果互斥;2、等可能性相当。
第三章 概率假设1000人去参加6级考试,或1个人参加1000次难度相同的考试。
① 等可能②结果互斥01)2500.252)5000.53ε (0,60) 50 0.05⎧⎪ [60,70 ⎪=⎨[70,80 ⎪⎪ [80,100] 200 0.2⎩ 例题:5只球,编号1、2、3、4、5。
第一章统计概念1.什么是计量经济学计量经济学是对经济的测度,利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学。
2.计量经济学的方法论(计量经济分析步骤)(1)建立理论假说。
(2)收集数据。
(3)假定数学模型。
(4)设立统计或计量模型。
(5)估计经济模型参数(6)核查模型的适用性:模型设定检验。
(7)检验源自模型的假定(8)利用模型进行预测4.数据类型(1)时间序列数据:按时间跨度获得的数据。
特征是一般变量如 Y t、X t下标为t。
(2)截面数据:同一时点上的一个或多个变量的数据集合。
如:各地区2002年人口普查数据。
(3)合并数据:既包括时间序列数据有包括截面数据。
例:20年间10个国家的失业数据。
20年失业数据是时间序列,10个国家又是截面数据。
(4)面板数据:同一个横截面的单位的跨期调查数据。
例:对相同的家庭数量在几个时间间隔内进行的财务状况调查。
5.理解回归关系回归关系是一种统计上的相关关系,并不意味着自变量和因变量之间存在着因果关系。
第二章线性回归的基本思想1.回归分析的含义: 回归分析是反映的自变量和因变量之间的统计关系,回归分析是在自变量给定条件下的因变量的变化,是一种条件回归分析E(Y i|X i)=B1+B2X i2.随机误差项的性质(为什么要引入随机误差项)(1)随机误差项代表着未纳入模型变量对因变量的影响(2)即使模型包括了影响因变量的所有因素,模型也有不可避免的随机性。
(3)μ还代表着度量误差(4)模型设定应该尽可能简单,只要不遗漏重要变量,把因变量的次要影响因素归于随机项 μ 。
(奥卡姆剃刀原则)3.参数估计方法———普通最小二乘法的基本思想 选择参数使得残差平方和最小——Min ∑e i 2=Min ∑(Y i −Yi ̌)2=Min ∑(Y i −b 1−b 2X i )^24.根据Ols 法得出参数 b 1 b 2 称为最小二乘估计量,最小二乘估计量的性质: (1)Ols 方法获得样本回归直线过样本均值点(X ,Y ) (2)残差的均值总为0,(3)残差项与解释变量的乘积求和为0,即残差项与解释变量不相关。
(4)残差项与Y i ̌的乘积求和为0第三章:双变量模型的假设检验(综合题) 1.判定系数R 2的概念(拟合优度)Ess 表示回归平方和(自由度=k-1) Tss 表示总平方和(自由度=n-1) Rss 表示残差平方和(自由度=n-k ) Tss=ess+rssR 2有意义的前提(1)普通最小二乘法估计获得(2)模型必须有截距项 R 2的含义:解释变量对被解释变量(多元情形是对模型)的解释程度的描述∑∑∑∑-===222221ˆi iii y e yyTSSESSr2.回归分析结果的报告形式回归分析应给出项:(1)估计方程 (2)参数标注误se (b i ) (3)参数所对应的t 值 (4)参数检验所对应的p 值 (5)拟合优度(6)自由度(7)DW 值对应关系: t = b i −o se(b i ) = b i se(b i )自由度= n –k (k值是包括截距项在内的参数个数)3.假设检验运用普通最小二乘法对参数进行估计后,得到样本回归方程Y i =b 1+b 2X i首先获得se (b 1)、se (b 2)。
se (b i )中的 σ2的未知时用 估计量来代替 σ2。
(1) 参数显著性检验 H 0 :Bi = 0 H 1 : Bi ≠ 0 构造统计量: σ2已知8..7849.0)0006.0)(1085.5()4354.5)(5774.25()000245.0)(9061.16(0013.04138.432ˆ29==⨯===+=-f d rp t se X Y i i 2ˆ22-=∑n e iσ)1,0(~/222222N xB b B b Z ib∑-=-=σσσ2未知t值足够大就拒绝原假设,p值足够小就拒绝原假设第四章多元回归1.偏回归系数含义在多元回归方程中,例如Y i=B1+B2X2i+B3X3i+u i B2表示当其他条件不变时(包括X3不变),X2变动一个单位Y的均值的改变量; B3表示当其他条件不变时(包括X2不变),X3变动一个单位Y的均值的改变量。
2.回归模型的基本假设(1)回归模型是参数线性(2)解释变量越扰动项不相关(3)随机扰动项均值为0(4)随机扰动项同方差(5)随机扰动项之间不相关(6)解释变量之间不存在严格线性关系(7)模型设定正确(8)附加假设扰动项设服从N(0,σ2)的标准正态分布3.联合假设检验(1)联合假设检验的原因对参数进行单独显著性检验后,并不能说明参数联合起来也是显著地,另外可能在参数进行单独检验是不能拒绝原假设,在进行联合检验时拒绝了原假设,此时可能存在共线性问题、。
(2)联合检验的步骤原假设:或 构造F 统计量 或F 统计量的含义表示所有F 统计量越大越好4.矫正R 2引入原因:回归模型的R 2具有随着解释变量个数增多增大的性质,多元回归模型解释变量对被解释变量的实际拟合效果需要考虑自由度的变化。
5.什么时候可以增加新的解释变量只要矫正R^2增加就可以新的解释变量,这个条件等价于:如果引进变量的参数显著检验|t|值大于1,就可以引进变量。
0:320==B B H 0:20=R H ),1(~)/().1/(k n k F k n RSS k ESS F ----=)/()1()1/(22k n R k R F ---=的变动解释的和未被的变动解释的和被Y X Y X X X 3232kn n R k n TSS n RSS n TSS k n RSS R ----=---=---=1)1(1)()1(1)1/()/(122第五章 回归模型的形式 1.模型系数含义 (1)双对数模型斜率B 2度量的是不变弹性(2) 半对数模型(对数线性模型) B 2表示 t 增加一个单位,Y 的平均增长率(单利)即表示的是因变量的相对增量:复利的计算:(3)线性趋势模型 Y t = B 1+B 2 t + u t (4)半对数模型 (线性对数模型)B 2的含义为:表示自变量的一个单位相对增量引起应变量平均的绝对增量。
(5)倒数模型显著的特征是:随着X 的无限增大,(1/X i )将接近于0,Y 将逐渐接近B 1渐进值或极值。
因此,当变量X 无限增大时,上式回归模型将逐渐靠近其渐近线或极值。
(6)多项式模型:B 3表示增速2B Y XdX dY=ii i u X B B Y ++=ln ln 21ii i u t B B Y ++=21ln 的绝对变化的相对变化X Y dt Y dY dt dYY dt Y dt Y d B ===∆==1ln ln 2ii i u X B B Y ++=ln 21iii u X B B Y ++=121i3i 42i 3i 21i u X B X B X B B Y ++++=第六章 虚拟变量1.基准类(基础类、参照类):虚拟变量定义为0的一类称为基准类。
2.虚拟变量引入个数:如果模型有截距项,定性变量有m 种,则需要引入(m-1)个虚拟变量,不然会产生完全共线性问题 3.协方差模型(1)含一个虚拟变量形式的加法模型(差别截距项模型)(3)含虚拟变量的乘法模型(差别斜率项模型)ii i i u D B X B B Y +++=210ii i i i u X D B X B B Y +++=210第八章 共线性1.多重共线性的理论后果:A. OLS 的估计量无偏B. 方差估计无效即不在具备最小方差性C. 由于多重共线性是样本特征,因此,即使在总体回归中变量X 之间不是线性相关,但在某个样本中,X 变量之间可能线性相关 2.多重共线性的实际后果:A. OLS 估计量的方差和标准误较大B. 置信区间变宽C. t 值不显著D. R^2值较高,但t 值并不都是统计显著的E. OLS 估计量及其标准误对数据的微小变化非常敏感 3.多重共线性的诊断方法有哪些?A. R^2较高但解释变量t 值统计显著的不多B. 解释变量两两高度相关C. 检查偏相关系数D. 从属回归或者辅助回归E. 方差膨胀因子(VIF>10为高度共线性)F. 条件指数4.多重共线性的补救措施有哪些?A. 删掉变量B. 获取额外的数据或新的样本C. 重新设定模型D. 参数的先验信息E. 变量变换(如总量变平均,名义变实际)F. 因子或主成分分析G. 岭回归第九章——第十二章第九章 如果异方差不是常数会有什么后果 一、异方差的后果(简答) 1、OLS 估计量仍是线性的 2、OLS 估计量仍是无偏的3、OLS 估计量不再具有最小方差性,即不再是有效的4、OLS 估计量的方差通常是有偏的5、偏差产生是由于2ˆσ,即/2i ∑ d.f. ,不再是真实2σ的无偏估计量6、建立在t 分布和F 分布之上的置信区间和假设检验是不可靠的。
二、如何诊断存在异方差帕克检验帕克建议用i e 代替i u ,进行如下回归i i i v X B B e ++=ln ln 212 (9-5)当然,也可以不用对数形式的回归,尤其当X 有负值的时候,直接做残差平方对X 的回归。
帕克检验的步骤如下:(1)做普通最小二乘回归,不考虑异方差问题(2)从原始回归方程中求得残差i e ,并求其平方,再取对数形势(3)利用原始模型中的一个解释变量做形如式(9-5)的回归,如果有多个解释变量,则对每个解释变量做形如式(9-5)的回归,或者做2i e 对Y 的估计值Yˆ的回归 (4)检验零假设02=B ,即不存在异方差。
如果2ln i e 和i X ln 之间是统计显著的,则拒绝零假设:不存在异方差。
(查看补救措施)(5)如果接受零假设,则回归方程中的1B 可以理解为同方差σˆ的一个给定值。
怀特的一般异方差检验假定有如下模型:i i i i u X B X B B Y +++=33221 (9-13) 怀特检验步骤如下:(1)首先用普通最小二乘法估计回归方程(9-13),得到残差i e (2)然后做如下辅助回归i i i i i i i i v X X A X A X A X A X A A e ++++++=326235224332212 (9-14)即做残差平方2i e 对所有原始变量、变量平方以及变量交叉乘积的回归。
(3)求辅助回归方程(9-14)的2R 值。
在不存在异方差的(即式(9-14)中所有斜率系数都为零)的零假设下,怀特证明了从方程(9-14)中得到的2R 值与样本容量(=n )的积服从2χ分布,自由度等于方程(9-14)中解释变量的个数(不包括截距项)。
2R n ⋅~21-k χ (9-15)其中,k-1表示自由度。