二阶电路的动态响应
- 格式:doc
- 大小:658.93 KB
- 文档页数:14
实验二十一 二阶动态电路设计
一、实验内容
已知RLC 串联电路, 输入为单位阶跃信号, 设计元件参数, 要求电容负载输出电压的超调量约为20%, 调节时间0.003秒。
先进行理论设计和仿真分析, 连接好电路后, 再通过示波器观察实际输入和输出曲线。
二、实验原理图和理论分析
)()()()()(22t t u t u dt t du RC dt
t u d LC S C C C ε==++ 二阶电路的阶跃响应为)sin(1)(0βωωωδ++
=-t e t u t C 超调量为21%ζζπ
σ--==e
M P 调节时间为n s t ζω3=
(5%稳态范围)
,
, C
L n ⋅=21ω L R n ⋅⋅=ωζ2 选用电容C=4.7
F, 由以上推导得L=44.2mH, R=88.4
三、实验设备
函数信号发生器
KTDG-4可调式电感箱0~100mH
可调式电阻箱0~99999.9Ω
交流电压表, 交流电流表
双踪示波器
四、仿真实验
利用EWB 软件, 仿真模型图如下
运行结果如下
电容电阻电感在实验台上连接好电
路, 测量结果如下。
电压有效值
电流有效值
利用示波器观测输入电压和输出电容上电压曲线:
六、数据处理和实验结论
略。
实验十四二阶动态电路响应及其测试1实验目的1.学会用示波器观测二阶电路的响应曲线,加深对二阶电路的认识。
2.了解电路元件的参数对响应的影响。
3.学会用实验的方法测量二阶电路的衰减系数和振荡频率。
2实验器材1.QY-DT01电源控制屏2.QY-DG02仪器仪表模块I3.函数信号发生器4.QY-DG05通用电路实验模块5.示波器3实验原理1.原理图图1二阶动态电路响应测试原理图二阶电路由二阶微分方程描述,本实验中的二阶电路由电阻、电容、电感元件串联而成,由于电容和电感为动态元件,所以当激励信号发生突变时,电路会经历一个过渡过程,当R、L、C的参数值不同时,过渡过程也不完全相同,在本实验中,我们只以u C的波形作为二阶电路的响应来进行研究。
根据R 、L 、C 取值不同,电路的过渡过程会出现三种情况:当C L R 2>时,电路工作于过阻尼状态;当C L R 2<时,电路工作于欠阻尼状态;当CLR 2=时,电路工作于临界阻尼状态。
当为该电路施加一个脉冲激励时,即能观察到电容电压的波形变化曲线,即电路的零状态响应和零输入响应。
2.预习内容衰减系数的计算公式:LR 2=δ 振荡频率的计算公式:LC10=ω电路的三种过渡情况:(1) 当CLR 2>,即0ωδ>时,响应为非振荡性质,称为过阻尼状态,波形如图16-2所示;图2过阻尼响应曲线(2) 当C LR 2=,即0ωδ=时,响应仍属于非振荡性质,称为临界阻尼状态,临界阻尼响应曲线与过阻尼相同;(3) 当C LR 2<,即0ωδ<时,响应为振荡性质,称为欠阻尼状态,欠阻尼响应曲线如图3所示。
图3欠阻尼响应曲线当R=0时,称为无阻尼状态。
振荡频率和衰减系数的测量方法:调节电路中元件参数,使其工作于欠阻尼振荡状态,用示波器观察电容电压u C 的波形如图4所示:图4欠阻尼响应曲线T10=ω , m m u u T 21ln 1=δ (T=t 2-t 1)4 实验内容在RLC 的串联和并联实验中,我们研究的是二阶电路的稳态响应,但由于电路中存在电容和电感这些动态元件,使得电路从上电开始带进入稳态之间会经历一个过渡过程。
实验二:二阶电路的动态响应学号:0928402012 姓名:王畑夕 成绩:一、 实验原理及思路图6.1 RLC 串联二阶电路用二阶微分方程描述的动态电路称为二阶电路。
图6.1所示的线性RLC 串联电路是一个典型的二阶电路。
可以用下述二阶线性常系数微分方程来描述:s 2U 2=++c c c u dt du RC dtu d LC (6-1) 初始值为CI C i dtt du U u L t c c 000)0()()0(===-=--求解该微分方程,可以得到电容上的电压u c (t )。
再根据:dtdu ct i cc =)( 可求得i c (t ),即回路电流i L (t )。
式(6-1)的特征方程为:01p p 2=++RC LC 特征值为:20222,11)2(2p ωαα-±-=-±-=LCL R L R (6-2)定义:衰减系数(阻尼系数)LR 2=α 自由振荡角频率(固有频率)LC10=ω 由式6-2 可知,RLC 串联电路的响应类型与元件参数有关。
1.零输入响应动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。
电路如图6.2所示,设电容已经充电,其电压为U 0,电感的初始电流为0。
(1) CL R 2>,响应是非振荡性的,称为过阻尼情况。
电路响应为:)()()()()(212112012120t P t P t P t P C e e P P L U t i e P e P P P U t u ---=--=响应曲线如图6.3所示。
可以看出:u C (t)由两个单调下降的指数函数组成,为非振荡的过渡过程。
整个放电过程中电流为正值, 且当2112lnP P P P t m -=时,电流有极大值。
(2)CL R 2=,响应临界振荡,称为临界阻尼情况。
电路响应为tt c te LUt i e t U t u ααα--=+=00)()1()( t ≥0响应曲线如图6.4所示。
一阶电路和二阶电路的动态响应学号:1028401083 姓名:赵静怡一、实验目的1、掌握用Multisim研究一阶电路的动态响应特性测试方法2、掌握用Multisim软件绘制电路原理图3、掌握用Multisim软件进行瞬态分析4、深刻理解和掌握零输入响应、零状态响应和完全响应5、深刻理解欠阻尼、临界、过阻尼的意义6、研究电路元件参数对二阶电路动态响应的影响二、实验原理⑴一阶电路含有一个独立储能元件,可以用一阶微分方程来描述的电路,称为一阶电路。
一阶RC电路零输入响应:当U s=0时,电容的初始电压U c(0+)=U0时,电路的响应称为零输入响应。
RCt c U t u -=0)((t>=0)零状态响应:当电容电压的初始值U c (0+)=0时,而输入为阶跃电压u s =U S u(t)时,电路的响应称为零状态响应。
)()1()(t u eU t u RCts c --=⑵二阶电路用二阶微分方程描述的动态电路称为二阶电路。
RLC 串联二阶电路如上图就是一个典型的二阶电路,可以用下述二阶线性常系数微分方程来描述:s c cc U u dt du RC dtu d LC =++22 衰减系数(阻尼系数)LR2=α 自由振荡角频率(固有频率)LCw o 1=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=<=>,称为无阻尼情况,响应是等幅振荡性的0伟欠阻尼情况,响应是振荡性的,陈2临界阻尼情况,响应临界振荡,称为2为过阻尼情况响应是非振荡性的,称,2RCLR CLR CLR三、实验内容:1.用Multisim研究一阶电路的动态响应(1)实验电路(a) (b) (c)(2)初始条件如图所示,t=0电路闭合,分别仿真出电容上电压(从零时刻开始)的波形,说明各属于什么响应?三种情况下分别测量电容电压达到3v所用的时间。
①图(a)为零状态相应,电容上电压的波形如下图:由上图可知,电容电压达到3v所用的时间约为91.6146μm②图(b)为零输入相应,电容上电压的波形如下图:由上图可知,电容电压达到3v所用的时间为51.1196μm ③图(c)为全响应,电容上电压的波形如下图:由上图可知,电容电压达到3v 所用的时间为40.6082μm(3)写出三种情况下电容电压随时间的函数表达式,并分别计算出电容电压为3V 时的时间。
第七章 二阶电路 §7-1 二阶电路的零输入响应用二阶方程描述的动态电路称为二阶电路,当电路有电感,又有电容时就是一个二阶电路,二阶电路中给定的初始条件有2个 一、方程及特征根(RLC 串联)022=++C CC u dt du RC dtu d LC特征根为:LC L R L R p 12221-⎪⎭⎫⎝⎛+-=LC L R L R p 12221-⎪⎭⎫⎝⎛--=零输入响应为:t t P P C e A e A u 2121+= 1.电路的初始条件有三种情况,分别为:①0)0(0)0(≠≠++L C i u ②0)0(0)0(=≠++L C i u ③0)0(0)0(≠=++L C i u我们讨论第二种情况,设0)0()0()0()0(====-+-+L L C C i i u u u2.特征根p 1、p 2有不等负实数根、相等负实数根、一对共轭复数根三种情况,这三种情况决定零输入响应不同。
二、CLR 2>(1P 、2P 有不等负实根)时电路的响应 —是一个非振荡放电过程 1.电容上的电压和电流及电感上的电压响应表达式为:)(2112120t t P P C e P e P P P U u --=LCp p 121=)()()(2121120112210t t t t P P P P C e e P P L U e P e P P P P CU dt du Ci ---=---=-=)(2121120t t P P L e P e P P P U dt di Lu ---==2.响应曲线2112)/ln(P P P P T m -=此时电感电压过0,电流取得最大值m t t 2= 此时电感电压有极值三、CLR 2<(1P 、2P 有共轭复根)时电路的响应—是一个振荡放电过程1.电容上的电压和电流及电感上的电压为: )(2112120t t P P C e P e P P P U u --=[])2)(0)(00t j i t j j e e e e j U ωδβωδβωωω---+-+--=⎥⎦⎤⎢⎣⎡-=+-+-j e e eU t j t t j t2)()(00βωβωδωω)sin(00βωωωδ+=-t e U t)sin(0t e LU i tωωδ-=)sin(00βωωωδ--=-t e U u t其中:2RLδ=0ω=ω= arctg ωβδ= 2.波形图如下:ttπδ3.理想情况下,,2,1,0,00πβωωδ=====LCR 则:)2sin(00πω+=t U u Ct CLUt L U i 00000sin sin ωωω==C L u t U t U u =+=--=)2sin()2sin(0000πωπω 即等幅振荡放电过程。
二阶系统的时间响应及动态性能介绍二阶系统是指具有两个自由度的动力系统,例如二阶电路、二阶机械系统等。
在控制系统和信号处理的领域中,二阶系统有着广泛的应用。
二阶系统的时间响应和动态性能是评价系统性能的重要指标之一在阶跃信号输入时,二阶系统的时间响应可以分为三个阶段:超调阶段、振荡阶段和稳定阶段。
超调阶段是指系统在初期反应过程中,输出信号的幅值超过了稳态值。
振荡阶段是指系统在超调过程之后,输出信号会出现一定的振荡现象。
稳定阶段是指系统输出信号逐渐趋于稳定的阶段。
超调量是指系统在初期反应过程中,输出信号的峰值与稳态值之间的差值,通常用百分比表示。
超调量越小,系统的动态性能越好。
调节时间是指系统从初始状态到达稳态的时间。
当输出信号接近稳态值时,调节时间结束。
调节时间越短,系统的动态性能越好。
上升时间是指系统从初始状态到达信号波形上升至稳定值的时间。
上升时间越短,系统的动态性能越好。
峰值时间是指系统输出信号达到超调量峰值的时间。
峰值时间越短,系统的动态性能越好。
除了上述指标外,二阶系统的频率响应和阶数也是评价系统性能的重要指标之一、频率响应是指系统对不同频率的输入信号的响应特性。
系统的阶数表示系统的自由度,同时也反映了系统的复杂性。
综上所述,二阶系统的时间响应和动态性能是评价系统性能的重要指标。
不同的二阶系统在时间响应和动态性能上有不同的特点和表现。
对于
不同应用场景的二阶系统,我们可以根据需要选择合适的指标和方法进行评估和优化,以提高系统的性能和效果。
二阶动态电路响应的研究实验报告二阶动态电路响应的研究实验报告引言:在电路研究中,二阶动态电路是一种常见的电路结构,它具有较为复杂的响应特性。
本实验旨在通过实际的电路搭建和测量,研究二阶动态电路的响应特性,并探讨其在实际应用中的意义。
实验原理:二阶动态电路是由两个电容和两个电感组成的电路结构,其基本原理是通过电容和电感的相互作用,实现信号的放大、滤波和频率选择。
在本实验中,我们将搭建一个基于二阶动态电路的低通滤波器,通过调节电容和电感的数值,研究其对输入信号的响应。
实验步骤:1. 搭建电路:根据实验原理,我们按照电路图搭建了一个二阶动态电路。
电路包括两个电容、两个电感和一个电阻,其中电容和电感的数值可以根据实验需求进行调节。
2. 输入信号:我们选择了一个正弦波作为输入信号,并将其连接到电路的输入端口。
3. 测量输出:通过连接示波器,我们可以实时观察到电路的输出信号,并记录下其振幅、频率和相位等参数。
4. 调节电容和电感:在测量输出信号的过程中,我们逐步调节电容和电感的数值,观察其对输出信号的影响,并记录下相应的参数变化。
5. 数据分析:通过实验数据的统计和分析,我们可以得到二阶动态电路的响应特性曲线,并探讨其在不同频率下的变化规律。
实验结果:通过实验测量和数据分析,我们得到了二阶动态电路的响应特性曲线。
在低频信号下,电路对输入信号的放大倍数较大,且相位变化较小;而在高频信号下,电路对输入信号的放大倍数逐渐减小,且相位变化较大。
这一结果与我们的预期相符,说明二阶动态电路在频率选择和信号放大方面具有较好的性能。
讨论与应用:二阶动态电路的研究在电路设计和信号处理领域具有重要的意义。
通过研究其响应特性,我们可以了解电路对不同频率信号的处理能力,从而优化电路设计和信号处理算法。
此外,二阶动态电路还广泛应用于音频信号处理、通信系统和控制系统等领域,对于提高系统性能和抑制干扰具有重要作用。
结论:通过本次实验,我们研究了二阶动态电路的响应特性,并探讨了其在实际应用中的意义。
实验三:二阶电路的动态响应
【实验目的】
1.学习用实验的方法来研究二阶动态电路的响应。
2.研究电路元件参数对二阶电路动态响应的影响。
3.研究欠阻尼时,元件参数对α和固有频率的影响。
研究RLC 串联电路所对应的二阶微分方程的解与元件参数的关系。
【实验原理】
用二阶微分方程描述的动态电路称为二阶电路。
图6.1所示的线性RLC 串联电路是一个典型的二阶电路。
可以用下述二阶线性常系数微分方程来描述:
s 2
U 2=++c c c u dt du RC dt u d LC
(1)
初始值为
C
I C i dt t du U u L t c c 0
00
)0()()0(=
==-=--
求解该微分方程,可以得到电容上的电压u c (t )。
再根据:dt
du c
t i c
c =)( 可求得i c (t ),即回路电流i L (t )。
式(1)的特征方程为:01p p 2
=++RC LC 特征值为:
2
0222,11)2(2p ωαα-±-=-±-
=LC
L R L R (2)
定义:衰减系数(阻尼系数)L
R
2=
α 自由振荡角频率(固有频率)LC
10=ω
由式2可知,RLC 串联电路的响应类型与元件参数有关。
1.
零输入响应
动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。
设电容已经充电,其电压为U 0,电感的初始电流为0。
(1)
C
L R 2
>,响应是非振荡性的,称为过阻尼情况。
电路响应为:
)
()
()()()(2
1
2
1
120
121
20
t P t P t P t P C e e P P L U t i e P e P P P U t u ---=
--=
整个放电过程中电流为正值, 且当2
11
2ln
P P P P t m -=时,电流有极大值。
(2)C
L R 2
=,响应临界振荡,称为临界阻尼情况。
电路响应为
t
t c te L
U
t i e t U t u ααα--=+=00)()1()( t ≥0
(3)
C
L R 2
<,响应是振荡性的,称为欠阻尼情况。
电路响应为
t
e L
U
t i t e U t u d t d d t d
C ωωβωωωααsin )(),sin()(000
--=+==
t ≥0
其中衰减振荡角频率 2
22
0d
2L R LC 1⎪⎭
⎫ ⎝⎛-=
-=αωω ,
α
ωβd
arctan
= 。
(4)当R =0时,响应是等幅振荡性的,称为无阻尼情况。
电路响应为
t
L
U t i t
U t u C 000
00sin )(cos )(ωωω== 理想情况下,电压、电流是一组相位互差90度的曲线,由于无能耗,所以为等幅振荡。
等幅振荡角频率即为自由振荡角频率0ω,
注:在无源网络中,由于有导线、电感的直流电阻和电容器的介质损耗存在,R 不可能为零,故实验中不可能出现等幅振荡。
2.
零状态响应
动态电路的初始储能为零,由外施激励引起的电路响应,称为零输入响应。
根据方程1,电路零状态响应的表达式为:
)
()()t ()t (212112121
2t p t p S
t p t p S
S C e e p p L U i e p e p p p U U u ---=---
=)(0t ≥
与零输入响应相类似,电压、电流的变化规律取决于电路结构、电路参数,可以分为过阻尼、欠阻尼、临界阻尼等三种充电过程。
3.状态轨迹
对于图1所示电路,也可以用两个一阶方程的联立(即状态方程)来求解:
L
U L t Ri L t u dt t di C
t i dt t du s L C L L c ---==)()()
()
()(
初始值为
00
)0()0(I i U u L c ==--
其中,)(t u c 和)(t i L 为状态变量,对于所有t ≥0的不同时刻,由状
态变量在状态平面上所确定的点的集合,就叫做状态轨迹。
【实验仪器】
1.计算机一台。
2.通用电路板一块。
3.低频信号发生器一台。
4.交流毫伏表一台。
5.双踪示波器一台。
6.万用表一只。
7.可变电阻一只。
8.电阻若干。
9.电感、电容(电感10mH 、4.7mH ,电容22nF )若干。
【Multisim 仿真】
1.零输入响应
电容初始电压:5V
过阻尼:R=2kΩ欠阻尼:R=200Ω临界阻尼:R=1348Ω
2.全响应
电容初始电压:5V 电源电压:10V 过阻尼:R=2kΩ欠阻尼:R=200Ω临界阻尼:R=1348Ω
3.零状态响应
电容初始电压:0V 电源电压:10V 过阻尼:R=2kΩ欠阻尼:R=200Ω临界阻尼:R=1348Ω
4.用如图所示电路观测输出的各种响应
(a)欠阻尼:R=200Ω(b)临界阻尼:R=1348Ω
(c )过阻尼:R=2k Ω
【实际波形】
焊接电路
L
R 2
R 1
C
信号发生器
图6.8 二阶电路实验接线图
R1=100Ω,L=10mH ,C=47nF 理想临界阻尼时R1+R2=923Ω 即R2=823Ω
1.过阻尼:R2=871Ω
2.临界阻尼:R2=553Ω。