线性代数B期末考试试卷
- 格式:doc
- 大小:188.00 KB
- 文档页数:3
线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。
2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。
四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。
答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。
线性代数B 期末试题一、判断题(正确填T ,错误填F 。
每小题2分,共10分)1. A 是n 阶方阵,R ∈λ,则有A A λλ=。
( )2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。
( )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。
( ) 4.若B A ,均为n 阶方阵,则当B A >时,B A ,一定不相似。
( )5.n 维向量组{}4321,,,αααα线性相关,则{}321,,ααα也线性相关。
( )二、单项选择题(每小题3分,共15分)1.下列矩阵中,( )不是初等矩阵。
(A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B)100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C) 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D) 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。
(A )122331,,αααααα--- (B )1231,,αααα+ (C )1212,,23αααα- (D )2323,,2αααα+3.设A 为n 阶方阵,且250A A E +-=。
则1(2)A E -+=( ) (A) A E - (B) E A + (C) 1()3A E - (D) 1()3A E +4.设A 为n m ⨯矩阵,则有( )。
(A )若n m <,则b Ax =有无穷多解;(B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;(C )若A 有n 阶子式不为零,则b Ax =有唯一解; (D )若A 有n 阶子式不为零,则0=Ax 仅有零解。
5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则( )(A )A 与B 相似 (B )A B ≠,但|A-B |=0(C )A=B (D )A 与B 不一定相似,但|A|=|B|三、填空题(每小题4分,共20分)1.01210n n -。
同济大学课程考核试卷(B 卷)2009—2010学年第一学期命题教师签名: 审核教师签名:课号:122010 课名:线性代数B 考试考查:考试此卷选为:期中考试( )、期终考试( )、重考( √ )试卷(注意:本试卷共七大题,三大张,满分100分.考试时间为 分钟.要求写出解题过程,否则不予计分) 一、填空题(每空3分,共24分)1.已知4阶方阵为()2131,,,A αααβ=, ()1232,2,,B αααβ=, 且 4A =-,2B =-,则行列式 =+B A 6 。
2. 设行列式1131100021034512D =,j i A 是D 中元素j i a 的代数余子式,则=+2414A A -9 .3. 已知矩阵222222a A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,伴随矩阵0≠*A ,且0=*x A 有非零解,则 C .(A) 2=a ; (B ) 2=a 或4-=a ; (C) 4-=a ; (D) 2≠a 且4-≠a .4. 向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线性表示, 则以下结论中不能成立的是 B(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α(1)j s ≤≤,向量组s j ββα,,,2线性相关; (C) 向量组s ααα,,,21与向量组s βββ,,, 21等价. 5. 已知3阶矩阵A 与B 相似且010100001A -⎛⎫⎪= ⎪⎪-⎝⎭, 则201222B A -=300030001⎛⎫- ⎪ ⎪ ⎪⎝⎭. 6. 设0η是非齐次线性方程组Ax b =的特解,12,,,s ξξξ是齐次方程组0Ax =的基础解系,则以下命题中错误的是 B(A) 001020,,,,s ηηξηξηξ---是Ax b =的一组线性无关解向量;(B) 0122s ηξξξ++++是Ax b =的解;(C) Ax b =的每个解均可表为001020,,,,s ηηξηξηξ+++的线性组合.7. 设4阶矩阵A 有一个特征值为2-且满足5T AA E =,||0A >,则其伴随矩阵*A 的一个特征值为 _________8. 已知实二次型2221,231231323(,)2624f x x x x x x ax x x x =++++正定,则常数a 的取值范围为22a -<<.二、(10分)设矩阵A 的伴随矩阵*110011102A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,且0A >, E BA ABA 311+=--。
线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。
每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。
2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。
《线性代数》期末考试试卷B一、(30分)填空题(E 表示相应的单位矩阵).1. 设3阶矩阵A = (α1, α2, α3)的行列式|A | = 3, 矩阵B = (α2, α3, α1), 则矩阵A − B 的行列式|A − B | =______.解: (法一) |A − B | = |α1−α2, α2−α3, α3−α1| = |α1, α2−α3, α3−α1| + |−α2, α2−α3, α3−α1|= |α1, α2−α3, α3| + |−α2, −α3, α3−α1| = |α1, α2, α3| + |−α2, −α3, −α1| = |α1, α2, α3| − |α2, α3, α1| = |α1, α2, α3| − |α1, α2, α3| = 0.(法二) A − B = (α1−α2, α2−α3, α3−α1) = (α1, α2, α3)101110011−⎛⎞⎜⎟−⎜⎟−⎝⎠= AP ,其中P =101110011−⎛⎞⎜⎟−⎜⎟−⎝⎠, |P | =101110011−−−= 0, 故|A − B | = |AP | = |A ||P | = 0.2. 若矩阵A 满足A 2 = O , 则E +A 的逆矩阵(E +A )−1 = _______.解: A 2 = O ⇒ (E +A )(E −A ) = E 2 −A 2 = E ⇒ (E +A )−1 = E −A .3. 若向量组α1 = (1, t , 1), α2 = (1, 1, t ), α3 = (t , 1, 1)的秩为2, 则参数t 满足条件___________.解: 令A = (α1, α2, α3), 则秩(A ) = 秩(α1, α2, α3) = 2 ⇒111111tt t = |A | = 0 ⇒ (t +2)(t −1)2 = 0 ⇒ t = −2或1.当t = −2时, 秩(A ) = 2; 当t = 1时, 秩(A ) = 1. 故t = −2.4. 假设3阶矩阵A 的特征值为1, 2, −1, 矩阵B = E −2A *, 其中A *是A 的伴随矩阵, 则B 的行列式|B |= _______.解: 3阶矩阵A 的特征值为1, 2, −1 ⇒存在P 使得P −1AP =100020001⎛⎞⎜⎟⎜⎟−⎝⎠记为Λ, 而且|A | = 1×2×(−1) = −2.故P −1A −1P = (P −1AP )−1 = Λ−1 =10001/20001⎛⎞⎜⎟⎜⎟−⎝⎠. 由A *A = |A |E 可得A * = |A |A −1 = −2A −1, 于是有|B | = |P |−1⋅|B |⋅|P | = |P −1|⋅|B |⋅|P | = |P −1BP | = |P −1(E −2A *)P | = |P −1EP −2P −1A *P | = |E − 2P −1A *P |= |E + 4P −1A −1P | = |E + 4Λ−1| =500030003−= −45.5. 若矩阵A =10022312x −⎛⎞⎜⎟⎜⎟⎝⎠与矩阵B =03y ⎛⎞⎜⎟⎜⎟⎝⎠相似, 则(x , y ) =________.解: |A | = 2(1−x ), |B | = 0, tr(A ) = 1+x , tr(B ) = 3+y . 因为矩阵A 与B 相似, 所以|A | = |B |, tr(A ) = tr(B ).由此可得x = 1, y = −1. (x , y ) = (1, −1). 6. 设(1, −1, 0)T , (1, 0, −1)T 是3阶实对称矩阵A 的相应于某个非零二重特征值的特征向量. 若A 不可逆,则A 的另一个特征值为______, 相应的一个特征向量为__________.解: 3阶矩阵A 有非零二重特征值而且A 不可逆 ⇒ A 的另一个特征值为0.设ξ为对应于0的特征向量, 则ξ与(1, −1, 0)T , (1, 0, −1)T 正交, 即ξ为12130x x x x −=⎧⎨−=⎩的非零解向量. 由此可得A 的一个对应于0的特征向量为ξ = (1, 1, 1)T .7. 已知3元非齐次线性方程组Ax = b 的系数矩阵的秩为2, 并且α1, α2, α3是Ax = b 的3个解向量, 其中α1 = (1, 1, 1)T , α2 + α3 = (2, 4, 6)T , 则Ax = b 的通解是_______________.解: 3元非齐次线性方程组Ax = b 的系数矩阵的秩为2 ⇒ Ax = 0的基础解系中有且仅有1个解向量.α1, α2, α3是Ax = b 的3个解向量 ⇒ A (α2 + α3 − 2α1) = A α2 + A α3 − 2A α1 = b + b − 2b = 0. α1 = (1, 1, 1)T , α2 + α3 = (2, 4, 6)T ⇒ α2 + α3 − 2α1 = (0, 2, 4)T . 可见ξ = (0, 2, 4)T 是Ax = 0的基础解系,因而Ax = b 的通解是x = k (0, 2, 4)T + (1, 1, 1)T , 其中k 为任意实数. 8. 若4阶方阵A , B 的秩都等于1, 则矩阵A +B 的行列式|A +B | = ________.解: 4阶方阵A , B 的秩都等于1 ⇒ 秩(A +B ) ≤ 秩(A )+秩(B ) = 2 < 4 ⇒ |A +B | = 0. 9. 若矩阵A =211x ⎛⎞⎜⎟⎝⎠与矩阵B =1221⎛⎞⎜⎟−⎝⎠合同, 则参数x 满足条件___________.解: 设λ1, λ2为A 的特征值, µ1, µ2为B 的特征值.µ1µ2 = |B | = −5 < 0 ⇒ µ1, µ2异号 ⇒ B 的秩为2, 正惯性指数为1.A 与B 合同 ⇒ A 的秩为2, 正惯性指数为1 ⇒ λ1, λ2异号 ⇒ 2x − 1 = |A | = λ1λ2 < 0 ⇒ x < 1/2.二、(10分)计算下述行列式的值: D =111+11111+11111111x x x x −−. 解: +1111+111111111111x x x x −−=1111+111111111111x x x −−+1111+11000111111x x x x−−=0000001111x x x−−+ x111+111111x x x −− =000000x x x −−+ x 111+111111x x x −−= x 3 + x 2111+00x x x x x −−= x 3 + x 22111+000x x x x x−= x 3 + (x 4 − x 3) = x 4. 三、(15分)设线性方程组1231231233032314x x x x x x x x x λµ++=⎧⎪++=−⎨⎪−++=⎩. 问: 当参数λ, µ取何值时, 线性方程组有唯一解? 当参数λ, µ取何值时, 线性方程组有无穷多组解? 当线性方程组有无穷多组解时, 求出其通解.解: 该方程组的增广矩阵(A , b ) =1310(3)1323114λµ×−×⎛⎞⎜⎟−⎜⎟−⎝⎠→13100701071λµ⎛⎞⎜⎟−−⎜⎟+⎝⎠→131007010011λµ⎛⎞⎜⎟−−⎜⎟+−⎝⎠. (1) 当λ ≠ −1, µ为任意实数时, 秩(A ) = 秩(A , b ) = 3, 此时线性方程组有唯一解.(2) 当λ = −1, µ = 1时, 秩(A ) = 秩(A , b ) = 2 < 3, 此时线性方程组有无穷多组解,131007010011λµ⎛⎞⎜⎟−−⎜⎟+−⎝⎠=1713100701()0000⎛⎞⎜⎟−−×−⎜⎟⎝⎠→171310010(3)0000⎛⎞⎜⎟×−⎜⎟⎝⎠→37171010100000−⎛⎞⎜⎟⎜⎟⎝⎠由此可得3137127x x x +=−⎧⎨=⎩, 即3137127x x x =−−⎧⎨=⎩. 故通解为x = k (−1, 0, 1)T + (−37,17, 0)T , 其中k 为任意实数.四、(12分)设矩阵A =101012001⎛⎞⎜⎟−⎜⎟⎝⎠, C =103101⎛⎞⎜⎟−⎜⎟⎝⎠, 矩阵X 满足A −1X = A *C + 2X , 其中A *是A 的伴随矩阵,求X .解: |A | = −1, 在A −1X = A *C + 2X 两边同时左乘以A 得X = −C + 2AX . 故(E −2A )X = −C .(E −2A , −C ) =10210(1)0343100101(1)−−−×−⎛⎞⎜⎟−−⎜⎟−−×−⎝⎠→1021003431001014(2)⎛⎞⎜⎟−−⎜⎟××−⎝⎠→13100120303500101−⎛⎞⎜⎟−×⎜⎟⎝⎠→5312100010100101−⎛⎞⎜⎟−⎜⎟⎝⎠. 由此可得X =5312101−⎛⎞⎜⎟−⎜⎟⎝⎠. 五、(10分)已知向量组η1, η2, η3线性无关, 问: 参数a , b , c 满足什么条件时, 向量组a η1+η2, b η2+η3, c η3+η1线性相关?解: (a η1+η2, b η2+η3, c η3+η1) = (η1, η2, η3)011001a b c ⎛⎞⎜⎟⎜⎟⎝⎠. 令P =011001a b c ⎛⎞⎜⎟⎜⎟⎝⎠, 则|P | = abc + 1. 由条件可知:a η1+η2,b η2+η3,c η3+η1线性相关 ⇔ 秩(a η1+η2, b η2+η3, c η3+η1) < 3 ⇔ 秩(P ) < 3 ⇔ |P | = 0 ⇔ abc = −1. 六、(15分)已知二次型f (x 1, x 2, x 3) = x 12 + 2x 22 + x 32 − 2x 1x 3.1. 写出二次型f 的矩阵;2. 求一正交变换x = Qy , 将f 变成其标准形(并写出f 的相应的标准形);3. 求当x T x = 1时f (x 1, x 2, x 3)的最大值.解: 1. 二次型f 的矩阵A =101020101−⎛⎞⎜⎟⎜⎟−⎝⎠.2. |λE −A | =101020101λλλ−−−= (λ−2)2λ, 可见A 的特征值为λ1 = λ2 = 2, λ3 = 0.解(2E −A )x = 0得对应于λ1 = λ2 = 2的两个正交的特征向量ξ1 = (1, 0, −1)T , ξ2 = (0, 1, 0)T ,解(0E −A )x = 0得对应于λ3 = 0的一个特征向量ξ3 = (1, 0, 1)T .令Q = (11||||ξξ,22||||ξξ,33||||ξξ) =1/00101/0⎛⎜⎜⎜−⎝, 则正交变换x = Qy 将f 变成标准形2y 12 + 2y 22.3. x T x = 1 ⇔ (Qy )T (Qy ) = 1 ⇔ y T Q T Qy = 1 ⇔ y T y = 1 ⇔ y 12 + y 22 + y 32 = 1, 此时y 12 + y 22 ≤ 1. 故当x T x = 1时f (x 1, x 2, x 3) = 2y 12 + 2y 22的最大值为2.七、(8分)证明题.1. 设向量组α1, α2, α3, α4中, α1, α2, α3线性相关, α2, α3, α4线性无关, 证明: α1能由α2, α3, α4线性表示. 证明: 因为α1, α2, α3线性相关, 所以α1, α2, α3, α4线性相关.又因为α2, α3, α4线性无关, 所以α1能由α2, α3, α4线性表示.2. 设A 是n 阶正定矩阵, 证明: 矩阵A +A −1−E 也是正定矩阵.证明: 设λ1, …, λn 为A 的特征值, Λ =1n λλ⎛⎞⎜⎟⎜⎟⎝⎠O . A 是n 阶正定矩阵 ⇒ 存在可逆矩阵P 使得P −1AP = Λ, 其中λ1, …, λn > 0⇒ P −1(A +A −1−E )P = P −1AP + P −1A −1P − P −1EP = Λ + Λ−1 − E =111111n n λλλλ+−⎛⎞⎜⎟⎜⎟⎜⎟+−⎝⎠O, 其中 λ1+11λ−1, …, λn +1n λ−1> 0 ⇒ A +A −1−E 也是正定矩阵.。
中国农业大学2018~2019学年春季学期线性代数(B)课程考试试题(A 卷)(2019.6.)题号一二三四五六七八总分得分注:本试卷共八页、八道大题一、填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在每题的空中)1.已知3阶矩阵1231223123,,,3,32,22A B ==----+⎡⎤⎡⎤⎣⎦⎣⎦αααααααααα,且||16B =,则||A =4.的所有元素的代数余子式之和是1.3.设A 为3阶方阵且行列式|||2||3|0E A E A E A -=-=-=,(其中E 为3阶单位阵).4.若方程组123123123111ax x x x ax x x x ax ++=⎧⎪++=⎨⎪++=⎩无解,则a 的值为_____-2_____.5.已知实二次型()222123123121323,,222f x x x x tx tx x x x x x x =++++-是正定的,则常数t 的取值范围是___3t >____.二、选择题(本题满分15分,共有5道小题,每道小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.设矩阵100220353A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*1()-=A 【D 】.(A)A ;(B)1A -;(C)16A -;(D)16A -.考生诚信承诺1.本人清楚学校关于考试管理、考场规则、考试作弊处理的规定,并严格遵照执行.2.本人承诺在考试过程中没有作弊行为,所做试卷的内容真实可信.学院:班级:学号:姓名:2.设,A B 都为n 阶可逆矩阵,且2()A B E +=,则11()E BA --+=【C】(A)()A B B +;(B)1E AB -+;(C)()A A B +;(D)()A B A+3.设⎛⎫ ⎪= ⎪ ⎪⎝⎭a b b A b a b b b a ,若矩阵A 的伴随矩阵*A 的秩为1,则必有【D 】.(A)a b =或20a b +=;(B)a b =或20a b +≠;(C)a b ≠或20a b +≠;(D)a b ≠或20a b +=.4.设矩阵A 通过初等行变换变成矩阵B ,则下列结论正确的是【A】(A)A 的行向量组与B 的行向量组一定等价;(B)A 的行向量组与B 的行向量组一定不等价;(C)A 的列向量组与B 的列向量组一定等价;(D)A 的列向量组与B 的列向量组一定不等价;5.设向量组12,,,s ααα 线性相关,则下列结论正确的是【C】(A)12,,,s ααα 的部分组一定线性相关;(B)12,,,s ααα 的部分组一定线性无关;(C)12,,,s ααα 的缩短组一定线性相关;(D)12,,,s ααα 的延伸组一定线性相关.三、(10分)计算下面n 阶行列式的值01210100001n n n a a D a a λλλλ---=-+.解.第2行乘以λ,…,第n-1行乘以2n λ-,第n 行乘以1n λ-,然后全部加到第1行,得210121121000100001n n nn n n n n a a a a a D a a λλλλλλλ------+++++-=-+.再按第1行展开,得1111011011(1)(1)().n n n n n n n n a a a a a a λλλλλλ+-----=--+++=+++ 另解:按第1行展开可以建立递推关系式10n n D D a λ-=+(其中1n D -为n D 右下角的n-1阶行列式)然后用归纳法得出结果.按步骤相应给分.四、(14分)当,a b 为何值时,线性方程组1234123412341234230264132716x x x x x x x x x x ax x x x x x b+-+=⎧⎪+-+=-⎪⎨+++=-⎪⎪---=⎩无解,有惟一解,有无穷多解?并在有无穷多解的情况下,写出它的通解.解将原方程组的增广矩阵化为阶梯型:11230112302164101221327100800116100002a a b b --⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪→ ⎪ ⎪-+ ⎪ ⎪⎪ ⎪---+⎝⎭⎝⎭.(1)当2,b ≠-时原方程组无解;(2)由于系数矩阵的秩小于4,因此不论,a b 取何值,原方程组都没有唯一解;(3)当2,8b a =-=-时,原方程组有无穷多解.此时原方程组等价于:13423441221x x x x x x =--⎧⎨=--+⎩一般解为1212141122,,010001k k k k --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭取任何值;(4)当2,8b a =-≠-时原方程组也有无穷多解.此时原方程组等价于:142431,21,0.x x x x x =--⎧⎪=-+⎨⎪=⎩一般解为11210010k --⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,k 取任何值。
《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。
线性代数B期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)B. \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)C. \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)D. \(\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}\)答案:C2. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(A^2 = I\),则\(A\) 一定是:A. 正交矩阵B. 斜对称矩阵C. 单位矩阵D. 对角矩阵答案:A3. 线性方程组 \(\begin{cases} x + 2y - z = 1 \\ 3x - 4y + 2z = 2 \\ 5x + 6y + 3z = 3 \end{cases}\) 的解的情况是:A. 有唯一解B. 有无穷多解C. 无解D. 不能确定答案:B4. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(\det(A) = 0\),则 \(A\) 的秩:A. 等于3B. 小于3C. 等于0D. 大于等于3答案:B二、填空题(每题5分,共20分)1. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的行列式\(\det(A) = 2\),则 \(A\) 的伴随矩阵 \(\text{adj}(A)\) 的行列式是 _______。
答案:82. 若 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的特征值为1,2,3,则 \(A\) 的迹数 \(\text{tr}(A)\) 等于 _______。
线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。
左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。
一、填空题(共 6 题,每题 3 分,共 18分)1. n 阶行列式122222222222322222122222n n−的值为______.2. 设矩阵001110123010,010,023*********A C D −⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且3阶方阵B 满足ABC D =,则1B −=______. 3. 已知2R 中两组基为ααββ===−=1212(1,1),(0,1);(1,1),(1,2),T TTT则从基αα12,到基ββ12,的过渡矩阵是 , 已知α在基αα12,下的坐标为(3,0)T ,则α在基ββ12,下的坐标为 .4.设111101,1101a A b α−−⎛⎫⎛⎫ ⎪ ⎪=−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为A 的属于特征值2−的特征向量,则a =______,b =______.5.设3阶实对称矩阵A 的秩()2r A =且A 满足22A A O −=(O 表示零矩阵),则4I A −=______.6. 已知实二次型22212312313(,,)2f x x x x ax x x x =+++经正交变换x Py =可化为标准型221223f y y =+,则a =______.二、选择题(共 8题,每题 3分,共 24分) 1. 下列(2)n n ≥阶行列式的值必为0的是( ).(A) 行列式主对角线上的元素均为0 (B) 行列式零元素的个数多于n 个 (C) 行列式零元素的个数多于2n n −个 (D) 行列式非零元素的个数比+1n 少2. 将2阶方阵A 的第二列加到第一列得方阵B ,再交换B 的第一行与第二行得单位矩阵, 则A =( ).(A )0111⎛⎫ ⎪⎝⎭ (B )0111⎛⎫ ⎪−⎝⎭ (C )1110⎛⎫ ⎪⎝⎭ (D )1110−⎛⎫ ⎪⎝⎭3.设A 是n 阶矩阵,O A =3,则 =−−1)(A I ( ).(A )2A A I +− (B )2A A I ++ (C )2A A I −+ (D )2A A I −−4. 齐次线性方程组2123123123000x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩的系数矩阵记为A ,若存在3阶非零矩阵B 使得AB O =,则( ).中国海洋大学《线性代数》2017-2018学年第一学期期末试卷B卷(A )2λ=−且0B = (B )2λ=−且0B ≠ (C )1λ=且0B = (D )1λ=且0B ≠ 5. 已知12,ββ是方程组Ax b =的两个不同解,12,αα是对应齐次方程组0Ax =的基础解系, 则Ax b =的一般解是( ).(A )1211212()2k k ββααα−+++ (B )1211221()2k k ββααα++−+(C )1211212()2k k ββαββ−+++ (D )1211212()2k k ββαββ++−+6.下列矩阵中不能对角化的是( ).(A )1101⎛⎫ ⎪⎝⎭ (B) 1102⎛⎫ ⎪⎝⎭ (C) 1112⎛⎫ ⎪⎝⎭ (D )1212⎛⎫ ⎪⎝⎭注:以下两道为多选题 7. 对向量组12,,,m ααα,其中,1,2,,n i R i m α∈=,下列说法正确的是( ).(A)设A 为n 阶方阵,若12,,,m ααα线性相关,则12,,,m A A A ααα也线性相关 (B) 设A 为n 阶方阵,若12,,,m ααα线性无关,则12,,,m A A A ααα也线性无关(C) 12,,,m ααα线性相关的充要条件是其中至少有一个向量可由其余向量线性表出 (D) 若12,,,m ααα中有一个是零向量,则此向量组线性相关(E)零向量可由12,,,m ααα线性表出8. 下列说法正确的是( ).(A)对矩阵A 不管施行初等行变换还是初等列变换都不会改变矩阵的秩的值 (B)若A 、B 均可逆,则()()r ACB r C =(C)若n 阶方阵A 的秩()1r A n =−,则*()0r A =,其中*A 为A 的伴随矩阵 (D)若1212=(,,,),=(,,,),m n a a a b b b αβ,其中,i j a b (1,2,,;1,2,,i m j n ==)均非零,则()1T r αβ=三、计算题 (共 3题,共24分)1.(8分)已知4阶行列式42134102315211152D =−,ij A 表示第i 行第j 列元素ij a 的代数余子式,求1323432A A A ++的值。
一、填空与选择题(注:均为单选题)(30分) 1、 已知三阶方阵(, , )A αβγ=,
B αβγαβγαβγ=++++++,其中
, , αβγ均为3维列向量,又100A =,则 B =________________.
2、矩阵121212a b c ⎛⎫ ⎪
- ⎪ ⎪⎝⎭
中第一列元素的代数余子式之和为: .
3、 设4阶方阵A 相似于矩阵B , 又A 的特征值为2,3,4,5,则B E -= ____________.
4. 如果矩阵5
1/23x ⎛⎫ ⎪-⎝⎭
有二重特征值,则x 的值为: .
5、 已知实二次型222
123123122313(,,)94264f x x x x x x x x x x x x λ=++++-为正定二次型,则参
数λ的取值范围是____________________.
6、 设11110221A t -⎛⎫
⎪= ⎪ ⎪⎝⎭
,若三阶非零方阵满足0AB =,则t = 7. 设12,||03a b A a c A b c ⎛⎫ ⎪== ⎪ ⎪⎝⎭,300030003A B ⎛⎫ ⎪
+= ⎪ ⎪⎝⎭,则矩阵B 有一个特征值为:
8、设123,,ξξξ是线性空间V 的一组基,
V 的一个线性变换σ在这组基下的矩阵是33()ij A a ⨯=,112233x x x V αξξξ=++∈,则σ在基321,,ξξξ下的矩阵B= ________,σα在基123
,,ξξξ下的坐标为 ________,
9. 下面命题正确的有 ________.
1234123(). 0,00(). (,,,)(,,)(). Ax=b A (). ,||||A AB A B B C D A B n AB BA ααααααα===≠=若则一定有或者。
若向量组线性相关,则也线性相关。
若线性方程组有解,则一定有||0。
若都是阶方阵,则一定有。
10、 若A,B 是等价的n 阶矩阵,则矩阵A,B 一定满足
(). (). (). (). A B C D 特征值相等。
秩相等。
行列式相等。
逆矩阵相等。
二、(10分)求向量组103,57α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭210,16α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭324,24α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭4815
1331α⎛⎫
⎪ ⎪= ⎪ ⎪⎝⎭
的一个最大线性无关
组和秩,并用所求得的最大线性无关组表示向量组中其余向量
.二、(10分)已知010111402A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,3342714B ⎛⎫
⎪
= ⎪ ⎪⎝⎭
,
并且AX B X -=-,试求矩阵 X .
四、(15分)已知向量组
()()12:1,1,2,4,0,1,3,2,T T
A αα=-=
()()343,2,10,14,1,1,2,5T
T
a a αα=-+=-+,及向量()2,1,6,10T
b β=-+讨论参数,a b 取
何值时,(1) 向量β不能由向量组A 线性表出; (2) 向量β能由向量组A 线性表出,且表达式唯一;(3) 向量β能由向量组A 线性表出,且表达式不唯一,并求出一般表达式.
五、(15分)已知三元二次型
222
12313232(0)f ax x x bx x b =+-+>,其中二次型f
的矩阵A 的特征值之和8,特征值之积为10. (1) 求参数a b 与;
(2) 用正交变换将二次型f 化为标准形,并写出所用的正交变换及标准形.
六、(15分)设00010
000001000K ⎛⎫
⎪
⎪
⎪= ⎪
⎪ ⎪⎝⎭
,V 为所有n 阶实方阵对于矩阵的加法和数乘构成的线
性空间,在空间中V 中有映射:T V V →如下:对任意()
ij
n n
A a V ⨯=∈,
1
()()T A A tr A K n =-,其中1
()n
ii i tr A a ==∑(即方阵A 的迹),
(1) 证明: T 是空间V 上的一个线性变换; (2) 设2n =,求T 在空间V 的基1112212210010000,,,00001001E E E E ⎛⎫⎛⎫⎛⎫⎛⎫
==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
下的矩阵.
(3) 当2n =时,求T 的像空间}{2222(())()|()T M T A A M ⨯⨯=∈R R 的维数和一组基.
七、(5分)已知A 是n 阶正定矩阵,B 是n 阶反对称矩阵,即T
B B =-,判定矩阵2
A B -是否正定,并说明理由。