最新人教版高中数学必修1第三章《函数的应用》测评a卷(附答案)
- 格式:doc
- 大小:1.72 MB
- 文档页数:7
本章知识结构本章测试1.若函数f(x)=121+x ,则该函数在(-∞,+∞)上是( ) A.单调递减无最小值 B.单调递减有最小值 C.单调递增无最大值 D.单调递增有最大值 思路解析:利用函数的图象就可以判断推出函数f(x)=121+x在(-∞,+∞)上是单调递减无最小值,故选A. 答案:A 2.设3x =71,则( ) A.-2<x<-1 B.-3<x<-2 C.-1<x<0 D.0<x<1 思路解析:利用对数函数将3x =71转化为x=log 371,再根据对数函数性质进行判断推出-2=log 391<x=log 371<log 331=-1,故选A.答案:A3.函数f(x)=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是( ) A.(0,21) B.(21,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)思路解析:已知函数f(x)=21++x ax 在区间(-2,+∞)上单调递增, 转化得f(x)=21++x ax =a+221+-x a 在区间(-2,+∞)上也单调递增,故1-2a <0⇒a >21.故选B.答案:B 4.函数f(x)=)34(log 122-+-x x 的定义域为( )A.(1,2)∪(2,3)B.(-∞,1)∪(3,+∞)C.(1,3)D.[1,3] 思路解析:f(x)=)34(log 122-+-x x 根据对数函数性质我们可以得到-x 2+4x-3>0,且-x 2+4x-3≠1可得{x|1<x <3且x ≠2}=,故选A.答案:A5.若函数f(x)是定义在R 上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x 的取值范围是( )A.(-∞,2)B.(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-2,2) 思路解析:f(x)是定义在R 上的偶函数,则f(-x)=f(x),又f(x)在(-∞,0]上是减函数,且f(2)=0,则可以根据偶函数性质判断出使得f(x)<0的x 的取值范围是(-2,2),故选D. 答案:D6.已知实数a 、b 满足等式(21)a =(31)b,下列五个关系式,其中不可能成立的关系式有( ) ① 0<b<a ② a<b<0③ 0<a<b ④ b<a<0 ⑤ a=bA.1个B.2个C.3个D.4个 思路解析:已知实数a 、b 满足等式(21)a =(31)b,则根据幂函数性质可以判断出等式成立的条件,当a=b=0时等式可成立;当0<b <a 时等式可成立;当a <b <0时等式也成立,故不可能成立的关系式有两个,选B. 答案:B7.设0<a<1,函数f(x)=log a (a 2x -2a x -2),则使f(x)<0的x 的取值范围( ) A.(-∞,0) B.(0,+∞) C.(-∞,log a 3) D.(log a 3,+∞)思路解析:已知0<a <1,函数f(x)=log a (a 2x-2a x -2)<0,即求a 2x-2a x -2>1,a 2x-2a x -3>0⇒(a x -3)(a x +1)>0⇒a x <-1(舍)或a x >3,a x >3⇒x <log a 3. 答案:C 8.设a=22ln ,b=53ln ,c=55ln ,则( ) A.a<b<c B.c<b<a C.c<a<b D.b<a<c思路解析:通过对数函数性质即可得到结果. 答案:C9.定义在(-∞,+∞)上的奇函数f(x)和偶函数g(x)在区间(-∞,0]上的图象关于x 轴对称,且f(x)为增函数,则下列各选项中能使不等式f(b)-f(-a)>g(a)-g(-b)成立的是( ) A.a>b>0 B.a<b<0 C.ab>0 D.ab<0思路解析:已知定义在(-∞,+∞)上的奇函数f(x)和偶函数g(x)在区间(-∞,0]上的图象关于x 轴对称,且f(x)为增函数,则根据图象性质及函数的奇偶性可以得到f(b)-f(-a)=f(b)+f(a)>g(a)-g(-b)=g(a)-g(b)成立的条件为a >b >0,故选A. 答案:A10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x-0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A.45.606B.45.6C.45.56D.45.51思路解析:设在甲地销售汽车x 辆,则在乙地销售汽车(15-x)辆,得可获得的总利润为 L=L 1+L 2=5.06x-0.15x 2+2(15-x)=30+3.06x-0.15x 2,配方得到 L=-0.15(x+10.2)2+45.606≤45.606故选A. 答案:BA.(21,1) B.(21,+∞) C.(0,21)∪[1,+∞) D.(0, 21) 答案:A 12.函数f(x)=x x x ---4lg 32的定义域是_______________. 思路解析:⎪⎩⎪⎨⎧<≠≥⇒⎪⎩⎪⎨⎧>-≠-≥-4320403,02x x x x x x ⇒x ∈[2,3]∪(3,4).答案:[2,3)∪(3,4) 13.若函数f(x)=log a (222a x x ++)是奇函数,则a=________________.思路解析:函数f(x)=log a (x+222a x +)是奇函数,即f(-x)=-f(x),代入可以得到log a (-x+222)(a x +-)=-log a (x+222a x +),化简得到a=22为所求. 答案:22 14.已知函数y=f(x)与y=f -1(x)互为反函数,又y=f -1(x+1)与y=g(x)的图象关于直线y=x 对称,若f(x)=21log (x 2+2)(x>0);f -1(x)=___________;g(6)=______________.思路解析:利用反函数的性质和图象性质可以直接得到结果. 答案:)1(2)21(-<-x x;-415.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是_____________________. 思路解析:如右图所示,利用勾股定理可以得到所求即为PM=PN ,而四边形CNPM 为矩形,所求即四边形面积,当四边形为正方形时可取得最大面积.利用三角形相似可以得到一些量化关系,观察易得到△ACB ∶△PBM ∶△ANP ,利用量化关系可以得到,当PM=PN=3时可以取得最大值,最大值为3.答案:316.已知函数f(x)=bax x +2(a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 1=3, x 2=4.求函数f(x)的解析式.思路解析:利用函数根的性质作出判断,将x 1=3,x 2=4分别代入方程,分别解出a,b 的值即可得到所求结果.答案:将x 1=3,x 2=4分别代入方程b ax x +2-x+12=0得⎪⎪⎩⎪⎪⎨⎧-=+-=+,8416,939ba ba 解得⎩⎨⎧=-=.2,1b a 所以f(x)=x x -22 (x ≠2). 17.已知函数f(x)=x 3+x,x ∈R(1)指出f(x)在定义域R 上的奇偶性与单调性(只须写出结论,无需证明); (2)若a 、b 、c ∈R ,且a+b>0,b+c>0,c+a>0,试证明:f(a)+f(b)+f(c)>0.思路解析:利用函数单调性和奇偶性判断;根据已知条件a+b >0,b+c >0,c+a >0,可以判断出f(a),f(b),f(c)之间的大小关系. 答案:(1)f(x)是定义域R 上的奇函数且为增函数. (2)由a+b >0得a >-b.由增函数, 得f(a)>f(-b),由奇函数,得f(-b)=-f(b), ∴f(a)+f(b)>0,同理可得f(b)+f(c)>0,f(c)+f(a)>0,将以上三式相加后,得f(a)+f(b)+f(c)>0.18.20个劳动力种50亩地,这些地可种蔬菜、棉花、水稻.这些作物每亩地所需劳力和预计产值如下表.应怎样计划才能使每亩地都能种上作物(水稻必种),所有劳力都有工作且作物预计总产值达最高?劳动力得到使用以及获得最大产值.答案:设种x 亩水稻(0<x ≤50=,y 亩棉花(0<x ≤50=时,总产值为h 且每个劳力都有工作.h=0.3x+0.5y+0.6[50-(x+y)]且x 、y 满足4x +31y+21[50-(x+y)]=20. 即h=-203x+27,4≤x ≤50,x ∈N 欲使h 为最大,则x 应为最小,故当x=4(亩)时,h max =26.4万元,此时y=24(亩). 故安排1人种4亩水稻,8人种24亩棉花,11人种22亩蔬菜时农作物总产值最高且每个劳力都有工作.19.某公司生产的A 型商品通过租赁柜台进入某商场销售.第一年,商场为吸引厂家,决定免收该年管理费,因此,该年A 型商品定价为每件70元,年销售量为11.8万件.第二年,商场开始对该商品征收比率为p%的管理费(即销售100元要征收p 元),于是该商品的定价上升为每件%170p -元,预计年销售量将减少p 万件.(1)将第二年商场对该商品征收的管理费y(万元)表示成p 的函数,并指出这个函数的定义域; (2)要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p%的范围是多少?(3)第二年,商场在所收管理费不少于14万元的前提下,要让厂家获得最大销售金额,则p 应为多少?思路解析:根据题目分析可以得到第二年该商品年销售量为(11.8-p )万件,年销售收入 为%170p -(11.8-p)万元,则商场该年对该商品征收的总管理费为%170p -(11.8-p)p%(万元),可以得到所求函数,利用函数关系式的自变量和因变量取值范围便可解决后面的问题. 答案:(1)依题意,第二年该商品年销售量为(11.8-p )万件,年销售收入为%170p -(11.8-p)万元,则商场该年对该商品征收的总管理费为%170p -(11.8-p)p%(万元).故所求函数为:y=p -10070(118-10p)p.由 11.8-p >0及p >0得定义域为0<p <559.(2)由y ≥14,得p-1007(118-10p)p ≥14.化简得p 2-12p+20≤0,即(p-2)(p-10)≤0,解得2≤p ≤10.故当比率在[2%,10%]内时,商场收取的管理费将不少于14万元. (3)第二年,当商场收取的管理费不少于14万元时,厂家的销售收入为g(p)=%170p -(11.8-p)(2≤p ≤10).∵g(p)=%170p -(11.8-p)=700(10-p -100882)为减函数,∴g(p)max =g(2)=700(万元).故当比率为2%时,厂家销售金额最大,且商场所收管理费又不少于14万元.20.已知二次函数f(x)=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x 有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m <n),使f(x)的定义域和值域分别为[m,n ]和[4m,4n ],如果存在,求出m 的值;如果不存在,说明理由.思路解析:利用等根可得判别式Δ=0即可得到b 的值,同时根据f(x-1)=f(3-x)知此函数图ax 2+bx-2x=0象的对称轴方程为x=-ab2=1,得a 的值.解:(1)∵方程有等根,Δ=(b-2)2=0,得b=2.由f(x-1)=f(3-x)知此函数图ax 2+bx-2x=0象的对称轴方程为x=-ab2=1,得a=-1,故f(x)=-x 2+2x.(2)∵f(x)=-(x-1)2+1≤1, ∴4n ≤1,即n ≤41.而抛物线y=-x 2+2x 的对称轴为x=1, ∴当n ≤41时,f(x)在[m,n ]上为增函数. 若满足题设条件的m,n 存在,则⎩⎨⎧==.4)(,4)(n n f m m f即⎩⎨⎧-==-==⇒⎪⎩⎪⎨⎧=+-=+-.20,20424222n n m m nn n n m m 或或 又m <n ≤41, ∴m=-2,n=0,这时,定义域为[-2,0],值域为[-8,0].由以上知满足条件的m,n 存在, m=-2,n=0. 21.设函数f(x)表示实数,x 在与x 的给定区间内整数之差绝对值的最小值. (1)当x ∈[-21,21]时,求出f(x)的解析式,当x ∈[k-21,k+21](k ∈Z )时,写出用绝对值符号表示的f(x)的解析式,并说明理由;(2)用偶函数定义证明函数f (x )是偶函数(x ∈R ). 思路解析:当x ∈[-21,21]时,由定义知:x 与0距离最近,故当x ∈[k-21,k+21](k ∈Z )时,由定义知:k 为与x 最近的一个整数,可以得到第一问的解答;利用偶函数的定义证明第二问,需要注意使用第一问的结论,可以简化证明过程. 答案:(1)当x ∈[-21,21]时,由定义知:x 与0距离最近,f(x) =|x|,x ∈[-21,21], 当x ∈[k-21,k+21](k ∈Z )时,由定义知:k 为与x 最近的一个整数,故 f(x)=|x-k|,x ∈[k-21,k+21](k ∈Z ).(2)对任何x ∈R ,函数f(x)都存在,且存在k ∈Z ,满足k-21≤x ≤k+21,f(x)=|x-k|.由k-21≤x ≤k+21可以得出-k-21≤-x ≤-k+21(k ∈Z ), 即-x ∈[-k-21,-k+21](-k ∈Z ).由(1)的结论,f(-x)=|1-x-(-k)|=|k-x|=|x-k|=f(x),即f(x)是偶函数.。
高中数学人教a版高一必修一_第三章_函数的应用_学业分层测评23 有答案学业分层测评(二十三)函数模型的应用实例(建议用时:45分钟)[学业达标]一、选择题1.某厂日产手套总成本y(元)与手套日产量x(副)的函数解析式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为() A.200副B.400副C.600副D.800副【解析】由5x+4 000≤10x,解得x≥800,即日产手套至少800副时才不亏本.【答案】 D2.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()【导学号:97030143】A.p+q2 B.(p+1)(q+1)-12C.pqD.(p+1)(q+1)-1【解析】设年平均增长率为x,则有(1+p)(1+q)=(1+x)2,解得x=(1+p)(1+q)-1.【答案】 D3.某种细胞在正常培养过程中,时刻t(单位:分)与细胞数n(单位:个)的部分数据如下表:) A.200 B.220C.240 D.260【解析】由表中数据可以看出,n与t的函数关系式为n=2t20,令n=1 000,则2t20=1 000,而210=1 024,所以繁殖到1 000个细胞时,时刻t 最接近200分钟,故应选A.【答案】 A4.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x 年后剩留量为y ,则x ,y 的函数关系是( )A .y =()0.957 6x100B .y =(0.957 6)100xC .y =⎝ ⎛⎭⎪⎫0.957 9100xD .y =1-(0.042 4)x100【解析】 设镭一年放射掉其质量的t %,则有95.76%=1·(1-t )100,t =(0.957 6)1100,∴y =(1-t )x =(0.957 6)x100.【答案】 A5.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧c x ,x <A ,c A ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16【解析】 由题意知,组装第A 件产品所需时间为cA =15,故组装第4件产品所需时间为c 4=30,解得c =60.将c =60代入cA=15,得A =16. 【答案】 D 二、填空题6.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.【解析】 设出租车行驶x km 时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6,解得x =9. 【答案】 97.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th ,其中T a 称为环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降到40 ℃需要20分钟,那么此杯咖啡从40 ℃降温到32 ℃时,还需要________分钟.【解析】 设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th ,其中T a 称为环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降到40 ℃需要20分钟,可得T a =24,T 0=88,T =40,可得:40-24=(88-24)⎝ ⎛⎭⎪⎫1220h ,解得h =10,此杯咖啡从40 ℃降温到32 ℃时,可得:32-24=(40-24)⎝ ⎛⎭⎪⎫12t10,解得t =10.【答案】 108.州模拟)为了在“十一”黄金周期间降价促销,某超市对顾客实行购物优惠活动,规定一次购物付款总额:①如果不超过200元,则不予优惠;②如果超过200元,但不超过500元,则按标价给予9折优惠;③如果超过500元,其中500元按第②条给予优惠,超过500元的部分给予7折优惠.辛云和她母亲两次去购物,分别付款168元和423元,假设她们一次性购买上述同样的商品,则应付款额为________元.【解析】 依题意,价值为x 元商品和实际付款数f (x )之间的函数关系式为 f (x )=⎩⎪⎨⎪⎧x ,0≤x ≤200,0.9x ,200<x ≤500,500×0.9+(x -500)×0.7,x >500.当f(x)=168时,由168÷0.9≈187<200,故此时x=168;当f(x)=423时,由423÷0.9=470∈(200,500],故此时x=470.∴两次共购得价值为470+168=638(元)的商品,∴500×0.9+(638-500)×0.7=546.6(元),故若一次性购买上述商品,应付款额为546.6元.【答案】546.6三、解答题9.安模拟)如图3-2-10所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.图3-2-10(1)设MP=x米,PN=y米,将y表示成x的函数,求该函数的解析式及定义域;(2)求矩形BNPM面积的最大值.【解】(1)作PQ⊥AF于Q,所以PQ=(8-y)米,EQ=(x-4)米.又△EPQ∽△EDF,所以EQ PQ =EFFD ,即x -48-y =42. 所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S 平方米, 则S (x )=xy =x ⎝ ⎛⎭⎪⎫10-x 2=-12(x -10)2+50,S (x )是关于x 的二次函数,且其图象开口向下,对称轴为x =10,所以当x ∈[4,8]时,S (x )单调递增.所以当x =8米时,矩形BNPM 的面积取得最大值,为48平方米. 10.有时可用函数f (x )=⎩⎪⎨⎪⎧0.1+15ln a a -x,x ≤6,x -4.4x -4,x >6,描述学习某学科知识的掌握程度.其中x 表示某学科知识的学习次数(x ∈N *),f (x )表示对该学科知识的掌握程度,正实数a 与学科知识有关.【导学号:97030144】(1)证明:当x ≥7时,掌握程度的增长量f (x +1)-f (x )总是下降;(2)根据经验,学科甲、乙、丙对应的a 的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.【解】 (1)证明:当x ≥7时,f (x +1)-f (x )=0.4(x -3)(x -4),而当x ≥7时,函数y =(x -3)(x -4)单调递增,且(x -3)(x -4)>0,故函数f (x +1)-f (x )单调递减,所以当x ≥7时,掌握程度的增长量f (x +1)-f (x )总是下降.(2)由题意可知0.1+15lna a -6=0.85,整理得a a -6=e 0.05, 解得a =e 0.05e 0.05-1·6=20.50×6=123,123∈(121,127],由此可知,该学科是乙学科.[能力提升]1.一个高为H ,盛水量为V 0的水瓶的轴截面如图3-2-11所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )图3-2-11【解析】 水深h 越大,水的体积V 就越大,故函数V =f (h )是一个增函数,一开始增长越来越快,后来增长越来越慢,图象是先凹后凸的,曲线斜率是先增大后变小的.【答案】 D2.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y =⎩⎪⎨⎪⎧4x ,1≤x <10,x ∈N ,2x +10,10≤x <100,1.5x ,x ≥100,x ∈N ,x ∈N ,其中,x 代表拟录用人数,y 代表面试人数,若面试人数为60,则该公司拟录用人数为( )【导学号:97030145】 A .15 B .40 C .25D .130【解析】 若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25,满足题意;若1.5x =60,则x =40<100,不合题意.故拟录用人数为25人.【答案】 C3.某地区发生里氏8.0级特大地震.地震专家对发生的余震进行了监测,记录的部分数据如下表:地震强度(x )和震级(y )的模拟函数关系可以选用y =a lg x +b (其中a ,b 为常数).利用散点图可知a 的值等于________.(取lg 2=0.3进行计算)图3-2-12【解析】 由记录的部分数据可知 x =1.6×1019时,y =5.0, x =3.2×1019时,y =5.2. 所以5.0=a lg (1.6×1019)+b ,① 5.2=a lg (3.2×1019)+b ,②②-①得0.2=a lg 3.2×10191.6×1019,0.2=a lg2.所以a =0.2lg 2=0.20.3=23. 【答案】234.某企业为打入国际市场,决定从A 、B 两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如表:(单位:万美元)决定,预计m∈[6,8],另外,年销售x件B产品时需上交0.05x2万美元的特别关税,假设生产出来的产品都能在当年销售出去.(1)求该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系,并求出其定义域;(2)如何投资才可获得最大年利润?请设计相关方案.【解】(1)y1=10x-(20+mx)=(10-m)x-20,0≤x≤200,且x∈N,y2=18x-(8x+40)-0.05x2=-0.05x2+10x-40,0≤x≤120且x∈N.(2)∵6≤m≤8,∴10-m>0,∴y1=(10-m)x-20为增函数,又0≤x≤200,x∈N.∴x=200时,生产A产品有最大利润(10-m)×200-20=1 980-200m(万美元),y2=-0.05x2+10x-40=-0.05(x-100)2+4 60,0≤x≤120,x∈N.∴x=100时,生产B产品有最大利润460(万美元),(y1)max-(y2)max=1 980-200m-460=1 520-200m,当6≤m<7.6时,(y1)max-(y2)max>0,当m=7.6时,(y1)max-(y2)max=0,当7.6<m≤8时,(y1)max-(y2)max<0,∴当6≤m<7.6,投资A产品200件可获得最大利润,当7.6<m≤8,投资B产品100件可获得最大利润,m=7.6生产A产品与B产品均可获得最大年利润.。
高中数学学习材料马鸣风萧萧*整理制作高中同步创优单元测评A 卷 数 学班级:________ 姓名:________ 得分:________第三章 函数的应用 [名师原创·基础卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2-2x -3的零点是( ) A .1,-3 B .3,-1 C .1,2 D .不存在2.用二分法求方程f (x )=0在区间(1,2)内的唯一实数解x 0时,经计算得f (1)=3,f (2)=-5,f ⎝ ⎛⎭⎪⎫32=9,则下列结论正确的是( )A .x 0∈⎝⎛⎭⎪⎫1,32 B .x 0=32C .x 0∈⎝ ⎛⎭⎪⎫32,2 D .x 0∈⎝⎛⎭⎪⎫1,32或x 0∈⎝ ⎛⎭⎪⎫32,2 3.若函数f (x )=ax +b 的零点是-1(a ≠0),则函数g (x )=ax 2+bx 的零点是( )A .-1B .0C .-1和0D .1和04.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2 000元降到1 280元,则这种手机的价格平均每次降低的百分率是( )A .10%B .15%C .18%D .20%5.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,3,x >0,若f (-4)=f (0),f (-2)=-2,则函数y =f (x )-x 的零点的个数为( )A .1B .2C .3D .46.函数f (x )=ln(x +1)-2x 的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e) D .(3,4)7.实数a ,b ,c 是图象连续不断的函数y =f (x )定义域中的三个数,且满足a <b <c ,f (a )·f (b )<0,f (c )·f (b )<0,则函数y =f (x )在区间(a ,c )上的零点个数为( )A .2B .奇数C .偶数D .至少2个8.若方程m x -x -m =0(m >0,且m ≠1)有两个不同实数根,则m 的取值范围是( )A .m >1B .0<m <1C .m >0D .m >29.如图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则y =f (x )的图象大致为四个选项中的( )ax的图象可能是()11.某商场对顾客实行购物优惠活动,规定一次购物付款总额:①如果不超过200元,则不给予优惠;②如果超过200元但不超过500元,则按标价给予9折优惠;③如果超过500元,其500元内的按第②条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款( )A .413.7元B .513.7元C .546.6元D .548.7元12.已知0<a <1,则方程a |x |=|log a x |的实根个数为( ) A .2 B .3C .4D .与a 的值有关第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数f (x )=ln x -1x -1的零点的个数是________.14.根据表格中的数据,若函数f (x )=ln x -x +2在区间(k ,k +1)(k ∈N *)内有一个零点,则k 的值为________.x 1 2 3 4 5 ln x0.691.101.391.6115.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km.16.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)若二次函数f(x)=-x2+2ax+4a+1有一个零点小于-1,一个零点大于3,求实数a的取值范围.18.(本小题满分12分)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.19.(本小题满分12分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的15%进行奖励;当销售利润超过10万元时,若超出A万元,则超出部分按2log5(A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型;(2)如果业务员老江获得5.5万元的奖金,那么他的销售利润是多少万元?20.(本小题满分12分)设函数f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3和2.(1)求f(x);(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.21.(本小题满分12分)函数y=f(x)的图象关于x=1对称,当x≤1时,f(x)=x2-1.(1)写出y=f(x)的解析式并作出图象;(2)根据图象讨论f(x)-a=0(a∈R)的根的情况.22.(本小题满分12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?详解答案 第三章 函数的应用 [名师原创·基础卷]1.B 解析:令x 2-2x -3=0得x =-1或x =3,故选B.2.C 解析:∵f (2)·f ⎝ ⎛⎭⎪⎫32<0,∴x 0∈⎝ ⎛⎭⎪⎫32,2. 3.C 解析:由条件知f (-1)=0,∴b =a ,∴g (x )=ax 2+bx =ax (x +1)的零点为0和-1,故选C.4.D 解析:由题意,可设平均每次价格降低的百分率为x , 则有2 000(1-x )2=1 280,解得x =0.2或x =1.8(舍去),故选D.5.C 解析:本题主要考查二次函数、分段函数及函数的零点.f (-4)=f (0)⇒b =4,f (-2)=-2⇒c =2,∴ f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,3,x >0.当x ≤0时,由x 2+4x +2=x 解得x 1=-1,x 2=-2;当x >0时,x =3.所以函数y =f (x )-x 的零点的个数为3,故选C.6.B 解析:f (1)=ln(1+1)-21=ln 2-2=ln 2-ln e 2<0,f (2)=ln(2+1)-22=ln 3-1>0,因此函数的零点必在区间(1,2)内,故选B.7.D 解析:由f (a )·f (b )<0知,y =f (x )在(a ,b )上至少有一零点,由f (c )·f (b )<0知,y =f (x )在(b ,c )上至少有一零点,故y =f (x )在(a ,c )上至少有2个零点.8.A 解析:方程m x -x -m =0有两个不同实数根,等价于函数y =m x 与y =x +m 的图象有两个不同的交点.显然当m >1时,如图①有两个不同交点;当0<m <1时,如图②有且仅有一个交点,故选A.9.C 解析:设AB =a ,则y =12a 2-12x 2=-12x 2+12a 2,其图象为抛物线的一段,开口向下,顶点在y 轴正半轴.故选C.10.C 解析:由题意知,2a +b =0,所以a =-b2. 因此g (x )=bx 2+b 2x =b ⎝⎛⎭⎪⎫x 2+12x =b ⎝⎛⎭⎪⎫x +142-b16.易知函数g (x )图象的对称轴为x =-14,排除A ,D. 又令g (x )=0,得x =0或x =-0.5,故选C.11.C 解析:设该顾客两次购物的商品价格分别为x ,y 元,由题意可知x =168,y ×0.9=423,∴y =470,故x +y =168+470=638(元),故如果他一次性购买上述两样商品应付款: (638-500)×0.7+500×0.9=96.6+450=546.6(元).12.A 解析:设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如下图所示.由图可知,有两个交点,故方程a|x|=|log a x|有两个根.故选A.13.2解析:由y=ln x与y=1x-1的图象可知有两个交点.14.3解析:由表中数据可知,f(1)=ln 1-1+2=1>0,f(2)=ln 2-2+2=ln 2=0.69>0,f(3)=ln 3-3+2=1.10-1=0.1>0,f(4)=ln 4-4+2=1.39-2=-0.61<0,f(5)=ln 5-5+2=1.61-3=-1.39<0,∴f(3)·f(4)<0,∴k的值为3.15.9解析:设乘客每次乘坐出租车需付费用为f(x)元,由题意,得f (x )=⎩⎪⎨⎪⎧ 8+1,x ∈(0,3],9+(x -3)×2.15,x ∈(3,8],9+5×2.15+(x -8)×2.85,x ∈(8,+∞),令f (x )=22.6,显然9+5×2.15+(x -8)×2.85=22.6(x >8),解得x =9.16.(0,1) 解析:画出f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0的图象,如图所示.由函数g (x )=f (x )-m 有3个零点,即f (x )-m =0有3个不相等的实根,结合图象,得0<m <1.17.解:因为二次函数f (x )=-x 2+2ax +4a +1的图象开口向下,且在区间(-∞,-1),(3,+∞)内各有一个零点,所以⎩⎪⎨⎪⎧ f (-1)>0,f (3)>0, 即⎩⎪⎨⎪⎧-(-1)2-2a +4a +1>0,-32+2a ×3+4a +1>0, 即⎩⎪⎨⎪⎧2a >0,10a -8>0,解得a >45. 18.解:设f (x )=ax 2+bx +c (a ≠0),由题意知,c =3,-b 2a =2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 1+x 2=-b a ,x 1·x 2=c a .∵x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,即⎝ ⎛⎭⎪⎫-b a 2-2c a =10,∴42-6a =10, ∴a =1,b =-4.∴f (x )=x 2-4x +3.19.解:(1)由题意,得y =⎩⎪⎨⎪⎧0.15x ,0<x ≤10,1.5+2log 5(x -9),x >10. (2)x ∈(0,10],0.15x ≤1.5.又∵y =5.5,∴x >10,∴1.5+2log 5(x -9)=5.5,∴x =34.∴老江的销售利润是34万元.20.解:(1)∵f (x )的两个零点是-3和2,∴函数图象过点(-3,0),(2,0),∴⎩⎪⎨⎪⎧9a -3(b -8)-a -ab =0,①4a +2(b -8)-a -ab =0.② ①-②,得b =a +8.③③代入②,得4a +2a -a -a (a +8)=0,即a 2+3a =0.∵a ≠0,∴a =-3,∴b =a +8=5.∴f (x )=-3x 2-3x +18.(2)由(1)得f (x )=-3x 2-3x +18=-3⎝ ⎛⎭⎪⎫x +122+34+18, 图象的对称轴是x =-12,又0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18,∴函数f (x )的值域是[12,18].21.解:(1)由题意知f (x )=⎩⎪⎨⎪⎧x 2-1(x ≤1),(x -2)2-1(x >1). 图象如图所示.(2)当a <-1时,f (x )-a =0无解;当a =-1时,f (x )-a =0有两个实数根;当-1<a <0时,f (x )-a =0有四个实数根;当a =0时,f (x )-a =0有三个实数根;当a >0时,f (x )-a =0有两个实数根.22.解:(1)设f (x )=k 1x ,g (x )=k 2x ,所以f (1)=18=k 1,g (1)=12=k 2,即f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券类产品x 万元,则股票类投资为(20-x )万元.依题意,得y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20).令t =20-x (0≤t ≤25).则y =20-t 28+12t =-18(t -2)2+3,所以当t =2,即x =16(万元)时,收益最大,最大收益为3万元.。
人教版高中数学必修一函数的应用综合测试题含解析新人教A版必修集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)第三章函数的应用综合测试题(时间:120分钟分值:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中没有零点的是( )A.f(x)=log2x-3 B.f(x)=x-4C.f(x)=1x-1D.f(x)=x2+2x答案:C 解析:由于函数f(x)=1x-1中,对任意自变量x的值,均有1x-1≠0,故该函数不存在零点.2.函数f(x)=2x+m的零点落在(-1,0)内,则m的取值范围为( )A.(-2,0) B.(0,2)C.[-2,0] D.[0,2]答案:B 解析:由题意,f(-1)·f(0)=(m-2)m<0,∴0<m<2.3.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得,f(1.5)>0,f(1.25)<0,则方程的根落在区间( ) A.(1,1.25) B.(1.25,1.5)C.(1.5,2) D.不确定答案:B 解析:因为f(1.5)>0,f(1.25)<0,所以由零点存在性定理,可得方程3x+3x-8=0的根落在区间(1.25,1.5)内.4.下表表示一球自一斜面滚下t秒内所行的距离s的尺数(注:尺是一种英制长度单位).当t=2.5A.45 B.62.5 C.70 D.75答案:B 解析:由题表可知,距离s同时间t的关系是s=10t2,当t=2.5时,s=10×(2.5)2=62.5.5.不论m为何值时,函数f(x)=x2-mx+m-2的零点有( )A.2个B.1个C.0个D.都有可能答案:A 解析:方程x2-mx+m-2=0的判别式Δ=m2-4(m-2)=(m-2)2+4>0,∴函数f(x)=x2-mx+m-2的零点有2个.6.已知f(x)=2x2-2x,则在下列区间中,方程f(x)=0一定有实数解的是( )A.(-3,-2) B.(-1,0)C.(2,3) D.(4,5)答案:B 解析:∵f(-1)=2-12>0,f(0)=0-1<0,∴在(-1,0)内方程f(x)=0一定有实数解.7.设x0是函数f(x)=ln x+x-4的零点,则x0所在的区间为( )A.(0,1) B.(1,2) C.(2,3) D.(3,4)答案:C 解析:∵f(2)=ln 2+2-4=ln 2-2<0,f(3)=ln 3-1>ln e -1=0,f(2)·f(3)<0.由零点存在定理,得x0所在的区间为(2,3).故选C.8.已知x0是函数f(x)=2x+11-x的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则( )A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0答案:B 解析:由定义法证明函数的单调性的方法,得f(x)在(1,+∞)为增函数,又1<x 1<x 0<x 2,x 0为f (x )的一个零点,所以f (x 1)<f (x 0)=0<f (x 2).9.有浓度为90%的溶液100 g ,从中倒出10 g 后再倒入10 g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.301 0,lg 3=0.477 1)( )A .19B .20C .21D .22答案:C 解析:操作次数为n 时的浓度为⎝ ⎛⎭⎪⎫910n +1,由⎝ ⎛⎭⎪⎫910n +1<10%,得n +1>-1lg 910=-12lg 3-1≈21.8,∴n ≥21.10.若函数y =a x -x -a 有两个零点,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(0,+∞)D .?答案:A 解析:令f (x )=a x ,g (x )=x +a ,作出它们的图象如图所示. 显然当a >1时,f (x )与g (x )的图象有两个交点,即函数y =a x -x -a 有两个零点.11.用二分法判断方程2x 3+3x -3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421 875,0.6253=0.244 14)( )A .0.25B .0.375C .0.635D .0.825答案:C 解析:令f (x )=2x 3+3x -3,f (0)<0,f (1)>0,f (0.5)<0,f (0.75)>0,f (0.625)<0,则方程2x 3+3x -3=0的根在区间(0.625,0.75)内.∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意. 12.甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2),甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半的时间使用速度v 2,关于甲、乙二人从A 地到达B 地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点),则其中可能正确的图示分析为( )答案:A 解析:由题意可知,开始时,甲、乙速度均为v 1,所以图象是重合的线段,由此排除C ,D ,再根据v 1 <v 2,可知两人的运动情况均是先慢后快,图象是折线且前“缓”后“陡”,故图示A 分析正确.二、填空题(本大题共4小题,每小题5分,共20分.请把正确的答案填在题中的横线上)13.函数f (x )=⎩⎨⎧x 2-2, x ≤0,2x -6+ln x ,x >0的零点个数是________.答案:2 解析:当x ≤0时,令x 2-2=0,解得x =-2(正根舍去), 所以在(-∞,0]上有一个零点. 当x >0时,f (x )在(0,+∞)上是增函数. 又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,f (2)·f (3)<0,所以f (x )在(2,3)内有一个零点.综上,函数f (x )的零点个数为2.14.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为________.答案:⎣⎢⎡⎦⎥⎤-235,1 解析:令f (x )=x 2+ax -2,则f (0)=-2<0,∴要使f (x )在[1,5]上与x 轴有交点,则需要⎩⎨⎧f (1)≤0,f (5)≥0,即⎩⎨⎧a -1≤0,23+5a ≥0,解得-235≤a ≤1.15.若函数f (x )=lg|x -1|-m 有两个零点x 1和x 2,则x 1+x 2=________. 答案:2 解析:∵函数f (x )=lg|x -1|-m 有两个零点, ∴函数y 1=lg|x -1|与函数y 2=m 由两个交点,∵y 1=lg|x -1|的图象关于x =1对称, lg|x 1-1|=lg|x 2-1|, ∴x 1+x 2=2.16.某学校开展研究性学习活动,一组同学获得了下面的一组试验数据.现有如下5①y =0.58x -0.16;②y =2x -3.02;③y =x 2-5.5x +8;④y =log 2x ;⑤y=⎝ ⎛⎭⎪⎫12x+1.74. 请从中选择一个模拟函数,使它比较近似地反映这些数据的规律,应选________.(填序号)答案:④解析:画出散点图如图所示.由图可知,上述点大体在函数y =log 2x 上(对于y =0.58x -0.16,可代入已知点验证不符合),故选择y =log 2x 可以比较近似地反映这些数据的规律.三、解答题(本大题共6小题,满分70分.解答时应写出文字说明、证明过程或演算步骤)17. (本小题满分10分)已知函数f (x )= (1)求不等式f (x )>5的解集;(2)若方程f (x )-m 22=0有三个不同实数根,求实数m 的取值范围.解:(1)当x ≤0时,由x +6>5,得-1<x ≤0; 当x >0时,由x 2-2x +2>5,得x >3.综上所述,不等式的解集为(-1,0]∪(3,+∞).(2)方程f (x )-m 22=0有三个不同实数根,等价于函数y =f (x )与函数y =m 22的图象有三个不同的交点.由图可知,1<m 22<2,解得-2<m <-2或 2<m <2.所以,实数m 的取值范围(-2,-2)∪(2,2) .18. (本小题满分12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,x 小时内供水总量为8020x 吨.现在开始向池中注水并同时向居民小区供水,问:(1)多少小时后蓄水池中的水量最少?(2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?解:设x 小时后蓄水池中的水量为y 吨,则有y =450+80x -8020x=450+80x -1605x (x ≥0). (1)y =16(5x -5)2+50(x ≥0), 则当5x =5,即x =5时,y min =50, ∴5小时后蓄水池中水量最少为50吨. (2)由题意,450+80x -1605x <150,可得 52<x <352,即54<x <454. ∵454-54=10,故有10小时供水紧张. 19. (本小题满分12分)已知定义在R 上的奇函数f (x )在x ≥0时的图象是如图所示的抛物线的一部分.(1)请补全函数f (x )的图象;(2)写出函数f (x )的表达式(只写明结果,无需过程); (3)讨论方程|f (x )|=a 的解的个数(只写明结果,无需过程). 解:(1)补全f (x )的图象如图所示:(2)f (x )=⎩⎨⎧2x 2-4x ,x ≥0,-2x 2-4x ,x <0.(3)当a <0时,方程无解; 当a =0时,方程有三个解; 当0<a <2时,方程有6个解; 当a =2时,方程有4个解; 当a >2时,方程有2个解.20. (本小题满分12分)某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2011年为第1年,且前4年中,第x 年与年产量f (x )(万件)之间的关系如下表所示:若f (x )b ,f (x )=2x +a ,f (x )=log 12x +a .(1)找出你认为最适合的函数模型,并说明理由,然后选取11年和13年的数据求出相应的解析式;(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.解:(1)符合条件的是f (x )=ax +b .若模型为f (x )=2x +a ,则由f (1)=21+a =4,得a =2,即f (x )=2x +2, 此时f (2)=6,f (3)=10,f (4)=18,与已知相差太大,不符合. 若模型为f (x )=log 12x +a ,则f (x )是减函数,与已知不符合.由已知得⎩⎨⎧ a +b =4,3a +b =7,解得⎩⎨⎧a =32,b =52,所以f (x )=32x +52,x ∈N .(2)2015年预计年产量为f (7)=32×7+52=13,2015年实际年产量为13×(1-30%)=9.1. 所以,2015年的实际产量为9.1万件.21. (本小题满分12分)已知函数f (x )=log 4(4x +1)+kx ,(k ∈R )为偶函数.(1)求k 的值;(2)若函数 f (x )=log 4(a ·2x -a )有且仅有一个根,求实数a 的取值范围. 解:(1)∵f (x )为偶函数,∴f (-x )=f (x ), 即log 4(4-x +1)-kx =log 4(4x +1)+kx , ∴log 44x +14x -log 4(4x +1)=2kx ,∴(2k +1)x =0,∴k =-12.(2)依题意知,log 4(4x +1)-12x =log 4(a ·2x -a ),整理得log 4(4x +1)= log 4[(a ·2x -a ) 2x ], ∴4x +1=(a ·2x -a )·2x .(*)令t =2x ,t >0,则(*)变为(1-a )t 2+at +1=0.(**) 只需其仅有一正根.①当a =1时,t =-1不合题意; ②当(**)式有一正一负根时,∴⎩⎨⎧Δ=a 2-4(1-a )>0,t 1t 2=11-a <0,解得a >1;③当(**)式有两相等的正根时,Δ=0,∴a =±22-2,且a2(a -1)>0,∴a =-2-2 2.综上所述,a 的取值范围为{a |a >1或a =-2-22}.22. (本小题满分12分)某上市股票在30天内每股交易价格P (元)与时间t (天)组成有序数对(t ,P ),点(t ,P )落在图中的两条线段上,该股票在30天内的日交易量Q (万股)与时间t (天)的部分数据如下表所示:(1)元)与时间t (天)所满足的函数关系式;(2)根据表中数据确定日交易量Q (万股)与时间t (天)的一次函数关系式; (3)用y 表示该股票日交易额(万元),写出y 关于t 的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少?解:(1)由图象知,前20天满足的是递增的直线方程,且过两点(0,2),(20,6),易求得直线方程为P =15t +2;从20天到30天满足递减的直线方程,且过两点(20,6),(30,5),求得方程为P =-110t +8, 故每股交易价格P (元)与时间t (元)所满足的函数关系式为P =⎩⎨⎧15t +2,0≤t ≤20,t ∈N ,-110t +8,20<t ≤30,t ∈N .(2)由图表,易知Q 与t 满足一次函数关系,即Q =-t +40,0≤t ≤30,t ∈N .(3)由以上两问,可知y =⎩⎨⎧⎝ ⎛⎭⎪⎫15t +2(-t +40),0≤t ≤20,t ∈N ,⎝ ⎛⎭⎪⎫-110t +8(-t +40),20<t ≤30,t ∈N=⎩⎨⎧-15(t -15)2+125,0≤t ≤20,t ∈N ,110(t -60)2-40,20<t ≤30,t ∈N , 当0≤t ≤20,t =15时,y max =125,当20<t ≤30,y 随t 的增大而减小,y <120,∴在30天中的第15天,日交易额最大,最大值为125万元.。
第三章测评A(基础过关卷)(时间:90分钟满分:100分)第Ⅰ卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y=1+1x的零点是()A.(-1,0) B.-1 C.1 D.02.已知函数f(x)=2x-b的零点为x0,且x0∈(-1,1),那么b的取值范围是()A.(-2,2) B.(-1,1) C.11,22⎛⎫-⎪⎝⎭D.(-1,0)3.已知函数f(x)=e x-x2,则在下列区间上,函数必有零点的是()A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)4.下列给出的四个函数f(x)的图象中能使函数y=f(x)-1没有零点的是()5.方程3x+x=3的解所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)6.实数a,b,c是图象连续不断的函数y=f(x)定义域中的三个数,且满足a<b<c,f(a)·f(b)<0,f(b)·f(c)<0,则函数y=f(x)在区间(a,c)上零点为()A.2个B.奇数个C.偶数个D.至少2个7.若函数y=a x-x-a有两个零点,则a的取值范围是()A.(1,+∞) B.(0,1) C.(0,+∞) D.∅8.红豆生南国,春来发几枝?如图给出了红豆生长时间t(月)与枝数y的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?()A.y=2t B.y=log2t C.y=2t D.y=t29.已知x0是函数f(x)=2x+11x的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则()A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>010.甲、乙二人从A地沿同一方向去B地,途中都使用两种不同的速度v1与v2(v1<v2),甲前一半的路程使用速度v1,后一半的路程使用速度v2;乙前一半的时间使用速度v1,后一半的时间使用速度v2,关于甲、乙二人从A地到达B地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴t表示时间,纵轴s表示路程,C是AB的中点),则其中可能正确的图示分析为()第Ⅱ卷(非选择题共50分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是__________.12.已知长为4,宽为3的矩形,若长增加x ,宽减少2x,则面积最大,此时x =__________,面积S =__________.13.方程13⎛⎫ ⎪⎝⎭|x |=2-x 的实数根的个数为__________.14.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N *)内,则n =__________.15.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%.若初始时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤__________次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)三、解答题(本大题共4小题,共25分.解答时应写出文字说明、证明过程或演算步骤) 16.(6分)定义在R 上的偶函数y =f (x )在(-∞,0]上递增,函数f (x )的一个零点为-12,求满足f (log 14x )≥0的x 的取值集合.17.(6分)已知函数f (x )=x -1+12x 2-2,试利用基本初等函数的图象,判断f (x )有几个零点,并利用零点存在定理确定各零点所在的区间(各区间长度不超过1).18.(6分)已知函数f (x )=log a (x +2)-1(a >0,且a ≠1),g (x )=12⎛⎫ ⎪⎝⎭x -1.(1)若函数y =f (x )的图象恒过定点A ,求点A 的坐标; (2)若函数F (x )=f (x )-g (x )的图象过点12,2⎛⎫⎪⎝⎭,试证明函数F (x )在x ∈(1,2)上有唯一零点.19.(7分)经市场调查,某种商品在过去50天的销售价格(单位:元)均为销售时间t (天)的函数,且销售量(单位:件)近似地满足f (t )=-2t +200(1≤t ≤50,t ∈N ),前30天价格(单位:元)为g (t )=12t +30(1≤t ≤30,t ∈N ),后20天价格(单位:元)为g (t )=45(31≤t ≤50,t ∈N ). (1)写出该种商品的日销售额S (元)与时间t (天)的函数关系; (2)求日销售额S 的最大值.参考答案1. 答案:B2. 解析:解方程f (x )=2x -b =0,得x 0=2b , 所以2b∈(-1,1),所以b ∈(-2,2). 答案:A 3. 解析:f (-2)=21e-4<0,f (-1)=1e -1<0,f (0)=e 0=1>0,f (1)=e -1>0,f (2)=e 2-4>0.∵f (-1)·f (0)<0,∴f (x )在(-1,0)上必有零点. 答案:B4. 解析:把y =f (x )的图象向下平移一个单位后,只有C 图中的图象满足y =f (x )-1与x 轴无交点.答案:C5. 解析:设f (x )=3x +x -3,则f (0)=-2<0,f (1)=1>0,则函数f (x )的零点即方程3x+x =3的解所在的区间为(0,1).答案:A6. 解析:由f (a )·f (b )<0知,区间(a ,b )上至少有1个零点,由f (b )·f (c )<0知在区间(b ,c )上至少有1个零点,故在区间(a ,c )上至少有2个零点.答案:D7. 解析:令f (x )=a x ,g (x )=x +a ,当a >1时,f (x )与g (x )的图象有两个交点,即函数y =a x -x -a 有两个零点. 答案:A8. 解析:当t =2时,y =4;当t =4时,y =16;当t =5时,y =32,故用y =2t 拟合最好.答案:A9. 解析:设y 1=2x ,y 2=11x -,在同一坐标系中作出其图象, 如图,在(1,x 0)内y 2=11x -的图象在y 1=2x 图象的上方, 即111x ->2x 1, 所以2x 1+111x -<0, 即f (x 1)<0,同理f (x 2)>0.答案:B10. 解析:由题意可知,开始时,甲、乙速度均为v 1,所以图象是重合的线段,由此排除C ,D ,再根据v 1<v 2可知两人的运动情况均是先慢后快,图象是折线且前“缓”后“陡”,故图示A 分析正确.答案:A11. 解析:设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).答案:(2,3)12. 解析:S =(4+x ) 32x ⎛⎫- ⎪⎝⎭=-22x +x +12=-12 (x 2-2x )+12=-12 (x -1)2+252. 当x =1时,S max =252. 答案:125213. 解析:在同一平面直角坐标系内画出函数y =13⎛⎫ ⎪⎝⎭|x |与函数y =2-x 的图象,两图象有1个交点,所以方程13⎛⎫⎪⎝⎭|x|=2-x有1个实数根.答案:114.解析:设g(x)=ln x,h(x)=-3x+7,则函数g(x)和函数h(x)的图象交点的横坐标是函数f(x)的零点.在同一坐标系中画出函数g(x)和函数h(x)的图象,如图所示.由图象知函数f(x)的零点属于区间7 1,3⎛⎫ ⎪⎝⎭,又f(1)=-4<0,f(2)=-1+ln 2=ln 2e<0,f(3)=2+ln 3>0,所以函数f(x)的零点属于区间(2,3).所以n=2.答案:215.解析:设过滤n次才能达到市场要求,则2%113⎛⎫-⎪⎝⎭n≤0.1%,即23⎛⎫⎪⎝⎭n≤0.12,∴n lg 23≤-1-lg 2.解得n≥1lg22lg3--≈7.39.又n∈N*,∴n的最小值为8. 答案:816.解:∵-12是函数的一个零点,∴f12⎛⎫- ⎪⎝⎭=0.∵y=f(x)是偶函数且在(-∞,0]上单调递增,∴当log14x≤0,即x≥1时,log14x≥-12,解得x≤2,即1≤x≤2.由对称性可知,当log14x>0时,12≤x<1.综上所述,x的取值范围是1,2 2⎡⎤⎢⎥⎣⎦.17.解:由f(x)=0,得x-1=-12x2+2,令y1=x-1,y2=-12x2+2,分别画出它们的图象如图所示,其中抛物线顶点为(0,2),与x轴交于点(-2,0),(2,0),y1与y2的图象有3个交点,从而函数y=f(x)有3个零点.由f(x)的解析式知x≠0,f(x)的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线.且f(-3)=136>0,f(-2)=-12<0,f12⎛⎫⎪⎝⎭=18>0,f(1)=-12<0,f(2)=12>0,所以函数零点所在区间为(-3,-2),1,12⎛⎫⎪⎝⎭,(1,2).18.解:(1)∵函数y=log a x的图象恒过点(1,0),∴函数f(x)=log a(x+2)-1(a>0,且a≠1)的图象恒过点A(-1,-1).(2)F(x)=f(x)-g(x)=log a(x+2)-1-12⎛⎫⎪⎝⎭x-1,∵函数F(x)的图象过点1 2,2⎛⎫ ⎪⎝⎭,∴F(2)=12,即log a4-1-12⎛⎫⎪⎝⎭2-1=12,∴a=2.∴F(x)=log2(x+2)-12⎛⎫⎪⎝⎭x-1-1.∴函数F(x)在(1,2)上是增函数.又∵F(1)=log23-2<0,F(2)=12>0,∴函数F(x)在(1,2)上有零点,故函数F(x)在(1,2)上有唯一零点.19.解:(1)根据题意,得S=()1220030130245(2200)3150t t t tt t t⎧⎛⎫-++≤≤∈⎪ ⎪⎝⎭⎨⎪≤≤∈⎩NN,,,-+,,=240 6 000130909 0003150.t t t tt t t⎧≤≤∈⎨≤≤∈⎩NN-++,,,-+,,(2)当1≤t≤30,t∈N时,S=-(t-20)2+6 400,当t=20时,S有最大值,为6 400;当31≤t≤50,t∈N时,S=-90t+9 000为减函数,当t=31时,S有最大值,为6 210.∵6 210<6 400,∴当销售时间为20天时,日销售额S有最大值,为6 400元.。
第三章 函数的应用 单元测试卷(A )时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.函数y =1+1x 的零点是( ) A .(-1,0) B .-1 C .1D .02.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )3.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( ) A .大于0B .小于0C .无法判断D .等于零4.方程x -1=lg x 必有一个根的区间是( ) A .(0.1,0.2) B .(0.2,0.3) C .(0.3,0.4)D .(0.4,0.5)5.方程2x -1+x =5的解所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)6.如下图1所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是下面四个图形中的( )图17.某人2011年7月1日到银行存入a 元,若按年利率x 复利计算,则到2014年7月1日可取款( ) A .a (1+x )2元 B .a (1+x )4元 C .a +(1+x )3元D .a (1+x )3元8.已知函数f (x )=2mx +4,若在[-2,1]上存在x 0,使f (x 0)=0,则实数m 的取值范围是( ) A .[-52,4]B .(-∞,-2]∪[1,+∞)C .[-1,2]D .[-2,1]9.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:(1)如一次购物不超过200元,不予以折扣;(2)如一次购物超过200元但不超过500元,按标价予以九折优惠;(3)如一次购物超过500元,其中500元给予九折优惠,超过500元的部分给予八五折优惠.某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款( ) A .608元 B .574.1元 C .582.6元D .456.8元10.若函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( ) A .f (x )=4x -1 B .f (x )=(x -1)2 C .f (x )=e x-1D .f (x )=ln(x -12)11.如图2,直角梯形OABC 中,AB ∥OC ,AB =1,OC =BC =2,直线l :x =t 截此梯形所得位于l 左方图形的面积为S ,则函数S =f (t )的图象大致为()图212.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( )A .k =0B .k >1C .0≤k <1D .k >1,或k =0第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是__________.14.方程e x -x =2在实数范围内的解有________个.15.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初始时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)16.某公司欲投资13亿元进行项目开发,现有以下六个项目可供选择:只需写项目代号).三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知函数f(x)=2(m+1)x2+4mx+2m-1,(1)m为何值时,函数的图象与x轴有两个交点?(2)如果函数的一个零点在原点,求m的值.18.(12分)设函数f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3和2.(1)求f(x);(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.19.(12分)设函数f(x)=e x-m-x,其中m∈R,当m>1时,判断函数f(x)在区间(0,m)内是否存在零点.20.(12分)某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图所示).(1)根据图象,求一次函数y=kx+b的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元.试用销售单价x表示利润S;并求销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?21.(12分)星期天,刘老师到电信局打算上网开户,经询问,记录了可能需要的三种方式所花费的费用资料,现将资料整理如下:①163普通:上网资费2元/小时;②163A:每月50元(可上网50小时),超过50小时的部分资费2元/小时;③ADSLD:每月70元,时长不限(其他因素均忽略不计).请你用所学的函数知识对上网方式与费用问题作出研究:(1)分别写出三种上网方式中所用资费与时间的函数解析式;(2)在同一坐标系内分别画出三种方式所需资费与时间的函数图象;(3)根据你的研究,请给刘老师一个合理化的建议.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f(x)(万件)如表所示:(1)画出2000~2003(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x=7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?第三章 函数的应用 单元综合测试一 答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.解析:令1+1x =0,得x =-1,即为函数零点. 答案:B2.解析:把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 答案:C3.解析:由题意不能断定零点在区间(-1,1)内部还是外部. 答案:C4.解析:设f (x )=lg x -x +1, 则f (0.1)=lg0.1-0.1+1=-0.1<0, f (0.2)=lg0.2-0.2+1≈0.1>0, f (0.1)f (0.2)<0,选A. 答案:A5.解析:令f (x )=2x -1+x -5,则f (2)=2+2-5=-1<0, f (3)=22+3-5=2>0,从而方程在区间(2,3)内有解. 答案:C6.解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S 随之减小,故排除A 、B 、D ,选择C. 答案:C7.解析:由题意知,2012年7月1日可取款a (1+x )元, 2013年7月1日可取款a (1+x )·(1+x )=a (1+x )2元, 2014年7月1日可取款a (1+x )2·(1+x )=a (1+x )3元.答案:D8.解析:由题意,知m ≠0,故f (x )是单调函数. 又在[-2,1]上存在x 0,使f (x 0)=0, 所以f (-2)·f (1)≤0.所以(-4m +4)·(2m +4)≤0, 即(m -1)(m +2)≥0,得⎩⎪⎨⎪⎧ m -1≥0,m +2≥0,或⎩⎪⎨⎪⎧m -1≤0,m +2≤0, 可解得m ≤-2,或m ≥1. 答案:B9.解析:本题实际上是一个分段函数的问题,购物付款432元,实际商品价值为432×109=480(元);则一次购买标价为176+480=656(元)的商品应付款500×0.9+156×0.85=582.6(元),故选C. 答案:C10.解析:f (x )=4x -1的零点为x =14, f (x )=(x -1)2的零点为x =1, f (x )=e x -1的零点为x =0, f (x )=ln(x -12)的零点为x =32, 估算g (x )=4x +2x -2的零点, 因为g (0)=-1,g (12)=1, 所以g (x )的零点x ∈(0,12).又函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25, 只有f (x )=4x -1的零点适合. 答案:A11.解析:由题图可得函数的解析式为S =f (t )=⎩⎪⎨⎪⎧t 2,0≤t ≤1,2t -1,1<t ≤2.答案:C12.解析:令y 1=|x 2-6x +8|,y 2=k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D. 答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.解析:设f (x )=x 3-2x -5,则f (2)<0, f (3)>0, f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3). 答案:(2,3)14.解析:可转化为判断函数y =e x 与函数y =x +2的图象的交点个数.图3答案:215.解析:设过滤n 次才能达到市场要求,则2%(1-13)n ≤0.1%,即(23)n ≤0.12,∴n lg 23≤-1-lg2. ∴n ≥7.39,∴n =8. 答案:816.解析:本题适用于估算来解决.首先确定出各个项目的利润与投资比:A :0.11;B :0.2;C :0.1;D :0.125;E :0.15;F :0.1,大小顺序是:B ,E ,D ,A ,C ,F ;而B ,E ,D 三项的利润和超过1.6千万元;但投资不到13亿元,只有12亿元,所以可以再加上F ,即B ,D ,E ,F ;或者去掉D 选A ,即A ,B ,E 也符合题意。
高中数学第三章函数的应用测评新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章函数的应用测评新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章函数的应用测评新人教A版必修1的全部内容。
第三章函数的应用(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知下列四个函数图象,其中能用二分法求出函数零点的是()解析:由二分法的定义易知选A。
答案:A2.已知函数f(x)=2x—b的零点为x0,且x0∈(—1,1),则b的取值范围是()A.(-2,2)B。
(—1,1)C。
D.(—1,0)解析:解方程f(x)=2x—b=0,得x0=,所以∈(—1,1),即b∈(-2,2).答案:A3.已知函数f(x)=e x—x2,则在下列区间内,函数必有零点的是()A.(—2,-1)B。
(-1,0)C。
(0,1)D。
(1,2)解析:f(-2)=—4〈0,f(—1)=—1<0,f(0)=e0=1〉0,f(1)=e-1〉0,f(2)=e2-4>0.∵f(-1)·f(0)<0,∴f(x)在区间(—1,0)内必有零点。
答案:B4。
下列给出的四个函数f(x)的图象中能使函数y=f(x)—1没有零点的是()解析:把y=f(x)的图象向下平移一个单位长度后,只有C中的图象满足y=f(x)—1与x轴无交点。
答案:C5.已知一根蜡烛长为20 cm,若点燃后每小时燃烧5 cm,则蜡烛燃烧剩下的高度h(单位:cm)与燃烧时间t(单位:小时)的函数关系用图象表示为()解析:本题结合函数图象考查一次函数模型.由题意得h=20—5t(0≤t≤4),故选B。
高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)一、单选题1.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率为x ,则x 满足的方程为( )A .210(1)42x +=B .21010(1)42x ++=C .1010(1)10(12)42x x ++++=D .21010(1)10(1)42x x ++++=2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A .310元B .300元C .390元D .280元3.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为2121L x x=-+和22L x =.若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元4.把长为12cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A .233cm 2B .24cmC .232cmD .223cm5.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .306.单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .1957.某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了( )A .0.33米B .0.42米C .0.39米D .0.43米8.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则下列说法错误的是( )A .乙的速度为300米/分钟B .25分钟后甲的速度为400米/分钟C .乙比甲晚14分钟到达B 地D .A 、B 两地之间的路程为29400米二 、多选题 9.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=√x x <A,√A x ⩾A(A,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,下列结果正确的是( )A. A =16B. c =60C. A =4D. c =3010.对任意两个实数a ,b ,定义max{ a,b}={a,a >b,若f(x)=2−x 2,g(x)=x 2下列关于函数F(x)=max{ f(x),g(x)}的说法正确的有( )A. 函数F(x)是偶函数B. 函数F(x)有四个单调区间C. 方程F(x)=2有四个不同的根D. 函数F(x)的最大值为1,无最小值11.函数y =[x]的函数值表示不超过x 的最大整数.例如[1.1]=1,[2.3]=2设函数f(x)={1−x 2,x <0,x −[x],x ⩾0,则下列说法正确的是( )A. 函数f(x)的值域为(−∞,0]B. 若x ⩾0,则[f(x)]=0C. 方程f(x)=1有无数个实数根D. 若方程f(x)=−x +a 有两个不等的实数根,则实数a 的取值范围是[0,+∞)12.已知函数f(x)={x 2,x ⩽0,−x 2,x >0,则下列结论中正确的是( ) A. f(√2)=2B. 若f(m)=9,则m ≠±3C. f(x)是奇函数D. 在f(x)上R 单调递减三、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算. 可以享受折扣优惠金额折扣优惠率 不超过500元的部分5% 超过500元的部分 10% 某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为__________元.14.函数()()222323y x x x x =---+零点的个数为_____________.15.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为____(单位:2cm ).四、解答题16..如图,某灌溉渠的横断面是等腰梯形,底宽2m ,渠深为1.8m ,斜坡的倾斜角是45°(无水状态不考虑).(1)试将横断面中水的面积()A h (2m )表示成水深h (m )的函数;(2)当水深为1.2m 时,求横断面中水的面积.17.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0.(1)当020x <≤时,求函数()v x 的表达式;(2)当x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大?并求出最大值.18.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为21200800002y x x =-+ ,且处理每吨二氧化碳得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?19.吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?20.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:5 2.236) 参考答案1.D 2.B3.C4.D5.C6.B7.B8.C9.AB;10.AB;11.BD;12.CD;13.112014.215.1616.(1)依题意,横断面中的水面是下底为2m ,上底为()22h +m ,高为h m 的等腰梯形,所以()()()222220 1.82h A h h h h h ++=⋅=+<≤. (2)由(1)知()()220 1.8A h h h h =+<≤ ()21.2 1.22 1.2 3.84h =+⨯=所以当水深为1.2m 时,横断面水中的面积为3.842m .17.(1)依题意,当04x <≤时()2v x =;当420x <≤时,()v x 是关于x 的一次函数,假设()(0)v x ax b a =+≠则42200a b a b +=⎧⎨+=⎩,解得0.1252.5a b =-⎧⎨=⎩所以()2,040.125 2.5,420x v x x x <≤⎧=⎨-+<≤⎩. (2)当04x <≤时()()()2028v x f x x v x x =⇒<=⋅=≤;当420x <≤时()()20.125 2.50.125 2.5v x x f x x x =-+⇒=-+当()2.51020.125x =-=⨯-时,()f x 取得最大值()1012.5f =. 因为12.58>,所以当x =10时,鱼的年生长量()f x 可以达到最大,最大值为12.53/千克米.18.(1)由题意知,平均每吨二氧化碳的处理成本为180000180000200220020022y x x x x x=+-≥⋅-=; 当且仅当1800002x x = ,即400x = 时等号成立 故该当每月处理量为400吨时,才能使每吨的平均处理成本最低为200元.(2)不获利,设该单位每个月获利为S 元,则2211100100200800003008000022S x y x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭()21300350002x =--- 因为[]400,600x ∈,则[]80000,40000S ∈--故该当单位每月不获利,需要国家每个月至少补贴40000元才能不亏损.19.(1)当产量小于或等于50万盒时20020018010020300y x x x =---=-当产量大于50万盒时222002006035001403700y x x x x x =----=-+-故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时2050300700y ≤⨯-=;当50x >时21403700y x x =-+-当140702x ==时,21403700y x x =-+-取到最大值,为1200. 因为7001200<,所以当产量为70万盒时,该企业所获利润最大.20.(1)解:由题意知当120x =(辆/千米)时,0v =(千米/小时)代入80150k v x=--,解得2400k = 所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩. 当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤. 所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.(2)解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时 ()()2150180150450024004500808080180150150150150x x x y x x x x x --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦ 4800(35)3667≤-≈. 当且仅当4500150150x x-=-,即30(55)83x =-≈时等号成立. 所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.。
一、选择题⋅=(a为大于0的常数)的点P的1.已知,A B是平面内两个定点,平面内满足PA PB a轨迹称为卡西尼卵形线,它是以发现土星卫星的天文学家乔凡尼·卡西尼的名字命名.当-,(1,0),且1,A B坐标分别为(1,0)a=时,卡西尼卵形线大致为()A.B.C.D.2.定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,当0x y <<时,都有()()f x f y >,且112f ⎛⎫= ⎪⎝⎭,则不等式()()32f x f x -+-≥-的解集为( )A .[)1,0-B .[)4,0-C .(]3,4D .[)(]1,03,4-3.设函数21,2()7,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数a ,b ,c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .()8,9B .()65,129C .()64,128D .()66,1304.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >>D .c b a >>5.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( ) A .(0,1)B .(1,2)C .(,1)-∞D .(1,)+∞6.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( )A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭7.函数()32241x xxx y -=+的部分图像大致为( )A .B .C .D .8.设函数()f x 的定义域为R ,()()112f x f x +=,当(]0,1x ∈时,()()1f x x x =-.若存在[),x m ∈+∞,使得()364f x =有解,则实数m 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .9,4⎛⎤-∞ ⎥⎝⎦D .11,4⎛⎤-∞ ⎥⎝⎦9.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341D .412310.若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是( ) A .[]4,0- B .(],0-∞C .(],4-∞-D .(,4][0,)-∞-+∞11.已知()2()ln ,(,)f x x ax b x a b R =++⋅∈,当0x >时()0f x ≥,则实数a 的取值范围为( ) A .20a -≤<B .1a ≥-C .10a -<≤D .01a <≤12.设函数1,()0,x D x x ⎧=⎨⎩为有理数为无理数,则下列结论正确的是( ) A .()D x 的值域为[0,1] B .()D x 是偶函数C .()(3.14)D D π>D .()D x 是单调函数13.函数24()x f x -=是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数14.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则()()()()2132020f f f f +++=( )A .50B .0C .2D .-201815.若函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( )A .(),4-∞-B .(),2-∞-C .()2,2-D .(),0-∞二、填空题16.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.17.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________. 18.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.19.已知函数()y f x =是定义域为R 的奇函数,满足()()11f x f x -=+,若()11f =,则()()()()12350f f f f +++⋯+=__________.20.设12{21 2}33k ∈--,,,,,若(1 0)(0 1)x ∈-,,,且||k x x >,则k 取值的集合是___________.21.已知函数2()2f x x x =-,()2(0)g x ax a =+>,若对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,则实数a 的取值范围是_____.22.已知函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩给出下列三个结论:①()f x 是偶函数; ②()f x 有且仅有3个零点; ③()f x 的值域是[]1,1-. 其中,正确结论的序号是______.23.设函数()f x 是定义在()0,∞+上的可导函数,其导函数为()f x ',且有()()2f x xf x x '+>,则不等式()()()220202020420x f x f ---≤的解集为______.24.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +m ,则f (﹣1)=_______. 25.已知函数2421()349x x f x +-=-+,则(21)(2)8f x f x -++>的解集为__.26.已知甲、乙两地相距150 km ,某人开汽车以60 km/h 的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h 的速度返回甲地,把汽车距甲地的距离s 表示为时间t 的函数,则此函数的表达式为__________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设(,)P x y 1=,代0x =排除C 、D ,通过奇偶性排除B. 【详解】 解:设(,)P x y因为PA PB a ⋅=,,A B 坐标分别为(1,0)-,(1,0),且1a =1=当0x =时,上式等式成立,即点(0,0)满足PA PB a ⋅=,故排除C 、D.当x -代替x 1== 即图形关于y 轴对称,排除B. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】采用赋值法,令1x y ==求得()10f =,同理可求()21f =-,()42f =-; 化()()32f x f x -+-≥-为()()234f x x f -≥,再结合单调性解不等式得结果.【详解】令1x y ==,得()()121f f =即()10f =,令12x =,2y =则()()1122f f f ⎛⎫=+ ⎪⎝⎭得()21f =-,令2x y ==,()()()4222f f f =+=-,所以由()()32f x f x -+-≥-得()()234f x x f -≥;又因为函数()f x 的定义域为()0,∞+,且0x y <<时,都有()()f x f y >,所以203034x x x x ->⎧⎪->⎨⎪-≤⎩ 即0314x x x <⎧⎪<⎨⎪-≤≤⎩所以10x -≤<, 即不等式()()32f x f x -+-≥-的解集为[)1,0-. 故选:A 【点睛】思路点晴:抽象函数往往通过赋值法来解决问题.3.D解析:D 【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得67c <<,从而可得结果. 【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=. 结合图象可得67c <<,故67222c <<. ∴66222130a b c <++<.故选:D . 【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有: 确定方程根的个数; 求参数的取值范围; 求不等式的解集; 研究函数性质.4.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=, 所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数,所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题5.C解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8), 所以1128na -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =, 由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.6.D解析:D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫⎪⎝⎭的值,可判断D 选项的正误. 【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数,所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g x x g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确; 对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-,()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168fg ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭, 因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.7.A解析:A 【分析】研究函数奇偶性和区间(的函数值的正负,利用排除法即得结果. 【详解】函数()33222()4122x x xxxx x x y f x ---===++,定义域为R , 对于任意的自变量x ,()333222()()222222x x x x x xx x x x x xf x f x -------===++-=-+++,故函数()y f x =是奇函数,图象关于原点中心对称,故CD 错误;又(32()2222x x xxx x x x x y f x ----===++,故(x ∈时,00,0,202x x x x x ->+>-+>,,即()0y f x =<,故A 正确,B 错误. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.8.D解析:D 【分析】 根据()()112f x f x +=,可知()()112f x f x =-,可得函数解析式并画出函数图象,由图象可得m 的取值范围. 【详解】 根据()()112f x f x +=,可知()()112f x f x =-, 又当(]0,1x ∈时,()()110,4f x x x ⎡⎤=-∈⎢⎥⎣⎦, 所以(]1,2x ∈时,(]10,1x -∈,()()111(1)(1)20,228f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]2,3x ∈时,(]11,2x -∈,()()111(1)(2)30,4416f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]3,4x ∈时,(]12,3x -∈,()()111(1)(3)40,2832f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦,即3()64f x <恒成立, 可画出函数图象,当(]2,3x ∈时,13(2)(3)464x x --=,解得94x =或114x =,故若存在[),x m ∈+∞,使得()364f x =有解,则实数114m ≤, 故选:D. 9.C解析:C【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值.【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C .【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.10.A解析:A【分析】将()f x 写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出a 的取值范围.【详解】因为2()|2|f x x a x =+-,所以222,2()2,2x ax a x f x x ax a x ⎧+-≥=⎨-+<⎩, 当()212f x x ax a =+-在[)2,+∞上单调递增时,22a -≤,所以4a ≥-, 当()222f x x ax a =-+在()0,2上单调递增时,02a ≤,所以0a ≤, 且()()12224f f ==,所以[]4,0a ∈-,故选:A.【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤:(1)先分析每一段函数的单调性并确定出参数的初步范围;(2)根据单调性确定出分段点处函数值的大小关系;(3)结合(1)(2)求解出参数的最终范围.11.B解析:B【分析】讨论01x <<、1x =、1x >确定2()g x x ax b =++的函数值符号,根据二次函数的性质求a 的取值范围即可.【详解】当0x >时,()()2ln 0x a x x f b x ++⋅=≥, ∵01x <<时,ln 0x <,即需20x ax b ++≤成立;1x =时,ln 0x =,()0f x ≥恒成立;1x >时,ln 0x >,即需20x ax b ++≥成立;∴对于函数2()g x x ax b =++,在(0,1)上()0g x ≤,在(1,)+∞上()0g x ≥,∴2(1)1040(0)0g a b a b g b =++=⎧⎪∆=->⎨⎪=≤⎩解得1a ≥-,故选:B【点睛】思路点睛:令2()g x x ax b =++,即()()ln f x g x x =⋅.(0,)+∞上讨论x :由()0f x ≥,根据ln x 符号确定()g x 函数值的符号.由()g x 对应区间的函数值符号,结合二次函数性质求参数范围.12.B解析:B【分析】计算函数值域为{}0,1A 错误,根据偶函数定义知B 正确,()0D π=,(3.14)1D =,C 错误,()()011D D ==,故D 错误,得到答案.【详解】根据题意:()D x 的值域为{}0,1,A 错误;当x 为有理数时,x -为有理数,()()D x D x =-,当x 为无理数时,x -为无理数,()()D x D x =-,故函数为偶函数,B 正确;()0D π=,(3.14)1D =,C 错误;()()011D D ==,故D 错误.故选:B.【点睛】本题考查了分段函数的值域,奇偶性和单调性,意在考查学生对于函数性质的综合应用. 13.A解析:A【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可.【详解】解:因为()|3|3f x x =+- 所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x x=,[)(]2,00,2x ∈-,又()()f x f x -===- 所以函数为奇函数;故选:A【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;14.B解析:B【分析】由奇函数和(1)(1)f x f x +=-得出函数为周期函数,周期为4,然后计算出(3),(2),(4)f f f 后可得结论.【详解】由函数()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x =--,且(0)0f =, 又由(1)(1)f x f x -=+,即(2)()()f x f x f x +=-=-,进而可得()(4)f x f x =+,所以函数()f x 是以4为周期的周期函数,又由(1)2f =,可得(3)(1)(1)2f f f =-=-=-,(2)(0)0f f ==,(4)(0)0f f ==, 则(1)(2)(3)(4)0f f f f +++=,所以(1)(2)(3)(2020)505[(1)(2)(3)(4)]0f f f f f f f f ++++=⨯+++=. 故选:B .【点睛】关键点睛:本题考查利用函数的周期性求函数值,解决本题的关键是由函数是奇函数以及(1)(1)f x f x -=+得出函数是周期为4的周期函数,进而可求出结果.15.B解析:B【分析】先判断函数的单调性,然后解答不等式,在恒成立的条件下求出结果【详解】依题意得:函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1x m m ∈+上恒成立,所以2(1)m m +<,即2m <-,故选B .【点睛】本题考查了函数的单调性的应用,结合函数的单调性求解不等式,需要掌握解题方法二、填空题16.【分析】先由解出a 讨论的单调性利用函数单调性解不等式即可【详解】因为且所以解得在R 上单增可化为:解得:不等式的解集为故答案为:【点睛】利用单调性解不等式通常用于:(1)分段函数型不等式;(2)复合函解析:()1,+∞【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可. 【详解】因为()x f x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+'ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞故答案为:()1,+∞【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;17.【分析】先由定义域为R 的奇函数在区间上为严格减函数且画出的草图结合图像对进行等价转化解不等式即可【详解】是定义域为R 的奇函数且在区间上为严格减函数有∴在区间上为严格减函数且可作出的草图:不等式可化为 解析:[]3,1--【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可. 【详解】 ()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =,∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为: ()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解; 对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤ 解得:31x -≤≤-所以不等式(1)01f x x +≥-的解集为[]3,1--. 故答案为:[]3,1--【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法;(2)分式不等式化为标准型后利用商的符号法则;(3)高次不等式用穿针引线法;(4)含参数的不等式需要分类讨论.18.【分析】由题意把函数在上恒成立转化为对上恒成立列不等式解得a 的范围【详解】恒成立即恒成立所以时显然不成立当时得所以故答案为:【点睛】(1)求参数的范围是常见题型之一处理的方法有两种:①不分离参数直接 解析:4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R 上恒成立,列不等式解得a 的范围.【详解】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭. 故答案为:4,3⎛⎫+∞⎪⎝⎭ 【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式. 19.1【分析】据题意分析可得则有即函数是周期为4的周期函数结合奇函数的性质及周期可求【详解】因为所以所以即函数是周期为4的周期函数所以所以原式等于故答案为:【点睛】方法点睛:函数在定义域R 上满足可知函数 解析:1【分析】据题意,分析可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,结合奇函数的性质及周期可求.【详解】因为()()11f x f x -=+,所以(2)()()f x f x f x +=-=-,所以(4)(2)()f x f x f x +=-+=,即函数()f x 是周期为4的周期函数.所以()()()33411f f f f =-=-=-(),(4)(0)(2)0f f f ===, (1)(2)(3)(4)0f f f f +++=,所以原式等于()()()12(123(4))(49)(50)(49)(50)(1)(2)1f f f f f f f f f f +++++=+=+= 故答案为:1【点睛】方法点睛:函数在定义域R 上满足()()f a x f a x +=-,可知函数图象关于x a =对称,如果同时函数为奇函数,且关于直线x a =对称,可推出函数为周期函数.20.【分析】根据不能是奇函数排除和再利用幂函数的性质排除2即可得出【详解】若且则幂函数的图象一定在的上方故不可能为奇函数即不能取和当取时是偶函数故只需满足即可此时即则即则可取故取值的集合是故答案为:【点 解析:2{2 }3-, 【分析】根据k y x =不能是奇函数排除1-和13,再利用幂函数的性质排除2即可得出. 【详解】 若(1 0)(0 1)x ∈-,,,且||k x x >,则幂函数k y x =的图象一定在y x =的上方,故k y x =不可能为奇函数,即k 不能取1-和13, 当k 取22,,23-时,k y x =是偶函数,故只需满足(0 1)x ∈,即可, 此时k x x >,即11k x ->,则10k -<,即1k <,则k 可取22,3-,故k 取值的集合是2{2 }3-,. 故答案为:2{2 }3-,. 【点睛】本题考查幂函数的性质,解题的关键是正确理解幂函数的性质的特点,以及不同幂函数的图象特点. 21.【分析】由题可知在区间上函数的值域为值域的子集从而求出实数的取值范围【详解】函数的图象开口向上对称轴为时的最小值为最大值为的值域为为一次项系数为正的一次函数在上单调递增时的最小值为最大值为的值域为对 解析:[3,)+∞【分析】由题可知,在区间[]1,2-上函数1()f x 的值域为2()g x 值域的子集,从而求出实数a 的取值范围.【详解】函数()22f x x x =-的图象开口向上,对称轴为1x =, ∴[]11,2x ∈-时,()f x 的最小值为(1)1f =-,最大值为(1)3f -=,1()f x 的值域为[1,3]-.()2(0)g x ax a =+>为一次项系数为正的一次函数,在[]1,2-上单调递增,∴[]11,2x ∈-时,()g x 的最小值为(1)2g a -=-+,最大值为(2)22g a =+,2()g x 的值域为[2,22]a a -++.对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,∴在区间[]1,2-上,函数1()f x 的值域为2()g x 值域的子集,∴212230a a a -+≤-⎧⎪+≥⎨⎪>⎩解得3a ≥故答案为:[3,)+∞.【点睛】本题考查函数的值域,考查分析解决问题的能力,解题的关键是对“任意”、“存在”的正确理解,确定两个函数值域之间的关系.22.②③【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③【详解】函数①由于所以是非奇非偶函数所以①不正确;②可得所以函数有且仅有3个零点;所以②正确;③函数的值域是正确;正确结论的解析:②③【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③.【详解】函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩, ①由于()()1,sin 0f f πππ-=-==,所以()f x 是非奇非偶函数,所以①不正确;②()0f x =,可得2x π=-,0x =,x π=,所以函数有且仅有3个零点;所以②正确;③函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩,()f x 的值域是[]1,1-,正确; 正确结论的序号是:②③.故答案为:②③.【点睛】本小题主要考查函数的奇偶性、零点、值域.23.【分析】根据已知构造新函数利用导数求得函数的单调性根据函数的单调性列出不等式即可求解【详解】因为函数是定义在上的可导函数且有即设函数则所以函数在上单调递增又因为即所以则即的即不等式的解集为故答案为: 解析:(2020,2022]【分析】根据已知构造新函数,利用导数求得函数的单调性,根据函数的单调性,列出不等式,即可求解.【详解】因为函数()f x 是定义在()0,∞+上的可导函数,且有()()2f x xf x x '+>,即()()222xf x x f x x '+> 设函数()()2g x x f x =,则()()()220g x xf x x f x '=+>, 所以函数()g x 在()0,∞+上单调递增,又因为()()()220202020420x f x f ---≤,即()()()222020202022x f x f --≤, 所以(2020)(2)g x g -≤,则2020020202x x ->⎧⎨-≤⎩,即的20202022x <≤, 即不等式的解集为(2020,2022].故答案为:(2020,2022].【点睛】本题主要考查了函数的单调性的应用,其中解答中构造新函数,结合题设条件求得新函数的单调性,结合新函数的性质求解是解答的关键,着重考查构造思想,以及推理与运算能力.24.【分析】由函数是上的奇函数求得得到当时函数再由即可求解【详解】由题意因为函数是上的奇函数则解得即当时函数又由故答案为:【点睛】本题主要考查了函数的奇偶性的应用以及函数值的求解其中解答中熟练应用函数的 解析:3-【分析】由函数()f x 是R 上的奇函数,求得1m =-,得到当0x ≥时,函数()221x f x x =+-,再由()()11f f -=-,即可求解.【详解】由题意,因为函数()f x 是R 上的奇函数,则()002200f m =+⨯+=, 解得1m =-,即当0x ≥时,函数()221xf x x =+-, 又由()()111(2211)3f f -=-=-+⨯-=-. 故答案为:3-.【点睛】本题主要考查了函数的奇偶性的应用,以及函数值的求解,其中解答中熟练应用函数的奇偶性是解答的关键,着重考查了推理与运算能力,属于基础题.25.【分析】根据题意设则原不等式变形为分析函数的奇偶性以及单调性可得原不等式等价于解可得的取值范围即可得答案【详解】根据题意函数设则变形可得即;对于其定义域为则有即函数为奇函数;函数在上为增函数在上为减 解析:1(,)3-+∞ 【分析】根据题意,设2442()()433x x g x f x +-=-=-,则原不等式变形为(21)(2)0g x g x -++>,分析函数()g x 的奇偶性以及单调性可得原不等式等价于212x x ->--,解可得x 的取值范围,即可得答案.【详解】根据题意,函数 24244221()343349x x x x f x ++--=-+=-+,设2442()()433x x g x f x +-=-=-,则(21)(2)8f x f x -++>,变形可得(21)4(2)40f x f x --++->,即(21)(2)0g x g x -++>;对于2442()()433x x g x f x +-=-=-,其定义域为R , 则有24422442()33(33)()x x x x g x g x -+++--=-=--=-,即函数()g x 为奇函数; 函数243x y +=在R 上为增函数,423x y -=在R 上为减函数, 故函数2442()33x x g x +-=-在R 上为增函数,故(21)(2)0(21)(2)(21)(2)212g x g x g x g x g x g x x x -++>⇒->-+⇒->--⇒->--, 解可得13x >-, 即不等式的解集为1(3-,)+∞. 故答案为:1(3-,)+∞. 【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析函数()g x 的奇偶性与单调性,属于中档题.26.【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间即可得到本题函数的定义域将其分为三段再结合各个时间段上该人的运动状态可得汽车离甲地的距离距离(千米)与时间(小时)的函数表达式【详解】根解析:60,0 2.5,150,2.5 3.5,32550,3.5 6.5t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间,即可得到本题函数的定义域,将其分为三段,再结合各个时间段上该人的运动状态,可得汽车离甲地的距离距离s (千米)与时间t (小时)的函数表达式.【详解】根据题意此人运动的过程分为三个时段,当0 2.5t ≤≤时,60s t =;当2.5 3.5t <<时,150s =;当3.5 6.5t ≤≤时,()15050 3.532550t t t =--=-.综上所述,60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩故答案为60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【点睛】本题考查分段函数应用题,求函数表达式,着重考查基本初等函数的应用和分段函数的理解等知识,属于基础题.。
一、选择题1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2- B .ln 2C .0D .12.已知函数()1f x +是偶函数,当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=- ⎪⎝⎭,()2b f =,()3c f =,则a 、b 、c 的大小关系为( ) A .b a c << B .c b a << C .b c a <<D .a b c <<3.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-134.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<-D .(4)(0)(4)f f f <<-5.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-16.函数()21x f x x-=的图象大致为( )A .B .C .D .7.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当(]2,4x ∈时,224,23,()2,34,x x x f x x x x ⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对(]12,0x ∀∈-,2[2,1]x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ C .(0,8]D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭8.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,如函数()1sin 2f x x x =-的图像大致是( ) A . B .C .D .9.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( )A .12B .1-C .±1D .12±10.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( ) A .2,3⎛⎫+∞⎪⎝⎭B .(2,)+∞C .2,23⎛⎫⎪⎝⎭D .()1,211.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341 D .412312.已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞13.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C .(,3⎤-∞⎦D .)3,⎡+∞⎣14.下列各组函数表示同一函数的是( ) A .2()f x x =与2()()f x x =B .,0(),0x x f x x x ≥⎧=⎨-<⎩与()||g t t =C .()21f x x =-与()11g x x x =+⋅- D .()1f x x 与2()1x g x x=-15.下列函数中,在[)1,+∞上为增函数的是 A .()22y x =-B .1y x =-C .11y x =+ D .()21y x =-+二、填空题16.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.17.设函数()f x 在(,0)(0,)-∞+∞上满足()()0f x f x ,在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,又(3)0f -=,则(1)()0x f x -<的解是___________. 18.函数24xy x =+的严格增区间是_____________. 19.对于正整数k ,设函数[][]()k f x kx k x =-,其中[]a 表示不超过a 的最大整数,设24()()()g x f x f x =+,则()g x 的值域为_________.20.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.21.函数()f x =___________.22.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.23.以下结论正确的是____________(1)如果函数()y f x =在区间(,)a b 上是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(,)a b 内有零点;(2)命题:0,1xp x e ∀>>都有,则00:0,1x p x e⌝∃≤≤使得;(3)空集是任何集合的真子集; (4)“a b >”是“22a b >的充分不必要条件”(5)已知函数(23)43,1(),1xa x a x f x a x +-+≥⎧=⎨<⎩在定义域上是增函数,则实数a 的取值范围是(1,2]24.已知甲、乙两地相距150 km ,某人开汽车以60 km/h 的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h 的速度返回甲地,把汽车距甲地的距离s 表示为时间t 的函数,则此函数的表达式为__________.25.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.26.已知()()()22112,0x g x x f g x x x -=-=≠⎡⎤⎣⎦,则12f ⎛⎫= ⎪⎝⎭_________【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由函数的奇偶性可得()()11f f =--,进而计算即可得解. 【详解】函数()f x 是定义在R 上的奇函数, 当0x ≤时,()(1)ln f x x -=+∴()()11ln[(1)1]ln 2f f =--=---+=-.故选:A. 【点睛】思路点睛:该题考查函数奇偶性的应用,解题思路如下: (1)根据奇函数的定义,可知(1)(1)=--f f ; (2)根据题中所给的函数解析式,求得函数值; (3)最后得出结果.2.A解析:A 【分析】推导出函数()f x 为()1,+∞上的增函数,且有()()11f x f x +=-,可得出52a f ⎛⎫= ⎪⎝⎭,进而可得出a 、b 、c 的大小关系. 【详解】当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦,则()()21f x f x >, 所以,函数()f x 为()1,+∞上的增函数, 由于函数()1f x +是偶函数,可得()()11f x f x +=-,1335112222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴=-=-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,53212>>>,因此,b a c <<. 故选:A. 【点睛】 思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.3.D解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数, 在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.4.C解析:C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【详解】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.5.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.6.D解析:D【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.7.D解析:D 【分析】问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集,先求出()f x 在(]2,4上的值域,再根据(2)2()f x f x +=求出()f x 在(]2,0-的值域;分类讨论求出()g x 的值域,根据子集关系即可求出a 的范围. 【详解】由题知问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集.当(]2,4x ∈时,2(2)4,23()2,34x x f x x x x ⎧--+≤≤⎪=⎨+<≤⎪⎩, 由二次函数及对勾函数的图象及性质,得此时9()3,2f x ⎡⎤∈⎢⎥⎣⎦,由(2)2()f x f x +=, 可得11()(2)(4)24f x f x f x =+=+ 当(]2,0x ∈-时,(]42,4x +∈.则()f x 在(]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时,()[21,1]g x a a ∈-++,则有3214918a a ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得18a ≥,当0a =时,()1g x =,不符合题意;当0a <时,()[1,21]g x a a ∈+-+,则有3149218a a ⎧+≤⎪⎪⎨⎪-+≥⎪⎩,解得14a -.综上所述,可得a 的取值范围为11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故选:D . 【点睛】本题考查双变元利用值域求参数的问题,属于中档题.结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .8.A解析:A 【分析】由判断函数()f x 的奇偶性以及利用导数得出区间0,3π⎛⎫⎪⎝⎭的单调性即可判断. 【详解】()()()111sin sin sin ()222f x x x x x x x f x ⎛⎫-=---=-+=--=- ⎪⎝⎭则函数()f x 在R 上为奇函数,故排除B 、D.()1cos 2f x x '=-,当0,3xπ⎛⎫∈ ⎪⎝⎭时,1cos 2x >,即0fx所以函数()f x 在区间0,3π⎛⎫⎪⎝⎭上单调递减,故排除C 故选:A 【点睛】本题主要考查了函数图像的识别,属于中档题.9.C解析:C 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.10.B解析:B 【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解. 【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩,解得2x >, 即不等式()()2131f x f x +<-的解集为()2,+∞, 故选:B. 【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下: (1)根据函数的解析式,得出函数单调性; (2)合理利用函数的单调性,得出不等式组; (3)正确求解不等式组,得到结果.11.C解析:C 【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值. 【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C . 【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.12.A解析:A 【分析】根据已知函数的解析式易判断出函数的奇偶性及单调性,结合单调性可将不等式(2)4()f x t f x +>可化为22x t x +>,将恒成立问题转化为最值问题后,易得答案.【详解】 解:||y x =为偶函数,y x =为奇函数 ()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数 又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>==故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立,即当[,2]x t t ∈+时,不等式22x t x +>恒成立即2x t <恒成立即22t t +<解得2t >故实数t 的取值范围是(2,)+∞故选:A【点睛】本题考查的知识点是函数奇偶性与单调性的综合应用,恒成立问题,其中分析出函数的单调性并将不等式(2)4()f x t f x +>可化为22x t x +>是解答的关键.13.C解析:C【分析】先解()3f t ≤,再由t 的范围求x 的范围.【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤,0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.14.B解析:B【分析】根据同一函数的概念及判定方法,分别求得两函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A 中,函数()f x =R ,函数2()f x =的定义域为[0,)+∞,两函数的定义域不同,所以不是同一函数;对于B 中,函数,0(),0x x f x x x ≥⎧=⎨-<⎩与,0(),0t t g t t t t ≥⎧==⎨-<⎩定义域与对应法则都相同,所以两函数是同一函数;对于C 中,函数()f x =210x -≥,解得1x ≤-或1≥x ,即函数()f x 的定义域为(,1][1,)-∞-+∞,函数()g x =1010x x +≥⎧⎨-≤⎩,解得11x -≤≤,即函数()g x 的定义域为[]1,1-,两函数的定义域不同,所以不是同一函数;对于D 中,函数()1f x x 的定义域为R ,函数2()1x g x x=-的定义域为(,0)(0,)-∞+∞,两函数的定义域不同,所以不是同一函数.故选:B.【点睛】本题主要考查了同一函数的概念及判定,其中解答中熟记两个函数是同一函数的判定方法是解答得关键,着重考查推理与判定能力,属于基础题.15.B解析:B【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意; 对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意;对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意; 对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对解析:9【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误.【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩, ()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=, 故答案为:9.【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.17.【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图等价于或根据函数图像解不等式【详解】由函数定义域及可知函数为奇函数在上对任意实数都有成立函数在上为增函数又函数为奇函数函数在为增函数又则作出 解析:()()3,01,3- 【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图,(1)()0x f x -<等价于1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据函数图像解不等式. 【详解】由函数()f x 定义域及()()0f x f x ,可知函数()f x 为奇函数,()f x 在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,∴函数()f x 在(0,)+∞上为增函数,又函数()f x 为奇函数,∴函数()f x 在(,0)(0,)-∞+∞为增函数,又(3)0f -=,则(3)0f =, 作出函数草图如图所示:(1)()0x f x -<⇒1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据()f x 的图像可知(1)()0x f x -<的解为:(3,0)(1,3)-. 故答案为:(3,0)(1,3)-18.【分析】根据的解析式可得为奇函数当时不妨令x>0设根据对勾函数的性质可求得的单调减区间可得的单调增区间综合分析即可得答案【详解】因为定义域为R 所以即在R 上为奇函数根据奇函数的性质可得在y 轴两侧单调性解析:[]22-,【分析】根据()f x 的解析式,可得()f x 为奇函数,当0x ≠时,21()44x f x x x x==++,不妨令x >0,设4()g x x x=+,根据对勾函数的性质,可求得()g x 的单调减区间,可得()f x 的单调增区间,综合分析,即可得答案.【详解】 因为2()4x y f x x ==+,定义域为R , 所以22()()()44x x f x f x x x ---===--++,即()f x 在R 上为奇函数, 根据奇函数的性质可得,()f x 在y 轴两侧单调性相同,当x =0时,()0y f x ==,当0x ≠时,21()44x f x x x x==++,不妨令x >0,设4()g x x x =+, 根据对勾函数的性质可得,当02x <≤上单调递减,证明如下:在(0,2]上任取12,x x ,且12x x <, 则12121212124444()()()f x f x x x x x x x x x -=+-+=-+-=1212124()x x x x x x ⎛⎫-- ⎪⎝⎭, 因为1202x x <<≤,所以1212120,40,0x x x x x x -<-<>, 所以121212124()()()0x x f x f x x x x x ⎛⎫--=-> ⎪⎝⎭,即12()()f x f x >, 所以4()g x x x=+在(0,2]上为减函数,所以21()44x f x x x x==++在(0,2]上为增函数,当0x +→时,()0f x →,0x -→,()0f x →, 又(0)0f =,所以2()4x f x x =+在[0,2]为增函数 根据奇函数的性质,可得21()44x f x x x x ==++在[2,0)-也为增函数,所以()f x 在 []22-,上为严格增函数, 故答案为:[]22-,【点睛】解题的关键是熟练掌握函数的奇偶性、单调性,并灵活应用,结合对勾函数的性质求解,考查分析理解,计算证明的能力,属中档题.19.【分析】先由题中条件得到讨论四种情况再判断的周期性即可得出结果【详解】由题意当时此时;当时此时;当时此时;当时此时;又所以是以为周期的函数因此的值域为故答案为:【点睛】关键点点睛:求解本题的关键在于 解析:{}0,1,3,4【分析】先由题中条件,得到[][][]()246g x x x x =+-,讨论10,4x ⎡⎫∈⎪⎢⎣⎭,11,42x ⎡⎫∈⎪⎢⎣⎭,13,24x ⎡⎫∈⎪⎢⎣⎭,3,14x ⎡⎫∈⎪⎢⎣⎭四种情况,再判断()g x 的周期性,即可得出结果. 【详解】由题意,[][][][][][][]()2244246g x x x x x x x x =-+-=+-, 当10,4x ⎡⎫∈⎪⎢⎣⎭时,120,2x ⎡⎫∈⎪⎢⎣⎭,[)40,1x ∈,此时()0000g x =+-=; 当11,42x ⎡⎫∈⎪⎢⎣⎭时,12,12x ⎡⎫∈⎪⎢⎣⎭,[)41,2x ∈,此时()0101g x =+-=; 当13,24x ⎡⎫∈⎪⎢⎣⎭时,321,2x ⎡⎫∈⎪⎢⎣⎭,[)42,3x ∈,此时()1203g x =+-=; 当3,14x ⎡⎫∈⎪⎢⎣⎭时,32,12x ⎡⎫∈⎪⎢⎣⎭,[)43,4x ∈,此时()1304g x =+-=; 又[][][][][][](1)224461224466g x x x x x x x +=+++-+=+++--[][][]246()x x x g x =+-=,所以()g x 是以1为周期的函数,因此()g x 的值域为{}0,1,3,4.故答案为:{}0,1,3,4【点睛】关键点点睛:求解本题的关键在于根据一个单位区间内,x 的不同取值,确定[]x ,[]2x ,[]4x 的不同取值情况,结合函数的周期性,即可求解. 20.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可.【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+,又因为函数()f x 是定义域为R 的奇函数,所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值;(2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.21.【分析】根据函数的解析式有意义列出不等式求解即可【详解】因为所以即解得所以函数的定义域为故答案为:【点睛】本题主要考查了给出函数解析式的函数的定义域问题考查了对数函数的性质属于中档题解析:(0,2)【分析】根据函数的解析式有意义列出不等式求解即可.【详解】因为()f x = 所以21log 00x x ->⎧⎨>⎩, 即2log 10x x <⎧⎨>⎩解得02x <<,所以函数的定义域为(0,2),故答案为:(0,2)【点睛】本题主要考查了给出函数解析式的函数的定义域问题,考查了对数函数的性质,属于中档题.22.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集.【详解】当1x <时,()f x x =单调递增,且()1f x <;当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增. 于是()()26f x f x ->-等价于26x x ->-,则260x x --<,()()320x x -+<,解得23x -<<.故答案为:()2,3-.【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.23.(1)(5)【分析】利用零点存在定理可判断命题(1)的正误根据全称命题的否定可判断命题(2)的正误根据集合的包含关系可判断命题(3)的正误根据充分必要条件可判断命题(4)的正误根据函数的单调性求出参解析:(1)(5).【分析】利用零点存在定理可判断命题(1)的正误,根据全称命题的否定可判断命题(2)的正误,根据集合的包含关系可判断命题(3)的正误,根据充分必要条件可判断命题(4)的正误,根据函数()y f x =的单调性求出参数a 的取值范围,可判断出命题(5)的正误.【详解】对于命题(1),由零点存在定理可知,该命题正确;对于命题(2),由全称命题的否定可知,该命题不正确,应该是00:0,1x p x e ⌝∃>≤使得;;对于命题(3),空集是任何非空集合的真子集,但不是空集本身的真子集,该命题错误; 对于命题(4),取2a =,3b =-,则a b >,但22a b <,所以,“a b >”不是“22a b >”的充分不必要条件,该命题错误;对于命题(5),由于函数()y f x =在R 上是增函数,则()1230123143a a a a a ⎧+>⎪>⎨⎪≤+⨯-+⎩,解得12a <≤,该命题正确.故答案为(1)(2)(5).【点睛】本题考查命题真假的判断,考查零点存在定理、全称命题的否定、集合的包含关系、充分不必要条件的判断以及分段函数单调性,解题时应充分利用这些基础知识,意在考查学生对这些基础知识的掌握,属于中等题.24.【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间即可得到本题函数的定义域将其分为三段再结合各个时间段上该人的运动状态可得汽车离甲地的距离距离(千米)与时间(小时)的函数表达式【详解】根解析:60,0 2.5,150,2.5 3.5,32550,3.5 6.5t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间,即可得到本题函数的定义域,将其分为三段,再结合各个时间段上该人的运动状态,可得汽车离甲地的距离距离s (千米)与时间t (小时)的函数表达式.【详解】根据题意此人运动的过程分为三个时段,当0 2.5t ≤≤时,60s t =;当2.5 3.5t <<时,150s =;当3.5 6.5t ≤≤时,()15050 3.532550t t t =--=-.综上所述,60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩故答案为60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【点睛】本题考查分段函数应用题,求函数表达式,着重考查基本初等函数的应用和分段函数的理解等知识,属于基础题.25.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点 解析:1【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,故答案为:1【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.26.【分析】可令得出的值再代入可得答案【详解】解:令得解得故答案为【点睛】本题主要考查已知函数解析式求函数值的问题解析:15【分析】 可令1()2g x =,得出x 的值,再代入可得答案. 【详解】 解:令1()2g x =,得1122x -=,解得14x =. 221511()11164()[()]151124()416f fg -∴====. 故答案为15.【点睛】本题主要考查已知函数解析式求函数值的问题.。
第三章 基本初等函数(Ⅰ)测评(A 卷)【说明】 本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.共120分,考试时间90分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.函数y =a |x|(a>1)的图象是2.(2009广西桂林高三模拟)函数f (x )=1-2x的定义域是A .(-∞,0]B .(-∞,0)C .[0,+∞)D .(-∞,+∞) 3.设a>1,则log 0.2a,0.2a ,a 0.2的大小关系是 A .0.2a <log 0.2a<a 0.2 B .log 0.2a<0.2a <a 0.2 C .log 0.2a<a 0.2<0.2a D .0.2a <a 0.2<log 0.2a 4.已知log 89=a ,log 25=b ,则lg3等于A.a b -1B.32(b -1)C.3a2(b +1)D.3(a -1)2b5.(2009广州廉江高三模拟)已知函数f (x )=(x -a )(x -b )(其中a>b ),若f (x )的图象如右图所示,则函数g (x )=a x +b 的图象大致为6.若f (x )=10x -1-2,则f -1(8)等于 A .2 B .4 C .8 D .127.函数y =⎩⎪⎨⎪⎧3x -1-2,x ≤1,31-x -2,x>1的值域是A .(-2,-1)B .(-2,+∞)C .(-∞,-1]D .(-2,-1]8.给出f (x )=⎩⎪⎨⎪⎧12x ,x ≥4,f (x +1),x<4,则f (log 23)的值等于A .-238 B.111 C.119 D.1249.已知F (x )=(1+22x -1)·f (x )(x ≠0)是偶函数,且f (x )不恒等于零,则f (x )为A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 10.已知函数y =log a (3-ax )在[0,1]上是减函数,则a 的取值范围为 A .(0,1) B .(1,3) C .(0,3) D .[3,+∞)第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上)11.[(e x +e -x )2-4]12+[(e x -e -x )2+4]12的化简结果为__________.12.若f (2x )=log 3(7-x ),则f (14)=__________.13.偶函数f (x )在[2,4]上单调递减,则f (log 128)与f (3log 3π2)的大小关系是__________.14.(2009江西师范大学附中高三模拟)已知函数f (x )满足条件:①f (x )>0;②对任意x 、y ∈R ,都有f(x +y)=f(x)·f(y);③x>0时,0<f(x)<1,则不等式f -1(x 2-4x +3)>f -1(3)的解集为__________.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明、解题步骤或证明过程)15.(本小题满分10分)点(2,2)在幂函数f(x)的图象上,点(-2,14)在幂函数g(x)的图象上,问当x 为何值时,有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).16.(本小题满分10分)已知函数f(x)=lg(x 2+1-x). (1)求函数的定义域;(2)求证:f(x)是奇函数.17.(本小题满分10分)设f(x)=4x4x +2,若0<a<1,试求:(1)f(a)+f(1-a)的值;(2)f(11 001)+f(21 001)+f(31 001)+…+f(1 0001 001)的值.18.(本小题满分12分)已知f(x)=a a 2-2(a x -a -x )(a>0且a ≠1)是R 上的增函数,求a 的取值范围.19.(本小题满分12分)已知f(x)=log a (a x -1),a>1. (1)求f(x)的定义域;(2)若f(x)>1,求x ;(3)讨论f(x)的单调性;(4)解方程:f(2x)=f -1(x).答案与解析1.B y =a |x|=⎩⎪⎨⎪⎧a x ,x ≥0,a -x ,x<0,当x ≥0时,为y =a x (a>1)的图象,结合选项知B 符合.2.A 由题意,得1-2x ≥0,即2x ≤1,∴x ∈(-∞,0].3.B ∵a>1,∴log 0.2a<0,0.2a ∈(0,1),a 0.2>1.4.C log 89=lg9lg8=23·lg3lg2=a ,log 25=lg5lg2=1-lg2lg2=b ,∴lg2=1b +1.∴lg3=3a2(b +1).5.A 由题意可知a ∈(0,1),b<-1, ∴结合选项易判断只有A 符合.6.A ∵原函数与反函数的定义域和值域互换,∴令f(x)=10x -1-2=8,得x =2. ∴f -1(8)=2.7.D 当x ≤1时,y =3x -1-2, 此时-2<y ≤-1;当x>1时,y =31-x -2,此时-2<y<-1. ∴-2<y ≤-1.8.D ∵log 23∈(1,2),∴f(log 23)=f(log 23+1)=f(log 26). 而log 26<4,∴反复代入,直至使f(x +1)中的x +1≥4后,求出其值.9.A 判断y =1+22x -1的奇偶性后再判断f(x)的奇偶性,令g(x)=1+22x -1=2x +12x -1,g(-x)=2-x +12-x -1=12x +112x-1=2x +11-2x=-g(x),∴g(x)为奇函数.又F(x)为偶函数, ∴f(x)为奇函数.10.B ∵a>0,a ≠1,∴u(x)=3-ax 是关于x 的减函数. ∵y =log a (3-ax)在[0,1]上是减函数, ∴a>1.又u(x)=3-ax 在[0,1]上必大于0, ∴3-a>0,即a<3.11.2e x (x ≥0)或2e -x (x<0) 原式=(e 2x +e -2x -2)12+(e 2x +e -2x +2)12=[(e x -e -x )2]12+[(e x+e -x )2]12=|e x -e -x |+e x+e -x =⎩⎪⎨⎪⎧2e x ,x ≥0,2e -x ,x<0.12.2 ∵f(14)=f(2-2),∴f(14)=log 3[7-(-2)]=log 39=2.13.f(log 128)<f(3log 3π2) log 128=-3,3log 3π2=π24,∵f(x)为偶函数,∴f(-3)=f(3).∵4>3>π24>2,∴f(3)<f(π24).∴f(log 128)<f(3log 3π2).14.(0,1)∪(3,4) 由题意可令f(x)=a x (0<a<1),则f -1(x)=log a x.∴⎩⎪⎨⎪⎧x 2-4x +3<3,x 2-4x +3>0. 解得x ∈(0,1)∪(3,4).15.解:由题意可得f(x)=x 2,g(x)=x -2.①f(x)>g(x),即x 2>x -2⇔x 4>1⇔x 2>1, ∴x>1或x<-1,即x ∈(-∞,-1)∪(1,+∞).②f(x)=g(x),即x 2=x -2,解得x =±1.③f(x)<g(x),即x 2<x -2⇔x 4<1⇔x 2<1, ∴-1<x<1,即x ∈(-1,1).16.解:(1)∵x 2+1>x 2 对x 取任何实数时都成立,而x 2=|x|≥x , ∴x 2+1>x 对x 取任何实数时都成立. ∴x 2+1-x>0对x 取一切实数均成立. ∴函数的定义域为R .(2)证明:定义域R 关于原点对称,f(-x)=lg[(-x)2+1-(-x)]=lg(x 2+1+x), ∵(x 2+1+x)(x 2+1-x)=x 2+1-x 2=1,∴x 2+1+x =1x 2+1-x=(x 2+1-x)-1.∴f(-x)=lg(x 2+1-x)-1=-lg(x 2+1-x)=-f(x). ∴f(x)=lg(x 2+1-x)是奇函数.17.解:(1)f(1-a)=41-a41-a +2=44a 44a+2=44+2·4a =24a+2, ∴f(1-a)+f(a)=24a +2+4a4a +2=1.(2)f(11 001)+f(21 001)+f(31 001)+…+f(1 0001 001)=[f(11 001)+f(1 0001 001)]+[f(21 001)+f(9991 001)]+…+[f(5001 001)+f(5011 001)]=500×1=500.18.解:设x 1,x 2∈R 且x 1<x 2,则f(x 2)-f(x 1)=a a 2-2(ax 2-a -x 2-ax 1+a -x 1)=a a 2-2·(ax 2-ax 1)(ax 1·ax 2+1)ax 1·ax 2.∵f(x)为增函数,∴f(x 2)-f(x 1)>0.又ax 1>0,ax 2>0,∴2a 2-2(ax 2-ax 1)>0.① (1)当0<a<1时,a 2-2<0,ax 2<ax 1, ∴ax 2-ax 1<0.∴①式成立.(2)当a>1时,ax 2>ax 1,即ax 2-ax 1>0,要使①式成立,需⎩⎪⎨⎪⎧a 2-2>0a>1⇔a> 2.综上所述,a 的取值范围为(0,1)∪(2,+∞). 19.解:(1)由题意,得a x -1>0,即a x >1. ∵a>1,∴x>0,即定义域为(0,+∞). (2)由题意,得log a (a x -1)>1, ∵a>1,∴a x -1>a ,即a x >a +1,两边取以a 为底的对数,得x>log a (a +1). (3)令u =a x -1,则y =log a u , ∵a>1,∴y =log a u 为增函数. 又u 为增函数, ∴f(x)为增函数.(4)由y =log a (a x -1),得a x -1=a y , ∴a x =a y +1.∴x =log a (a y +1). ∴f -1(x)=log a (a x +1).由f(2x)=f -1(x)得log a (a 2x -1)=log a (a x +1),等价于⎩⎪⎨⎪⎧a 2x-1>0,a x+1>0,a 2x -1=a x +1,即⎩⎪⎨⎪⎧x>0,(a x )2-a x -2=0, 得⎩⎪⎨⎪⎧x>0,a x =2或a x=-1(舍去).∴x=log a2.。