衡水中学高考模拟考试文科数学试卷及答案
- 格式:doc
- 大小:1.13 MB
- 文档页数:12
2023年河北省衡水中学高考数学一模试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={x |x ≤m },N ={x |y =1√x 2−3x−4},若M ∪N =R ,则实数m 的取值范围是( )A .[﹣1,+∞)B .[4,+∞)C .(﹣∞,﹣1]D .(﹣∞,4]2.已知复数z 1,z 2,当z 1=1+2i 时,z 2z 1z 1−z 1=z 1,则z 2=( ) A .8+6iB .8﹣6iC .10+10iD .10﹣10i3.在流行病学中,把每名感染者平均可传染的人数叫做基本传染数.当基本传染数高于1时,每个感染者平均会感染一个以上的人,从而导致感染者人数急剧增长.当基本传染数低于1时,疫情才可能逐渐消散.而广泛接种疫苗是降低基本传染数的有效途径.假设某种传染病的基本传染数为R 0,1个感染者平均会接触到N 个新人(N ≥R 0),这N 人中有V 个人接种过疫苗(VN 称为接种率),那么1个感染者可传染的新感染人数为R 0N(N ﹣V ).已知新冠病毒在某地的基本传染数R 0=log 24√2,为了使1个感染者可传染的新感染人数不超过1,该地疫苗的接种率至少为( ) A .30%B .40%C .50%D .60%4.已知角α的顶点是坐标原点,始边是x 轴的正半轴,终边是射线y =2x (x ≥0),则tan(2α+π4)=( ) A .17B .−17C .﹣7D .−135.某新能源汽车生产公司,为了研究某生产环节中两个变量x ,y 之间的相关关系,统计样本数据得到如下表格:由表格中的数据可以得到y 与x 的经验回归方程为y =14x +a 据此计算,下列选项中残差的绝对值最小的样本数据是( ) A .(30,4.6)B .(27,3)C .(25,3)D .(23,2.4)6.已知△ABC 中,A =120°,AB =3,AC =4,CM →=4MB →,AN →=NB →,则AC →⋅MN →=( ) A .−125B .−75C .−25D .−157.已知正三棱柱ABC ﹣A 1B 1C 1,过底边BC 的平面与上底面交于线段MN ,若截面BCMN 将三棱柱分成了体积相等的两部分,则MN BC=( )A .√3−12B .1−√32C .3−√32D .3−3√328.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =√3,b 2+c 2﹣bc =3,则△ABC 面积的取值范围是( ) A .(√32,3√34]B .(√32,3√34)C .(√34,3√34)D .(√34,3√34]二、选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.某商店为了解该店铺商品的销售情况,对某产品近三年的产品月销售数据进行统计分析,绘制了折线统计图,如图.下列结论正确的有( )A .该产品的年销量逐年增加B .该产品各年的月销量高峰期大致都在8月C .该产品2019年1月至12月的月销量逐月增加D .该产品各年1月至6月的月销量相对于7月至12月波动性更小、变化更平稳 10.已知函数f (x )的图像的对称轴方程为x =3,则函数f (x )的解析式可以是( ) A .f(x)=x +1x+3 B .f (x )=e x ﹣3+e 3﹣xC .f (x )=x 4﹣18x 2D .f (x )=|x 2﹣6x |11.红、黄、蓝被称为三原色,选取其中任意几种颜色调配,可以调配出其他颜色.已知同一种颜色混合颜色不变,等量的红色加黄色调配出橙色;等量的红色加蓝色调配出紫色;等量的黄色加蓝色调配出绿色.现有红、黄、蓝颜料各两瓶,甲从六瓶颜料中任取两瓶,乙再从余下四瓶颜料中任取两瓶,两人分别进行等量调配,A 表示事件“甲调配出红色”,B 表示事件“甲调配出绿色”;C 表示事件“乙调配出紫色”,则下列说法正确的是( ) A .事件A 与事件C 是独立事件 B .事件A 与事件B 是互斥事件 C .P (C |A )=0D .P (B )=P (C )12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与直线l :x ﹣y ﹣1=0交于A ,B 两点,记直线l 与x 轴的交点E ,点E ,F 关于原点对称,若∠AFB =90°,则( ) A .2a 2+b 2=a 2b 2B .椭圆C 过4个定点 C .存在实数a ,使得|AB |=3D .|AB |<72三、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a →=(2,﹣3),b →=(﹣1,2),c →=(t ﹣2,3t ).若向量c →与2a →+b →平行,则实数t 的值为 . 14.分形几何学是法国数学家曼德尔勃罗特在20世纪70年代创立的一门新学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.如图,正三角形ABC 的边长为4,取△ABC 各边的中点D ,E ,F 作第2个三角形,然后再取△DEF 各边的中点G ,H ,I 作第3个三角形,以此方法一直进行下去.已知△ABC 为第1个三角形,设前n 个三角形的面积之和为S n ,若S n >5√3,则n 的最小值为 .15.如图,已知台体ABCD ﹣A 1B 1C 1D 1的上、下底面均为长方形,且上、下底面中心的连线与底面垂直,上、下底面的距离为4.若AB =4√6,AD =4√2,A 1B 1=4√3,则该台体的外接球的表面积为 .16.在空间直角坐标系下,由方程x 2a 2+y 2b 2+z 2c 2=1(a >0,b >0,c >0)所表示的曲面叫做椭球面(或称椭圆面).如果用坐标平面z =0,y =0,x =0分别截椭球面,所得截面都是椭圆(如图所示),这三个截面的方程分别为{x 2a 2+y 2b 2=1,z =0,{x 2a 2+z 2c 2=1,y =0,{y 2b 2+z 2c 2=1,x =0,,上述三个椭圆叫做椭球面的主截线(或主椭圆).已知椭球面的轴与坐标轴重合,且过椭圆{x 29+y 216=1,z =0与点M (1,2,√23),则这个椭球面的方程为 .四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知f(x)=Asin(ωx +φ)(|φ|<π2)同时满足下列四个条件中的三个: ①f(π6)=1;②f(x)=Asin(ωx +φ)(|φ|<π2)的图象可以由y =sin x ﹣cos x 的图象平移得到; ③相邻两条对称轴之间的距离为π2;④最大值为2.(1)请指出这三个条件,并说明理由;(2)若曲线y =f (x )的对称轴只有一条落在区间[0,m ]上,求m 的取值范围.18.(12分)温室是以采光覆盖材料作为全部或部分围护结构材料,具有透光、避雨、保温、控温等功能,可在冬季或其他不适宜露地植物生长的季节供栽培植物的建筑,而温室蔬菜种植技术是一种比较常见的技术,它具有较好的保温性能,使人们在任何时间都可吃到反季节的蔬菜,深受大众喜爱.温室蔬菜生长和蔬菜产品卫生质量要求的温室内土壤、灌溉水、环境空气等环境质量指标,其温室蔬菜产地环境质量等级划定如表所示.各环境要素的综合质量指数超标,灌溉水、环境空气可认为污染,土壤则应做进一步调研,若确对其所影响的植物(生长发育、可食部分超标或用作饮料部分超标)或周围环境(地下水、地表水、大气等)有危害,方能确定为污染.某乡政府计划对所管辖的甲、乙、丙、丁、戊、己、庚、辛,共8个村发展温室蔬菜种植,对各村试验温室蔬菜环境产地质量监测得到的相关数据如下:(1)若从这8个村中随机抽取2个进行调查,求抽取的2个村应对土壤做进一步调研的概率; (2)现有一技术人员在这8个村中随机选取3个进行技术指导,记ξ为技术员选中村的环境空气等级为尚清洁的个数,求ξ的分布列和数学期望.19.(12分)已知数列{a n },{b n }满足a 1b 1+a 2b 2+…+a n b n =(n ﹣1)•2n +1+2(n ∈N *),{b n }是等比数列,且{1b n}的前n 项和B n =1−12n . (1)求数列{a n },{b n }的通项公式; (2)设数列c n =1a n a n+1,{c n }的前n 项和为T n ,证明:T 2n ﹣T n ≤1a 2+b 2. 20.(12分)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且P A ⊥平面ABCD ,CQ ⊥平面ABCD . (1)若直线l ⊂平面P AB ,求证:l ∥平面CDQ ;(2)若PQ ∥AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B ﹣m ﹣C 的余弦值.21.(12分)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的离心率为√3,直线l :y =x ﹣1与双曲线C 交于A ,B 两点,点D (x 0,y 0)在双曲线C 上. (1)求线段AB 中点的坐标; (2)若a =1,过点D 作斜率为2x 0y 0的直线l ′与直线l 1:√2x ﹣y =0交于点P ,与直线l 2:√2x +y =0交于点Q ,若点R (m ,n )满足|RO |=|RP |=|RQ |,求m 2+2x 02−2n 2−y 02的值.22.(12分)已知函数f (x )=aln(x +I)−√x +2,其中a ∈R .(1)当a=83时,求函数f(x)的单调区间;(2)当x≥0时,f(x)≤3a(sin x+cos x)恒成立,求实数a的取值范围.2023年河北省衡水中学高考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={x |x ≤m },N ={x |y =1√x 2−3x−4},若M ∪N =R ,则实数m 的取值范围是( )A .[﹣1,+∞)B .[4,+∞)C .(﹣∞,﹣1]D .(﹣∞,4]解:集合M ={x |x ≤m },N ={x |y =1√x 2−3x−4}={x |x <﹣1或x >4},∵M ∪N =R , ∴m ≥4,∴实数m 的取值范围是[4,+∞). 故选:B .2.已知复数z 1,z 2,当z 1=1+2i 时,z 2z 1z 1−z 1=z 1,则z 2=( ) A .8+6i B .8﹣6iC .10+10iD .10﹣10i解:z 1=1+2i ,则z 1⋅z 1=(1+2i)(1−2i)=5, 故z 2z 1z 1−z 1=z 25−(1+2i)=z 24−2i=1+2i ,即z 2=(4﹣2i )(1+2i )=8+6i .故选:A .3.在流行病学中,把每名感染者平均可传染的人数叫做基本传染数.当基本传染数高于1时,每个感染者平均会感染一个以上的人,从而导致感染者人数急剧增长.当基本传染数低于1时,疫情才可能逐渐消散.而广泛接种疫苗是降低基本传染数的有效途径.假设某种传染病的基本传染数为R 0,1个感染者平均会接触到N 个新人(N ≥R 0),这N 人中有V 个人接种过疫苗(VN 称为接种率),那么1个感染者可传染的新感染人数为R 0N(N ﹣V ).已知新冠病毒在某地的基本传染数R 0=log 24√2,为了使1个感染者可传染的新感染人数不超过1,该地疫苗的接种率至少为( ) A .30%B .40%C .50%D .60%解:为了使1个感染者传染人数不超过1,只需R 0N(N ﹣V )≤1,所以R 0⋅N−V N ≤1,即R 0(1−VN)≤1, 因为R 0=log 24√2=log 2252=2.5,所以2.5(1−VN )≤1,解得VN≥0.6=60%,则地疫苗的接种率至少为60%. 故选:D .4.已知角α的顶点是坐标原点,始边是x 轴的正半轴,终边是射线y =2x (x ≥0),则tan(2α+π4)=( ) A .17B .−17C .﹣7D .−13解:角α的顶点是坐标原点,始边是x 轴的正半轴,终边是射线y =2x (x ≥0), 由已知可设角α终边上一点P (1,2),则tan α=2, 所以tan2α=2tanα1−tan 2α=−43, 可得tan(2α+π4)=tan2α+11−tan2α=−43+11−(−43)=−17.故选:B .5.某新能源汽车生产公司,为了研究某生产环节中两个变量x ,y 之间的相关关系,统计样本数据得到如下表格:由表格中的数据可以得到y 与x 的经验回归方程为y =14x +a 据此计算,下列选项中残差的绝对值最小的样本数据是( ) A .(30,4.6)B .(27,3)C .(25,3)D .(23,2.4)解:由表中数据可得x =15×(20+23+25+27+30)=25,y =15×(2+2.4+3+3+4.6)=3, y 关于x 的经验回归方程为y =14x +a ,可得3=14×25+a ,解得a =﹣3.25, 故y 关于x 的经验回归方程为y =14x ﹣3.25, 对于A ,当x =30时,y =14×30﹣3.25=4.25,残差的绝对值为|4.6﹣4.25|=0.35, 对于B ,当x =27时,y =14×27﹣3.25=3.5,残差的绝对值为|3.5﹣3|=0.5, 对于C ,当x =25时,y =14×25﹣3.25=3,残差的绝对值为|3﹣3|=0, 对于D ,当x =23时,y =14×23﹣3.25=2.5,残差的绝对值为|2.5﹣2.4|=0.1. 故选:C .6.已知△ABC 中,A =120°,AB =3,AC =4,CM →=4MB →,AN →=NB →,则AC →⋅MN →=( )A .−125B .−75C .−25D .−15解:由题可得MN →=MB →+BN →=15CB →+12BA →=15(AB →−AC →)−12AB →=−310AB →−15AC →,所以AC →⋅MN →=AC →•(−310AB →−15AC →)=−310AB →⋅AC →−15(AC →)²=−310×3×4×(−12)−15×4²=−75,故选:B .7.已知正三棱柱ABC ﹣A 1B 1C 1,过底边BC 的平面与上底面交于线段MN ,若截面BCMN 将三棱柱分成了体积相等的两部分,则MN BC=( )A .√3−12B .1−√32C .3−√32D .3−3√32解:由题可知平面BMNC 与棱柱上底面分别交于A 1B 1,A 1C 1, 则B 1C 1∥MN ,MN ∥BC ,显然ABC ﹣A 1MN 是三棱台, 设△ABC 的面积为1,△A 1MN 的面积为S ,三棱柱的高为h , ∴12•1•h =13h (1+S +√S ),解得√S =√3−12,由△A 1MN ∽A 1B 1C 1,可得MN BC=√S 1=√3−12. 故选:A .8.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =√3,b 2+c 2﹣bc =3,则△ABC 面积的取值范围是( ) A .(√32,3√34]B .(√32,3√34)C .(√34,3√34)D .(√34,3√34]解:由于a =√3,b 2+c 2﹣bc =3,则cosA =b 2+c 2−a 22bc=12, 由于A ∈(0,π), 所以A =π3,故外接圆的半径为R =12√3√32=1,所以S △ABC =12bcsinA =√34⋅2sinB ⋅2sin(2π3−B)=√34⋅4sinB ⋅(√32cosB +12sinB) =√34(2sin 2B +2√3sinBcosB) =√34(1−cos2B +√3sin2B)=√32sin(2B −π6)+√34, 由于0<B <π2,由于△ABC 为锐角三角形, 所以π6<B <π2,所以π6<2B −π6≤5π6,故√32<√32sin(2B −π6)+√34≤3√34,即√32<S △ABC ≤3√34. 故选:A .二、选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.某商店为了解该店铺商品的销售情况,对某产品近三年的产品月销售数据进行统计分析,绘制了折线统计图,如图.下列结论正确的有( )A .该产品的年销量逐年增加B .该产品各年的月销量高峰期大致都在8月C .该产品2019年1月至12月的月销量逐月增加D .该产品各年1月至6月的月销量相对于7月至12月波动性更小、变化更平稳 解:根据题意,依次分析选项:对于A ,该产品的年销量逐年增加,A 正确;对于B ,由折线图可知,该产品各年的月销量高峰期大致都在8月,B 正确; 对于C ,2019年8月至9月,该产品销量减少,C 错误;对于D ,由折线图可知,该产品各年1月至6月的月销量相对于7月至12月波动性更小、变化更平稳,D 正确. 故选:ABD .10.已知函数f (x )的图像的对称轴方程为x =3,则函数f (x )的解析式可以是( ) A .f(x)=x +1x+3B .f (x )=e x ﹣3+e 3﹣xC .f (x )=x 4﹣18x 2D .f (x )=|x 2﹣6x |解:f(x)=x +1x+3关于(3,﹣3)对称,不满足题意,所以A 不正确; f (x )=e x ﹣3+e 3﹣x ,因为f (6﹣x )=e 6﹣x ﹣3+e 3﹣(6﹣x )=e x ﹣3+e 3﹣x =f (x ),所以B 正确;函数f (x )=x 4﹣18x 2是偶函数,关于x =0对称,所以C 不正确; 函数f (x )=|x 2﹣6x |满足f (6﹣x )=f (x ),所以D 正确; 故选:BD .11.红、黄、蓝被称为三原色,选取其中任意几种颜色调配,可以调配出其他颜色.已知同一种颜色混合颜色不变,等量的红色加黄色调配出橙色;等量的红色加蓝色调配出紫色;等量的黄色加蓝色调配出绿色.现有红、黄、蓝颜料各两瓶,甲从六瓶颜料中任取两瓶,乙再从余下四瓶颜料中任取两瓶,两人分别进行等量调配,A 表示事件“甲调配出红色”,B 表示事件“甲调配出绿色”;C 表示事件“乙调配出紫色”,则下列说法正确的是( ) A .事件A 与事件C 是独立事件 B .事件A 与事件B 是互斥事件 C .P (C |A )=0D .P (B )=P (C )解:根据题意,A 事件两瓶均为红色颜料,C 事件为一瓶红色一瓶蓝色颜料,则事件A 发生事件C 必定不发生,∴P (AC )=0,P (A )≠0,P (C )≠0,P (C |A )=P(AC)P(A)=0, 故A ,C 不是独立事件,故A 错误,C 正确,若调出红色,需要两瓶颜料均为红色,若调出绿色,则需1瓶黄色和1瓶蓝色, 此时调出红色和调出绿色不同时发生,故A ,B 为互斥事件,故B 正确, P (B )=C 21⋅C 21C 62=415,若C 事件发生,则甲有三种情况, ①甲取两瓶黄色,则概率为C 22⋅C 21⋅C 21C 62⋅C 42=245,②甲取1瓶黄色和1瓶红色或1瓶黄色和1瓶蓝色,则概率为C 21⋅C 21⋅C 21×2C 62⋅C 42=845,③甲取1瓶红色1瓶蓝色,则概率为C 21⋅C 21C 62⋅C 42=245,则P (C )=245+845+245=415,故D 正确. 故选:BCD . 12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与直线l :x ﹣y ﹣1=0交于A ,B 两点,记直线l 与x 轴的交点E ,点E ,F 关于原点对称,若∠AFB =90°,则( ) A .2a 2+b 2=a 2b 2B .椭圆C 过4个定点 C .存在实数a ,使得|AB |=3D .|AB |<72解:设A (x 1,y 1),B (x 2,y 2).由{x 2a 2+y 2b 2=1,y =x −1,得(a 2+b 2)x 2﹣2a 2x +a 2﹣a 2b 2=0,Δ=4a 4﹣4(a 2+b 2)(a 2﹣a 2b 2)=4a 2b 2(a 2+b 2﹣1)>0,则a 2+b 2>1, {x 1+x 2=2a 2a 2+b2,x 1⋅x 2=a 2−a 2b 2a 2+b 2,因为E (1,0),所以F (﹣1,0),又FA →⋅FB →=0, 所以(x 1+1)(x 2+1)+y 1y 2=(x 1+1)(x 2+1)+(x 1﹣1)•(x 2﹣1)=2x 1x 2+2=0, 所以x 1⋅x 2=a 2−a 2b 2a 2+b2=−1,2a 2+b 2=a 2b 2,故A 正确;所以1a 2+2b 2=1,即椭圆过定点T 1(1,√2),T 2(1,−√2),T 3(−1,√2),T 4(−1,−√2),故B 正确;|AB|=√2⋅|x 1−x 2|=√2⋅√(x 1+x 2)2−4x 1x 2=2√2√(11+b2a2)2+1,由2a 2+b 2=a 2b 2得b 2=2a 2a 2−1>0,则a 2>1,所以b 2a 2=2a 2−1,则有|AB |=2√2×√(11+2a 2−1)2+1,因为a 2>1,所以|AB |的取值范围为(2√2,4),故C 正确,D 错误. 故选:ABC .三、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a →=(2,﹣3),b →=(﹣1,2),c →=(t ﹣2,3t ).若向量c →与2a →+b →平行,则实数t 的值为813.解:向量a →=(2,﹣3),b →=(﹣1,2), 则2a →+b →=(3,−4),∵向量c →与2a →+b →平行,c →=(t ﹣2,3t ),∴3×3t +4(t ﹣2)=0,解得t =813. 故答案为:813.14.分形几何学是法国数学家曼德尔勃罗特在20世纪70年代创立的一门新学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.如图,正三角形ABC 的边长为4,取△ABC 各边的中点D ,E ,F 作第2个三角形,然后再取△DEF 各边的中点G ,H ,I 作第3个三角形,以此方法一直进行下去.已知△ABC 为第1个三角形,设前n 个三角形的面积之和为S n ,若S n >5√3,则n 的最小值为 3 .解:根据题意,设第n 个三角形的面积为a n ,分析可得:第n +1个三角形的边长为第n 个三角形边长的一半,则a n +1=14a n , 而第一个三角形的面积a 1=4×4×√34=4√3,故数列{a n }是首项为4√3,公比为14的等比数列,则前n 个三角形的面积之和为S n =4√3(1−14n )1−14=16√33(1−14n ), 若S n >5√3,解可得n >2,故n 的最小值为3; 故答案为:3.15.如图,已知台体ABCD ﹣A 1B 1C 1D 1的上、下底面均为长方形,且上、下底面中心的连线与底面垂直,上、下底面的距离为4.若AB =4√6,AD =4√2,A 1B 1=4√3,则该台体的外接球的表面积为 128π .解:如图,连接A 1C 1,B 1D 1交于点O 1,连接AC ,BD 交于点O 2, 由球的几何性质可知,台体外接球的球心O 在O 1O 2上,由题知长方形ABCD 与长方形A 1B 1C 1D 1相似, 则有AB AD=A 1B 1A 1D 1,解得A 1D 1=4,由题意可知,OO 2⊥平面ABCD ,OO 1⊥平面A 1B 1C 1D 1, O 1O 2=4,设O 2O =h ,∵B 1O 1=12√A 1B 12+A 1D 12=4,∴OB 12=OO 12+O 1B 12=(4﹣h )2+42,同理可得BO 2=12√AB 2+AD 2=4√2,∴OB 2=OO 22+O 2B 2=h 2+(4√2)2,设台体外接球O 的半径为R ,则有OB =OB 1=R ,即(4﹣h )2+42=h 2+(4√2)2,解得h =0,则OB =O 2B =4√2,即该台体的外接球的半径R =4√2, ∴该台体的外接球的表面积为4πR 2=128π. 故答案为:128π.16.在空间直角坐标系下,由方程x 2a 2+y 2b 2+z 2c 2=1(a >0,b >0,c >0)所表示的曲面叫做椭球面(或称椭圆面).如果用坐标平面z =0,y =0,x =0分别截椭球面,所得截面都是椭圆(如图所示),这三个截面的方程分别为{x 2a 2+y 2b 2=1,z =0,{x 2a 2+z 2c 2=1,y =0,{y 2b 2+z 2c 2=1,x =0,,上述三个椭圆叫做椭球面的主截线(或主椭圆).已知椭球面的轴与坐标轴重合,且过椭圆{x 29+y 216=1,z =0与点M (1,2,√23),则这个椭球面的方程为x 29+y 216+z 236=1 .解:根据中心在原点、其轴与坐标轴重合的某椭球面的标准方程的定义,设此椭球面的标准方程为x 29+y 216+z 2c 2=1,∵椭球面过点M (1,2,√23), 将它的坐标代入椭球面的标准方程x 29+y 216+z 2c 2=1,得19+416+(√23)2c 2=1,∴c 2=36, ∴椭球面的方程为x 29+y 216+z 236=1.故答案为:x 29+y 216+z 236=1.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知f(x)=Asin(ωx +φ)(|φ|<π2)同时满足下列四个条件中的三个: ①f(π6)=1;②f(x)=Asin(ωx +φ)(|φ|<π2)的图象可以由y =sin x ﹣cos x 的图象平移得到; ③相邻两条对称轴之间的距离为π2;④最大值为2.(1)请指出这三个条件,并说明理由;(2)若曲线y =f (x )的对称轴只有一条落在区间[0,m ]上,求m 的取值范围. 解:(1)对于条件②,y =sin x ﹣cos x =√2sin (x −π4),若函数f(x)=Asin(ωx +φ)(|φ|<π2)的图象可以由y =sin x ﹣cos x 的图象平移得到, 则f (x )=√2sin (x +φ),由条件③相邻两条对称轴之间的距离为π2,可得f (x )的最小正周期为π,可得ω=2,与②矛盾;对于条件④最大值为2,可得A =2与②矛盾,故只能舍弃条件②, 所以这三个条件为①③④.(2)由(1)可得f (x )=2sin (2x +φ),由条件①f(π6)=1,可得2sin (π3+φ)=1,又|φ|<π2,所以φ=−π6,所以f (x )=2sin (2x −π6), 令2x −π6=π2+k π,k ∈Z ,可得x =π3+kπ2,k ∈Z , k =﹣1时,x =−π6, k =0时,x =π3, k =1时,x =5π6,又曲线y =f (x )的对称轴只有一条落在区间[0,m ]上, 所以π3≤m <5π6, 即m 的取值范围是[π3,5π6).18.(12分)温室是以采光覆盖材料作为全部或部分围护结构材料,具有透光、避雨、保温、控温等功能,可在冬季或其他不适宜露地植物生长的季节供栽培植物的建筑,而温室蔬菜种植技术是一种比较常见的技术,它具有较好的保温性能,使人们在任何时间都可吃到反季节的蔬菜,深受大众喜爱.温室蔬菜生长和蔬菜产品卫生质量要求的温室内土壤、灌溉水、环境空气等环境质量指标,其温室蔬菜产地环境质量等级划定如表所示.各环境要素的综合质量指数超标,灌溉水、环境空气可认为污染,土壤则应做进一步调研,若确对其所影响的植物(生长发育、可食部分超标或用作饮料部分超标)或周围环境(地下水、地表水、大气等)有危害,方能确定为污染.某乡政府计划对所管辖的甲、乙、丙、丁、戊、己、庚、辛,共8个村发展温室蔬菜种植,对各村试验温室蔬菜环境产地质量监测得到的相关数据如下:(1)若从这8个村中随机抽取2个进行调查,求抽取的2个村应对土壤做进一步调研的概率;(2)现有一技术人员在这8个村中随机选取3个进行技术指导,记ξ为技术员选中村的环境空气等级为尚清洁的个数,求ξ的分布列和数学期望.解:(1)由题图知应对土壤做进一步调研的村有4个,记事件A=“抽取2个村应对土壤做进一步调研“,则P(A)=C42C82=314,所以抽取两个村应对土壤做进一步调研的概率为314;(2)由题意知环境空气等级为尚清洁的村共5个,ξ的所有可能取值为0,1,2,3,P(ξ=0)=C50C33C83=156,P(ξ=1)=C51C32C83=1556,P(ξ=2)=C52C31C83=1528,P(ξ=3)=C53C30C83=528,ξ的分布列为所以E(ξ)=0×156+1×1556+2×1528+3×528=158.19.(12分)已知数列{a n},{b n}满足a1b1+a2b2+…+a n b n=(n﹣1)•2n+1+2(n∈N*),{b n}是等比数列,且{1b n }的前n项和B n=1−12n.(1)求数列{a n},{b n}的通项公式;(2)设数列c n=1a n a n+1,{c n}的前n项和为T n,证明:T2n﹣T n≤1a2+b2.(1)解:因为数列{1b n }的前n项和B n=1−12n,所以当n=1时,1b1=B1=12,即b1=2,当n=2时,1b1+1b2=B2=34,所以b2=4,故数列{b n}是首项为2,公比为2的等比数列,所以b n=2•2n﹣1=2n,因为a1b1+a2b2+…+a n b n=(n﹣1)•2n+1+2,所以当n ≥2时,a 1b 1+a 2b 2+…+a n ﹣1b n ﹣1=(n ﹣2)•2n +2, 两式相减得,a n b n =n •2n (n ≥2), 又n =1时,a 1b 1=2,满足上式, 所以a n b n =n •2n (n ∈N *), 因为b n =2n ,所以a n =n .(2)证明:c n =1a n a n+1=1n(n+1)=1n −1n+1,所以T n =(1−12)+(12−13)+…+(1n−1n+1)=1−1n+1=nn+1, 所以T 2n ﹣T n =2n 2n+1−n n+1=n 2n 2+3n+1=12n+3+1n, 要证T 2n ﹣T n ≤1a 2+b 2,需证12n+3+1n≤1a 2+b 2=12+4=16,需证2n +3+1n ≥6,即证2n +1n ≥3, 因为f (n )=2n +1n在n ∈N *上单调递增, 所以当n =1时,f (n )=2n +1n取得最小值3, 所以2n +1n≥3恒成立, 故命题得证.20.(12分)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且P A ⊥平面ABCD ,CQ ⊥平面ABCD . (1)若直线l ⊂平面P AB ,求证:l ∥平面CDQ ;(2)若PQ ∥AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B ﹣m ﹣C 的余弦值.(1)证明:因为P A ⊥平面ABCD ,CQ ⊥平面ABCD , 所以P A ∥CQ ,因为P A ⊂平面P AB ,CQ ⊄平面P AB , 所以CQ ∥平面P AB ,因为∠BAD =∠ADC =90°,所以AB ∥CD ,因为CD ∥平面P AB ,因为CQ ∩CD =C ,CD ⊂平面CDQ ,CQ ⊂平面CDQ , 所以平面CDQ ∥平面P AB ,直线l ⊂平面P AB ,所以l ∥平面CDQ ;(2)解:因为AP ⊥平面ABCD ,AB ⊂平面ABCD ,AD ⊂平面ABCD , 所以AP ⊥AB ,AP ⊥AD ,又因为AB ⊥AD ,以A 为坐标原点,AB ,AD ,AP 为坐标轴建立如图所示的空间直角坐标系, 由(1)可得P A ∥CQ ,又因为PQ ∥AC ,所以四边形APQC 为平行四边形,不妨取AB =1,由题意可得A (0,0,0),B (1,0,0),P (0,0,1),Q (2,2,1),D (0,2,0), 所以BP →=(﹣1,0,1),BQ →=(1,2,1), 设平面BPQ 的一个法向量为n →=(x ,y ,z ), 则{BP →⋅n →=−x +z =0BQ →⋅n →=x +2y +z =0,令x =1,则y =﹣1,z =1,则n →=(1,﹣1,1), 易知AD ⊥平面CDQ ,则平面CDQ 的一个法向量为AD →=(0,2,0), 所以cos <AD →,n →>=AD →⋅n→|AD →|⋅|n →|=2×3=−√33.锐二面角B ﹣m ﹣C 的余弦值为√33.21.(12分)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的离心率为√3,直线l :y =x ﹣1与双曲线C 交于A ,B 两点,点D (x 0,y 0)在双曲线C 上. (1)求线段AB 中点的坐标; (2)若a =1,过点D 作斜率为2x 0y 0的直线l ′与直线l 1:√2x ﹣y =0交于点P ,与直线l 2:√2x +y =0交于点Q ,若点R (m ,n )满足|RO |=|RP |=|RQ |,求m 2+2x 02−2n 2−y 02的值.解:(1)依题意,双曲线 C 的离心率e =c a =√1+b2a2=√3,则b 2=2a 2,故双曲线 C 的方程为2x 2﹣y 2﹣2a 2=0,联立{2x 2−y 2−2a 2=0y =x −1,得x 2+2x ﹣2a 2﹣1=0,且Δ>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=−2,x 1x 2=−2a 2−1, 设线段AB 的中点为E (x ′,y ′),故x ′=﹣1, 将x ′=﹣1代入直线l :y =x ﹣1,得y ′=﹣2, 故线段AB 的中点坐标为(﹣1,﹣2).(2)依题意,a =1,则双曲线 C 的方程为x 2−y 22=1,直线l ′:y −y 0=2x 0y 0(x −x 0),又点D (x 0,y 0)在双曲线 C 上, 所以x 02−y 022=1,故直线l ′的方程为x 0x −y 0y 2=1,由题可知,点O ,P ,Q 均不重合,由|RO |=|RP |=|RQ |易知R (m ,n )为△OPQ 的外心, 设P (x 3,y 3),Q (x 4,y 4),则√2x 3−y 3=0,即y 3=√2x 3,√2x 4+y 4=0,即y 4=−√2x 4,线段OP 的垂直平分线的方程为y −y32=−√22(x −x 32),线段OQ 的垂直平分线的方程为y −y42=√22(x −x 42),联立{y −y 32=−√22(x −x 32)y −y 42=√22(x −x 42)得{x =m =34(x 3+x 4)y =n =3√28(x 3−x 4),联立{y 3=√2x 3x 0x 3−y 0y 32=1,得x 3=10−√22y 0,同理可得x 4=10+√22y 0, 故x 3+x 4=10−√22y 010+√22y 0=2x 0x 02−12y 02=2x 0, x 3﹣x 4=10−22y 010+22y 0=√2yx 02−12y 02=√2y 0,故{m =34(x 3+x 4)n =3√28(x 3−x 4),进一步得到{m =32x 0n =34y 0, 即m 2−2n 2=94x 02−98y 02=94(x 02−y 022)=94,则m 2+2x 02−2n 2−y 02=94+2=174. 22.(12分)已知函数f (x )=a2ln(x +I)−√x +2,其中a ∈R .(1)当a =83时,求函数f (x )的单调区间;(2)当x ≥0时,f (x )≤3a (sin x +cos x )恒成立,求实数a 的取值范围. 解:(1)当a =83时,f (x )=43ln (x +1)−√x +2的定义域为(﹣1,+∞), 则f ′(x )=43(x+1)12√x+2=8√x+2−3(x+2)+36(x+1)√x+2=−(3√x+2+1)(√x+2−3)6(x+1)√x+2, 当1<√x +2<3时,即﹣1<x <7时,f ′(x )>0,函数单调递增, 当√x +2>3时,即x >7时,f ′(x )<0,函数单调递减,所以函数f (x )单调递增区间为(﹣1,7),单调递减区间为(7,+∞);(2)证明:设g (x )=3a (sin x +cos x ),由f (0)=−√2≤g (0)=3a , 解得a ≤−3√22或a >0, ①当a >0时,f (3)=aln 2−√5,g (x )=3√2a sin (x +π4),当x ∈(π4,5π4)时,g (x )单调递减,所以g (3)<g (11π12)=3√2a sin 7π6=−3√22a, 若aln 2−√5<−3√22a ,则aln 2+3√22a <√5,因为aln 2+3√22a ≥2√aln2⋅3√22a =√6√2ln2(当且仅当aln 2=3√22a 时等号成立), 又因为√6√2ln2>√5,所以−3√22a <aln 2−√5, 此时f (x )≤g (x )不成立,即a >0不合题意,②当a ≤−3√22时,f (x )为减函数, 当x ∈[0,π4)时,f (x )﹣g (x )=a 2ln (x +1)−√x +2−3a (sin x +cos x )≤−3√24ln (x +1)−√x +2+√2(sin x +cos x ), 令h (x )=−3√24ln (x +1)−√x +2+√2(sin x +cos x ),则h (0)=0, 所以h ′(x )=−3√24(x+1)−12√x+2√2(cos x ﹣sin x ), 此时h ′(0)=0, h ″(x )=3√24(x+1)24(x+2)3−√2(sin x +cos x )=3√24(x+1)24(x+2)32sin (x +π4),当x ∈[0,π4)时,h ″(x )单调递减,h ″(x )≤h ″(0)<0, 所以h ′(x )在[0,π4)上单调递减,又h ′(0)=0, 所以在[0,π4)上h ′(x )≤0, 所以h (x )在[0,π4)上单调递减,又h (0)=0, 所以在[0,π4)上h (x )≤0, 即当x ∈[0,π4)时,f (x )≤g (x )恒成立, 当x ∈[π4,+∞)时, f (x )=a 2ln (x +1)−√x +2≤−3√24ln (x +1)−√x +2≤−3√24ln (π4+1)−√π4+2, 又π4+1>1.78>√e ,π4+2>2.78>2.56=1.62,所以f (x )<−3√24ln (√e )−√2.56=−3√28−85<−2, g (x )≥3√2a ≥−2, 所以当x ∈[π4,+∞)时,f (x )≤g (x )恒成立,故a 的取值范围为(﹣∞,−3√22].。
届衡水中学高考文科数学模拟试卷及答案高考文科数学主要考察考生对根底知识的理解与掌握、根本解题技能的熟练与运用,所以我们应该通过多做文科数学模拟试卷来提升自己的熟练度,下面是为大家精心推荐的20XX届衡水中学高考文科数学模拟试卷,希望能够对您有所帮助。
一、选择题(本大题共12个小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.集合M={x|y=ln(x2﹣3x﹣4)},N={y|y=2x﹣1},那么M∩N 等于( )A.{x|x>4}B.{x|x>0}C.{x|x<﹣1}D.{x|x>4或x<﹣1}2.复数的共轭复数是( )A.1+iB.1﹣iC.2iD.﹣2i3.函数y=Asin(ωx+φ)+B的一局部图象如下图,如果A>0,ω>0,|φ|< ,那么( )A.A=4B.ω=1C.φ=D.B=44.平面α截半径为2的球O所得的截面圆的面积为π,那么球心到O平面α的间隔为( )A. B. C.1 D.25.直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,假设|FA|=2|FB|,那么k=( )A. B. C. D.6.某空间几何体的三视图如下图,那么该几何体的外表积为( )A.4+4πB.4+3πC.3+4πD.3+3π7.抛掷两枚质地的骰子,得到的点数分别为a,b,那么直线bx+ay=1的斜率的概率是( )A. B. C. D.8.函数y=f(x)的图象直线x=3对称,f(﹣1)=320且,那么的值为( )A.240B.260C.320D.﹣3209.3世纪中期,魏晋时期的数学家刘徽首创“割圆术”,也就是在圆内割正多边形,求的近似值,刘徽容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,那么与圆合体,而无所失唉,当圆内接正多边形的边数无限增加时,多边形面积可无限近圆的面积,利用“割圆术”刘徽得到圆周率准确到小数点后两位的计算值3.14,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,那么输出的n值为(参考数据:sin15°=0.259)()A.6B.12C.24D.4810.函数f(x)= ,假设关于x的方程f[f(x)]=0有且只有一个实数根,那么实数a的取值范围是( )A.(﹣∞,0)B.(﹣∞,0)∪(0,1)C.(0,1)D.(0,1)∪(1,+∞)11.双曲线﹣ =1(a>0,b>0)的左、右顶点分别为A、B,渐近线分别为l1、l2,点P在第一象限内且在l1上,假设PA⊥l2,PB∥l2,那么该双曲线的离心率为( )A. B.2 C. D.12.函数g(x)= x3+2x﹣m+ (m>0)是[1,+∞)上的增函数.当实数m取最大值时,假设存在点Q,使得过点Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,那么点Q的坐标为( )A.(0,﹣3)B.(2,﹣3)C.(0,0)D.(0,3)二、填空题:本大题共4小题,每题5分,共20分,把答案填在答题卷的横线上..13.向量,那么 = .14.假设变量x,y满足,那么点P(x,y)表示的区域的面积为.15.在△ABC中,内角A、B、C的对边分别为a、b、c,a2﹣b2=c,且sin Acos B=2cosAsinB,那么c= .16.某公司在进展人才招聘时,由甲乙丙丁戊5人入围,从学历看,这5人中2人为硕士,3人为博士:从年龄看,这5人中有3人小于30岁,2人大于30岁,甲丙属于相同的年龄段,而丁戊属于不同的年龄段,乙戊的学位相同,丙丁的学位不同,最后,只有一位年龄大于30岁的硕士应聘成功,据此,可以推出应聘成功者是.三、解答题:本大题共5小题,总分值60分,解容许写出文字说明、证明过程或演算步骤17.正项等比数列{bn}(n∈N+)中,公比q>1,b3+b5=40,b3b5=256,an=log2bn+2.(1)求证:数列{an}是等差数列;(2)假设= ,求数列{}的前n项和Sn.18.某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进展统计分析,得到频率分布表如下等级 1 2 3 4 5频率 0.05 m 0.15 0.35 n(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.19.如图,菱形ABEF所在平面与直角梯形ABCD所在的平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H是线段EF的中点.(1)求证:FD∥平面AHC;(2)求多面体ABCDEF的体积.20.a为常数,函数f(x)=x2+ax﹣lnx,g(x)=ex(其中e是自然数对数的底数).(1)过坐标原点O作曲线y=f(x)的切线,设切点P(x0,y0)为,求x0的值;(2)令,假设函数F(x)在区间(0,1]上是单调函数,求a的取值范围.21.椭圆C1: + =1的离心率为e= 且与双曲线C2:﹣ =1有共同焦点.(1)求椭圆C1的方程;(2)在椭圆C1落在第一象限的图象上任取一点作C1的切线l,求l与坐标轴围成的三角形的面积的最小值;(3)设椭圆C1的左、右顶点分别为A,B,过椭圆C1上的一点D 作x轴的垂线交x轴于点E,假设C点满足⊥ ,∥ ,连结AC交DE于点P,求证:PD=PE.请考生在第(22)、(23)两题中任选一题作答,如果多做,那么按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-4坐标系与参数方程]22.曲线C的参数方程为(θ为参数)在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C′.(1)求曲线C′的普通方程.(2)假设点A在曲线C′上,点B(3,0).当点A在曲线C′上运动时,求AB中点P的运动轨迹方程.[选修4-5不等式选讲]23.函数f(x)=|x﹣a|.(1)假设不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,假设f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.一、选择题(本大题共12个小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.集合M={x|y=ln(x2﹣3x﹣4)},N={y|y=2x﹣1},那么M∩N 等于( )A.{x|x>4}B.{x|x>0}C.{x|x<﹣1}D.{x|x>4或x<﹣1}【考点】交集及其运算.【分析】求出M中x的范围确定出M,求出N中y的范围确定出N,找出两集合的交集即可.【解答】解:由M中x2﹣3x﹣4>0,即M={x|x>4或x<﹣1},N={y|y=2x﹣1}={y|y>0},那么M∩N={x|x>4},应选:A.2.复数的共轭复数是( )A.1+iB.1﹣iC.2iD.﹣2i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z得答案.【解答】解: = ,那么复数的共轭复数是:﹣2i.应选:D.3.函数y=Asin(ωx+φ)+B的一局部图象如下图,如果A>0,ω>0,|φ|< ,那么( )A.A=4B.ω=1C.φ=D.B=4【考点】由y=Asin(ωx+φ)的局部图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x= 时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为( ﹣)×4=π,即π= ,ω=2当x= 时取最大值,即sin(2× +φ)=1,2× +φ=2kπ+φ=2kπ﹣∵∴φ=应选C.4.平面α截半径为2的球O所得的截面圆的面积为π,那么球心到O平面α的间隔为( )A. B. C.1 D.2【考点】球的体积和外表积.【分析】先求截面圆的半径,然后求出球心到截面的间隔.【解答】解:∵截面圆的面积为π,∴截面圆的半径是1,∵球O半径为2,∴球心到截面的间隔为 .应选:A5.直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,假设|FA|=2|FB|,那么k=( )A. B. C. D.【考点】抛物线的简单性质.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,那么点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,那么|AM|=2|BN|,点B为AP的中点、连接OB,那么,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,应选D6.某空间几何体的三视图如下图,那么该几何体的外表积为( )A.4+4πB.4+3πC.3+4πD.3+3π【考点】由三视图求面积、体积.【分析】由三视图知该几何体是上半局部是直径为1的球,下半局部是底面半径为1,高为2的圆柱体的一半,由此能求出该几何体的外表积.【解答】解:由三视图知该几何体是上半局部是直径为1的球,其外表积为S1= =π,下半局部是底面半径为1,高为2的圆柱体的一半,其外表积为S2= =4+3π,∴该几何体的外表积S=S1+S2=4+4π.应选:A.7.抛掷两枚质地的骰子,得到的点数分别为a,b,那么直线bx+ay=1的斜率的概率是( )A. B. C. D.【考点】列举法计算根本领件数及事件发生的概率.【分析】先求出根本领件总数n=6×6=36,由直线bx+ay=1的斜率,得到,利用列举法求出满足题意的(a,b)可能的取值,由此能求出直线bx+ay=1的斜率的概率.【解答】解:抛掷两枚质地的骰子,得到的点数分别为a,b,根本领件总数n=6×6=36,∵直线bx+ay=1的斜率,∴ ,满足题意的(a,b)可能的取值有:(3,1),(4,1),(5,1),(5,2),(6,1),(6,2),共6种,∴直线bx+ay=1的斜率的概率p= = .应选:B.8.函数y=f(x)的图象关于直线x=3对称,f(﹣1)=320且,那么的值为( )A.240B.260C.320D.﹣320【考点】三角函数中的恒等变换应用.【分析】把cosx﹣sinx提取,利用两角和的余弦函数公式的逆运算化为一个角的余弦函数,即可求得cos(x+ )的值,然后利用诱导公式求出sin2x的值,进而求得等于f(7),根据f(x)的图象关于直线x=3对称,得到f(3+x)=f(3﹣x),即可推出f(7)=f(﹣1)可求出值.【解答】解:∵ ,∴ cos(x+ )= ,得cos(x+ )= ,又∵sin2x=﹣cos( +2x)=1﹣2cos2(x+ )=∴ =f(7)由题意y=f(x)关于直线x=3对称∴f(3+x)=y=f(3﹣x)即f(7)=f(3+4)=f(3﹣4)=f(﹣1)=320,应选C.9.3世纪中期,魏晋时期的数学家刘徽首创“割圆术”,也就是在圆内割正多边形,求的近似值,刘徽容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,那么与圆合体,而无所失唉,当圆内接正多边形的边数无限增加时,多边形面积可无限近圆的面积,利用“割圆术”刘徽得到圆周率准确到小数点后两位的计算值3.14,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,那么输出的n值为(参考数据:sin15°=0.259)()A.6B.12C.24D.48【考点】程序框图.【分析】根据中的程序框图可得,该程序的功能是计算并输出变量n的值,模拟程序的运行过程,可得答案.【解答】解:第1次执行循环体后,S=3cos30°= <3.14,不满足退出循环的条件,那么n=6,第2次执行循环体后,S=6cos60°= =3<3.14,不满足退出循环的条件,那么n=12,第3次执行循环体后,S=12sin15°≈3.106<3.14,不满足退出循环的条件,那么n=24,第4次执行循环体后,S=24sin7.5°≈3.144>3.14,满足退出循环的条件,故输出的n值为24,应选:C.10.函数f(x)= ,假设关于x的方程f[f(x)]=0有且只有一个实数根,那么实数a的取值范围是( )A.(﹣∞,0)B.(﹣∞,0)∪(0,1)C.(0,1)D.(0,1)∪(1,+∞)【考点】根的存在性及根的个数判断.【分析】利用换元法设f(x)=t,那么方程等价为f(t)=0,根据指数函数和对数函数图象和性质求出t=1,利用数形结合进展求解即可.【解答】解:令f(x)=t,那么方程f[f(x)]=0等价为f(t)=0,由选项知a≠0,当a>0时,当x≤0,f(x)=a?2x>0,当x>0时,由f(x)=log2x=0得x=1,即t=1,作出f(x)的图象如图:假设a<0,那么t=1与y=f(x)只有一个交点,恒满足条件,假设a>0,要使t=1与y=f(x)只有一个交点,那么只需要当x≤0,t=1与f(x)=a?2x,没有交点,即此时f(x)=a?2x<1,即f(0)<1,即a?20<1,解得0综上0即实数a的取值范围是(﹣∞,0)∪(0,1),应选:B.11.双曲线﹣ =1(a>0,b>0)的左、右顶点分别为A、B,渐近线分别为l1、l2,点P在第一象限内且在l1上,假设PA⊥l2,PB∥l2,那么该双曲线的离心率为( )A. B.2 C. D.【考点】双曲线的简单性质.【分析】求出双曲线的顶点和渐近线方程,设P(m, m),再由两直线垂直和平行的条件,得到m,a,b的关系式,消去m,可得a,b的关系,再由离心率公式计算即可得到.【解答】解:双曲线﹣ =1(a>0,b>0)的左、右顶点分别为A(﹣a,0)、B(a,0),渐近线分别为l1:y= x,l2:y=﹣ x.设P(m, m),假设PA⊥l2,PB∥l2,那么 =﹣1①,且 =﹣,②由②可得m= ,代入①可得b2=3a2,即有c2﹣a2=3a2,即c=2a,那么有e= =2.应选B.12.函数g(x)= x3+2x﹣m+ (m>0)是[1,+∞)上的增函数.当实数m取最大值时,假设存在点Q,使得过点Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,那么点Q的坐标为( )A.(0,﹣3)B.(2,﹣3)C.(0,0)D.(0,3)【考点】利用导数求闭区间上函数的最值;定积分.【分析】求出函数的导数,利用导数研究函数的单调性,求出m的最大值,结合过点Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,判断函数的对称性进展求解即可.【解答】解:由g(x)= x3+2x﹣m+ ,得g′(x)=x2+2﹣ .∵g(x)是[1,+∞)上的增函数,∴g′(x)≥0在[1,+∞)上恒成立,即x2+2﹣≥0在[1,+∞)上恒成立.设x2=t,∵x∈[1,+∞),∴t∈[1,+∞),即不等式t+2﹣≥0在[1,+∞)上恒成立.设y=t+2﹣,t∈[1,+∞),∵y′=1+ >0,∴函数y=t+2﹣在[1,+∞)上单调递增,因此ymin=3﹣m.∵ymin≥0,∴3﹣m≥0,即m≤3.又m>0,故0故得g(x)= x3+2x﹣3+ ,x∈(﹣∞,0)∪(0,+∞).将函数g(x)的图象向上平移3个长度单位,所得图象相应的函数解析式为φ(x)= x3+2x+ ,x∈(﹣∞,0)∪(0,+∞).由于φ(﹣x)=﹣φ(x),∴φ(x)为奇函数,故φ(x)的图象关于坐标原点成中心对称.由此即得函数g(x)的图象关于点Q(0,﹣3)成中心对称.这说明存在点Q(0,﹣3),使得过点Q的直线假设能与函数g(x)的图象围成两个封闭图形,那么这两个封闭图形的面积总相等.应选:A二、填空题:本大题共4小题,每题5分,共20分,把答案填在答题卷的横线上..13.向量,那么 = 2 .【考点】平面向量的坐标运算.【分析】利用向量的坐标运算性质、数量积运算性质即可得出.【解答】解:﹣2 =(﹣1,3),∴ =﹣1+3=2.故答案为:2.14.假设变量x,y满足,那么点P(x,y)表示的区域的面积为4 .【考点】简单线性规划.【分析】画出约束条件的可行域,求出点的坐标,然后求解区域的面积即可.【解答】解:变量x,y满足表示的可行域如图:那么点P(x,y)表示的区域的面积为: .故答案为:4.15.在△ABC中,内角A、B、C的对边分别为a、b、c,a2﹣b2=c,且sin Acos B=2cosAsinB,那么c= 3 .【考点】余弦定理;正弦定理.【分析】利用正弦定理、余弦定理,化简sinAcosB=2cosAsinB,结合a2﹣b2=c,即可求c.【解答】解:由sinAcosB=2cosAsinB得 ? =2? ? ,所以a2+c2﹣b2=2(b2+c2﹣a2),即a2﹣b2= ,又a2﹣b2=c,解得c=3.故答案为:3.16.某公司在进展人才招聘时,由甲乙丙丁戊5人入围,从学历看,这5人中2人为硕士,3人为博士:从年龄看,这5人中有3人小于30岁,2人大于30岁,甲丙属于相同的年龄段,而丁戊属于不同的年龄段,乙戊的学位相同,丙丁的学位不同,最后,只有一位年龄大于30岁的硕士应聘成功,据此,可以推出应聘成功者是丁.【考点】进展简单的合情推理.【分析】通过推理判断出年龄以及学历情况,然后推出结果.【解答】解:由题意可得,2人为硕士,3人为博士;有3人小于30岁,2人大于30岁;又甲丙属于相同的年龄段,而丁戊属于不同的年龄段,可推得甲丙小于30岁,故甲丙不能应聘成功;又乙戊的学位相同,丙丁的学位不同,以及2人为硕士,3人为博士,可得乙戊为博士,故乙戊也不能应聘成功.所以只有丁能应聘成功.故答案为:丁.三、解答题:本大题共5小题,总分值60分,解容许写出文字说明、证明过程或演算步骤17.正项等比数列{bn}(n∈N+)中,公比q>1,b3+b5=40,b3b5=256,an=log2bn+2.(1)求证:数列{an}是等差数列;(2)假设= ,求数列{}的前n项和Sn.【考点】数列的求和;等差关系确实定.【分析】(1)通过b3+b5=40,b3b5=256解得q=2,进而可得结论;(2)通过对= 别离分母,并项相加即可.【解答】(1)证明:由题可知设数列首项b1>0,∵b3+b5=40,b3b5=256,∴ ,解得q=2或q= (舍),又∵b3+b5=40,即 =40,∴b1= = =2,∴bn=2×2(n﹣1)=2n,∴an=log2bn+2=n+2,∴数列{an}是以3为首项、1为公差的等差数列;(2)解:∵= = ﹣,∴Sn= ﹣ + ﹣…+ ﹣ = ﹣ = .18.某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进展统计分析,得到频率分布表如下等级 1 2 3 4 5频率 0.05 m 0.15 0.35 n(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.【考点】列举法计算根本领件数及事件发生的概率;收集数据的方法.【分析】(1)通过频率分布表得推出m+n=0.45.利用等级系数为5的恰有2件,求出n,然后求出m.(2)根据条件列出满足条件所有的根本领件总数,“从x1,x2,x3,y1,y2,这5件日用品中任取两件,等级系数相等”的事件数,求解即可.【解答】解:(1)由频率分布表得 0.05+m+0.15+0.35+n=1,即m+n=0.45.…由抽取的20个零件中,等级为5的恰有2个,得.…所以m=0.45﹣0.1=0.35.…(2):由(1)得,等级为3的零件有3个,记作x1,x2,x3;等级为5的零件有2个,记作y1,y2.从x1,x2,x3,y1,y2中任意抽取2个零件,所有可能的结果为:(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2) 共计10种.…记事件A为“从零件x1,x2,x3,y1,y2中任取2件,其等级相等”.那么A包含的根本领件为(x1,x2),(x1,x3),(x2,x3),(y1,y2)共4个.…故所求概率为.…19.如图,菱形ABEF所在平面与直角梯形ABCD所在的平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H是线段EF的中点.(1)求证:FD∥平面AHC;(2)求多面体ABCDEF的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)由∠BAD=∠CDA=90°,可得AB∥CD,再由四边形ABEF为菱形,可得AB∥EF,得到EF∥CD.结合H是EF的中点,AB=2CD,得CD=FH,可得四边形CDFH为平行四边形,从而得到DF∥CH.再由线面平行的判定可得FD∥平面AHC;(2)由平面ABEF⊥平面ABCD,DA⊥AB,可得DA⊥平面ABEF,结合可得四棱锥C﹣ABEF的高DA=2,三棱锥F﹣ADC的高AH= .然后由VABCDEF=VC﹣ABEF+VF﹣ADC求得多面体ABCDEF的体积.【解答】(1)证明:∵∠BAD=∠CDA=90°,∴AB∥CD,∵四边形ABEF为菱形,∴AB∥EF,那么EF∥CD.∵H是EF的中点,AB=2CD,∴CD=FH,∴四边形CDFH为平行四边形,那么DF∥CH.∵DF?平面AHC,HC?平面AHC,∴FD∥平面AHC;(2)解:∵平面ABEF⊥平面ABCD,DA⊥AB,∴DA⊥平面ABEF,∵DC∥AB,∴四棱锥C﹣ABEF的高DA=2,∵∠ABE=60°,四边形ABEF为边长是4的菱形,∴可求三棱锥F﹣ADC的高AH=2 .∴VABCDEF=VC﹣ABEF+VF﹣ADC= = .20.a为常数,函数f(x)=x2+ax﹣lnx,g(x)=ex(其中e是自然数对数的底数).(1)过坐标原点O作曲线y=f(x)的切线,设切点P(x0,y0)为,求x0的值;(2)令,假设函数F(x)在区间(0,1]上是单调函数,求a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)先对函数求导,f′(x)=2x+a﹣,可得切线的斜率k=2x0+a﹣ = = ,即x02+lnx0﹣1=0,由x0=1是方程的解,且y=x2+lnx﹣1在(0,+∞)上是增函数,可证(2)由F(x)= = ,求出函数F(x)的导数,通过研究2﹣a的正负可判断h(x)的单调性,进而可得函数F(x)的单调性,可求a的范围.【解答】解:(1)f′(x)=2x+a﹣ (x>0),过切点P(x0,y0)的切线的斜率k=2x0+a﹣ = = ,得x02+lnx0﹣1=0,显然,x0=1是这个方程的解,又因为y=x2+lnx﹣1在(0,+∞)上是增函数,所以方程x2+lnx﹣1=0有唯一实数解.故x0=1;(2)F(x)= = ,F′(x)= ,设h(x)=﹣x2+(2﹣a)x+a﹣ +lnx,那么h′(x)=﹣2x+ + +2﹣a,易知h'(x)在(0,1]上是减函数,从而h'(x)≥h'(1)=2﹣a;①当2﹣a≥0,即a≤2时,h'(x)≥0,h(x)在区间(0,1)上是增函数.∵h(1)=0,∴h(x)≤0在(0,1]上恒成立,即F'(x)≤0在(0,1]上恒成立.∴F(x)在区间(0,1]上是减函数.所以,a≤2满足题意;②当2﹣a<0,即a>2时,设函数h'(x)的唯一零点为x0,那么h(x)在(0,x0)上递增,在(x0,1)上递减;又∵h(1)=0,∴h(x0)>0.又∵h(e﹣a)=﹣e﹣2a+(2﹣a)e﹣a+a﹣ea+lne﹣a<0,∴h(x)在(0,1)内有唯一一个零点x',当x∈(0,x')时,h(x)<0,当x∈(x',1)时,h(x)>0.从而F(x)在(0,x')递减,在(x',1)递增,与在区间(0,1]上是单调函数矛盾.∴a>2不合题意.综合①②得,a≤2.21.椭圆C1: + =1的离心率为e= 且与双曲线C2:﹣ =1有共同焦点.(1)求椭圆C1的方程;(2)在椭圆C1落在第一象限的图象上任取一点作C1的切线l,求l与坐标轴围成的三角形的面积的最小值;(3)设椭圆C1的左、右顶点分别为A,B,过椭圆C1上的一点D 作x轴的垂线交x轴于点E,假设C点满足⊥ ,∥ ,连结AC交DE于点P,求证:PD=PE.【考点】直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.【分析】(1)由椭圆的离心率e= ,得到a2=4b2,再结合椭圆与双曲线有共同的交点及隐含条件解得a2,4b2,那么椭圆的方程可求;(2)由题意设出切线方程y=kx+m(k<0),和椭圆方程联立后由方程仅有一个实根得到方程的判别式等于0,即得到k与m的关系,求出直线在x轴和y轴上的截距,代入三角形的面积公式后化为含有k的代数式,然后利用根本不等式求最值;(3)求出A,B的坐标,设出D,E,C的坐标,结合条件⊥ ,∥ 可得D,E,C的坐标的关系,把AC,DE的方程都用D点的坐标表示,求解交点P的坐标,由坐标可得P为DE的中点.【解答】(1)解:由e= ,可得:,即,∴ ,a2=4b2①又∵c2=2b2+1,即a2﹣b2=2b2+1 ②联立①②解得:a2=4,b2=1,∴椭圆C1的方程为: ;(2)解:∵l与椭圆C1相切于第一象限内的一点,∴直线l的斜率必存在且为负,设直线l的方程为:y=kx+m(k<0),联立,消去y可得:③根据题意可得方程③只有一实根,∴△= ,可得:m2=4k2+1 ④∵直线l与两坐标轴的交点分别为且k<0,∴l与坐标轴围成的三角形的面积⑤④代入⑤可得: (当且仅当k=﹣时取等号);(3)证明:由(1)得A(﹣2,0),B(2,0),设D(x0,y0),∴E(x0,0),∵ ,∴可设C(2,y1),∴ ,由可得:(x0+2)y1=2y0,即,∴直线AC的方程为:,得:,点P在DE上,令x=x0代入直线AC的方程可得:,即点P的坐标为,∴P为DE的中点∴PD=DE.请考生在第(22)、(23)两题中任选一题作答,如果多做,那么按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-4坐标系与参数方程]22.曲线C的参数方程为(θ为参数)在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C′.(1)求曲线C′的普通方程.(2)假设点A在曲线C′上,点B(3,0).当点A在曲线C′上运动时,求AB中点P的运动轨迹方程.【考点】参数方程化成普通方程.【分析】(1)利用坐标转移,代入参数方程,消去参数即可求曲线C′的普通方程;(2)设P(x,y),A(x0,y0),点A在曲线C′上,点B(3,0),点A在曲线C′上,列出方程组,即可求AB中点P的轨迹方程.【解答】解:(1)将代入,得C'的参数方程为∴曲线C'的普通方程为x2+y2=1. …(2)设P(x,y),A(x0,y0),又B(3,0),且AB中点为P∴有:又点A在曲线C'上,∴代入C'的普通方程得(2x﹣3)2+(2y)2=1 ∴动点P的轨迹方程为(x﹣)2+y2= . …[选修4-5不等式选讲]23.函数f(x)=|x﹣a|.(1)假设不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,假设f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)不等式f(x)≤3就是|x﹣a|≤3,求出它的解集,与{x|﹣1≤x≤5}相同,求实数a的值;(2)在(1)的条件下,f(x)+f(x+5)≥m对一切实数x恒成立,根据f(x)+f(x+5)的最小值≥m,可求实数m的取值范围.【解答】解:(1)由f(x)≤3得|x﹣a|≤3,解得a﹣3≤x≤a+3.又不等式f(x)≤3的解集为{x|﹣1≤x≤5},所以解得a=2.(2)当a=2时,f(x)=|x﹣2|.设g(x)=f(x)+f(x+5),于是所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,假设f(x)+f(x+5)≥m即g(x)≥m对一切实数x恒成立,那么m的取值范围为(﹣∞,5].。
2019-2020年普通高等学校招生全国统一考试模拟试题文科数学(Ⅰ)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=()A. B. C. D.2. 已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.3. 下列函数中,与函数的单调性和奇偶性一致的函数是()A. B. C. D.4. 已知双曲线:与双曲线:,给出下列说法,其中错误的是()A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等5. 某学校上午安排上四节课,每节课时间为40分钟,第一节课上课时间为,课间休息10分钟.某学生因故迟到,若他在之间到达教室,则他听第二节课的时间不少于10分钟的概率为()A. B. C. D.6. 若倾斜角为的直线与曲线相切于点,则的值为()A. B. 1 C. D.7. 在等比数列中,“,是方程的两根”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. 执行如图所示的程序框图,则输出的值为()A. 1009B. -1009C. -1007D. 10089. 已知一几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.10. 已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B. C. D. 学%科%网...11. 《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点在半圆上,点在直径上,且,设,,则该图形可以完成的无字证明为()A. B.C. D.12. 已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,,若向量与共线,则__________.14. 已知实数,满足不等式组目标函数,则的最大值为__________.15. 在中,角,,的对边分别为,,,是与的等差中项且,的面积为,则的值为__________.16. 已知抛物线:的焦点是,直线:交抛物线于,两点,分别从,两点向直线:作垂线,垂足是,,则四边形的周长为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数(),数列的前项和为,点在图象上,且的最小值为.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求证:.18. 如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心. (1)求证:平面平面;(2)若,点在线段上,且,求三棱锥的体积.19. 2017高考特别强调了要增加对数学文化的考查,为此某校高三年级特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生中随机抽取了50名学生的成绩,按照成绩为,,…,分成了5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).(1)求频率分布直方图中的的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);(2)若高三年级共有2000名学生,试估计高三学生中这次测试成绩不低于70分的人数;(3)若利用分层抽样的方法从样本中成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取3人参加这次考试的考后分析会,试求后两组中至少有1人被抽到的概率.20. 已知椭圆:的长轴长为,且椭圆与圆:的公共弦长为.(1)求椭圆的方程.(2)经过原点作直线(不与坐标轴重合)交椭圆于,两点,轴于点,点在椭圆上,且,求证:,,三点共线..21. 已知函数,(,为自然对数的底数).(1)试讨论函数的极值情况;学%科%网...(2)证明:当且时,总有.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于,两点. (1)求圆的直角坐标方程及弦的长;(2)动点在圆上(不与,重合),试求的面积的最大值.23. 选修4-5:不等式选讲.已知函数.(1)求函数的值域;(2)若,试比较,,的大小.2019-2020年普通高等学校招生全国统一考试模拟试题文科数学(Ⅰ)解析版第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=()A. B. C. D.【答案】D【解析】由已知得,则,故选D.2. 已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.【答案】B【解析】由题.又对应复平面的点在第四象限,可知,解得.故本题答案选.3. 下列函数中,与函数的单调性和奇偶性一致的函数是()A. B. C. D.【答案】D【解析】函数即是奇函数也是上的增函数,对照各选项:为非奇非偶函数,排除;为奇函数,但不是上的增函数,排除;为奇函数,但不是上的增函数,排除;为奇函数,且是上的增函数,故选D.4. 已知双曲线:与双曲线:,给出下列说法,其中错误的是()A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等【答案】D【解析】由两双曲线的方程可得的半焦距相等,它们的渐近线方程相同,的焦点均在以原点为圆心,为半径的圆上,离心率不相等,故选D.5. 某学校上午安排上四节课,每节课时间为40分钟,第一节课上课时间为,课间休息10分钟.某学生因故迟到,若他在之间到达教室,则他听第二节课的时间不少于10分钟的概率为()A. B. C. D.【答案】A【解析】由题意知第二节课的上课时间为,该学生到达教室的时间总长度为分钟,其中在进入教室时,听第二节的时间不少于分钟,其时间长度为分钟,故所求的概率,故选A.6. 若倾斜角为的直线与曲线相切于点,则的值为()A. B. 1 C. D.【答案】D【解析】,当时,时,则,所以,故选D.学+科+网...7. 在等比数列中,“,是方程的两根”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】由韦达定理知,则,则等比数列中,则.在常数列或中,不是所给方程的两根.则在等比数列中,“,是方程的两根”是“”的充分不必要条件.故本题答案选.8. 执行如图所示的程序框图,则输出的值为()A. 1009B. -1009C. -1007D. 1008【答案】B【解析】由程序框图则,由规律知输出.故本题答案选.【易错点睛】本题主要考查程序框图中的循环结构.循环结构中都有一个累计变量和计数变量,累计变量用于输出结果,计算变量用于记录循环次数,累计变量用于输出结果,计数变量和累计变量一般是同步执行的,累加一次计数一次,哪一步终止循环或不能准确地识别表示累计的变量,都会出现错误.计算程序框图的有关的问题要注意判断框中的条件,同时要注意循环结构中的处理框的位置的先后顺序,顺序不一样,输出的结果一般不会相同.9. 已知一几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】C【解析】观察三视图可知,几何体是一个圆锥的与三棱锥的组合体,其中圆锥的底面半径为,高为.三棱锥的底面是两直角边分别为的直角三角形,高为.则几何体的体积.故本题答案选.10. 已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B. C. D.【答案】C【解析】由图象最高点与最低点的纵坐标知,又,即,所以.则,图象过点,则,即,所以,又,则.故,令,得,令,可得其中一个对称中心为.故本题答案选.11. 《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点在半圆上,点在直径上,且,设,,则该图形可以完成的无字证明为()A. B.C. D.【答案】D【解析】令,可得圆的半径,又,则,再根据题图知,即.故本题答案选.12. 已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是()A. B. C. D.【答案】B学+科+网...【解析】如图,设的中心为,球的半径为,连接,易求得,则 .在中,由勾股定理,,解得,由,知,所以,当过点的截距与垂直时,截面圆的面积最小,此时截面圆的半径,此时截面圆的面积为;当过点的截面过球心时,截面圆的面积最大,此时截面圆的面积为,故选B.【方法点睛】本题主要考查正三棱锥的性质及空间想象能力、圆的性质、勾股定理的应用.属于难题. 化立体问题为平面问题,结合平面几何的相关知识求解,在求解过程当中,通常会结合一些初中阶段学习的平面几何知识,例如三角形的中位线,平行四边形的判定与性质,相似三角形的判定与性质等,在复习时应予以关注.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,,若向量与共线,则__________.【答案】【解析】 ,由向量与共线,得,解得,则,故答案为.14. 已知实数,满足不等式组目标函数,则的最大值为__________.【答案】1【解析】不等式组所表示的平面区域如图中的阴影部分所示,,故当取最大值时,取最大值. 由图可知,当时,取最大值,此时取最大值,故答案为. 【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移(转)、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移(旋转)变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 在中,角,,的对边分别为,,,是与的等差中项且,的面积为,则的值为__________.【答案】16. 已知抛物线:的焦点是,直线:交抛物线于,两点,分别从,两点向直线:作垂线,垂足是,,则四边形的周长为__________.【答案】【解析】由题知,,准线的方程是 . 设,由,消去,得 . 因为直线经过焦点,所以 . 由抛物线上的点的几何特征知,因为直线的倾斜角是,所以,所以四边形的周长是,故答案为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数(),数列的前项和为,点在图象上,且的最小值为.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求证:.【答案】(1);(2)见解析.【解析】试题分析:(1)根据二次函数的最值可求得的值,从而可得,进而可得结果;(2)由(1)知,裂项相消法求和,放缩法即可证明.试题解析:(1),故的最小值为.又,所以,即.所以当时,;当时,也适合上式,学+科+网...所以数列的通项公式为.(2)证明:由(1)知,所以,所以.【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18. 如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心. (1)求证:平面平面;(2)若,点在线段上,且,求三棱锥的体积.【答案】(1)见解析;(2).【解析】试题分析:(1)延长交于点,先证明,再证明平面,即平面;(2)由(1)知平面,所以就是点到平面的距离,再证明,从而利用棱锥的体积公式可得结果.试题解析:(1)如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面,,所以平面,即平面.又平面,所以平面平面.(2)解:由(1)知平面,所以就是点到平面的距离.由已知可得,,所以为正三角形,所以.又点为的重心,所以.故点到平面的距离为.所以.学+科+网...19. 2017高考特别强调了要增加对数学文化的考查,为此某校高三年级特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生中随机抽取了50名学生的成绩,按照成绩为,,…,分成了5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).(1)求频率分布直方图中的的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);(2)若高三年级共有2000名学生,试估计高三学生中这次测试成绩不低于70分的人数;(3)若利用分层抽样的方法从样本中成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取3人参加这次考试的考后分析会,试求后两组中至少有1人被抽到的概率.【答案】(1),平均数是74,中位数是;(2)1200;(3).【解析】试题分析:(1)根据个矩形面积和为可得第4组的频率为,从而可得结果;(2)由(1)可知,50名学生中成绩不低于70分的频率为,从而可得成绩不低于70分的人数;(3)根据分层抽样方法可得这三组中所抽取的人数分别为3,2,1,列举出中任抽取3人的所有可能结果共20种,其中后两组中没有人被抽到的可能结果只有1种,由古典概型概率公式可得结果.(1)由频率分布直方图可得第4组的频率为,故.故可估计所抽取的50名学生成绩的平均数为(分).由于前两组的频率之和为,前三组的频率之和为,故中位数在第3组中.设中位数为分,则有,所以,即所求的中位数为分.(2)由(1)可知,50名学生中成绩不低于70分的频率为,由以上样本的频率,可以估计高三年级2000名学生中成绩不低于70分的人数为.(3)由(1)可知,后三组中的人数分别为15,10,5,故这三组中所抽取的人数分别为3,2,1.记成绩在这组的3名学生分别为,,,成绩在这组的2名学生分别为,,成绩在这组的1名学生为,则从中任抽取3人的所有可能结果为,,,,,,,,,,,,,,,,,,,共20种. 其中后两组中没有人被抽到的可能结果为,只有1种,故后两组中至少有1人被抽到的概率为.【方法点睛】本题主要考查古典概型概率公式,以及离散型随机变量的分布列,属于难题,利用古典概型概率公式,求概率时,找准基本事件个数是解题的关键,在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.20. 已知椭圆:的长轴长为,且椭圆与圆:的公共弦长为.(1)求椭圆的方程.(2)经过原点作直线(不与坐标轴重合)交椭圆于,两点,轴于点,点在椭圆上,且,求证:,,三点共线..【答案】(1);(2)见解析.【解析】试题分析:(1)根据题意列出关于、、的方程组,结合性质,,求出、、,即可得结果;(2)设,,则,. 因为点,都在椭圆上,所以,利用“点差法”证明,即可得结论.试题解析:(1)由题意得,则.由椭圆与圆:的公共弦长为,其长度等于圆的直径,学+科+网...可得椭圆经过点,所以,解得.所以椭圆的方程为.(2)证明:设,,则,.因为点,都在椭圆上,所以所以,即.又,所以,即,所以所以又,所以,所以,,三点共线.21. 已知函数,(,为自然对数的底数).(1)试讨论函数的极值情况;(2)证明:当且时,总有.【答案】(1)在处取得极大值,且极大值为,无极小值;(2)见解析.试题解析:(1)的定义域为,.①当时,,故在内单调递减,无极值;②当时,令,得;令,得.故在处取得极大值,且极大值为,无极小值.(2)证法一:当时,.设函数,则.记,则.当变化时,,的变化情况如下表:学+科+网...由上表可知,而,由,知,所以,所以,即.所以在内为单调递增函数.所以当时,.即当且时,.所以当且时,总有.证法二:当时,.因为且,故只需证.当时,成立;当时,,即证.令,则由,得.在内,;在内,,所以.故当时,成立.综上得原不等式成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于,两点. (1)求圆的直角坐标方程及弦的长;(2)动点在圆上(不与,重合),试求的面积的最大值.【答案】(1);(2).【解析】试题分析:(1)利用平面直角坐标系与极坐标系间的转化关系,可得圆的直角坐标方程,将直线的参数方程代入,利用参数的几何意义可求得弦的长;(2)写出圆的参数方程,利用点到直线的距离公式,可得,可求出的最大值,即求得的面积的最大值.试题分析:(1)由得,所以,所以圆的直角坐标方程为.将直线的参数方程代入圆,并整理得,解得,.所以直线被圆截得的弦长为. (2)直线的普通方程为.圆的参数方程为(为参数),可设曲线上的动点,则点到直线的距离,当时,取最大值,且的最大值为.所以,即的面积的最大值为.学+科+网...23. 选修4-5:不等式选讲.已知函数.(1)求函数的值域;(2)若,试比较,,的大小.【答案】(1);(2).【解析】(1)根据函数的单调性可知,当时,. 所以函数的值域.(2)因为,所以,所以.又,所以,知,,所以,所以,所以.。
高考数学一模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.设集合A={-2,-1,0,1,2,3},B={x|x2<4},则A∩B的元素个数为()A. 6B. 5C. 3D. 22.设i为虚数单位,z=2+,则复数z的模|z|为()A. 1B.C. 2D.3.已知双曲线=1(m>0)的渐近线为y=±,则m等于()A. B. C. 6 D. 94.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是()A. 0.3B. 0.4C. 0.6D. 0.75.若实数x,y满足不等式组则x2+y2的取值范围是()B. C. D.A.6.设函数f(x)=则“m>1”是“f[f(-1)]>4”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件7.阅读如图所示的程序框图,如果输入P=10,则输出的结果为()A.B.C.D.8.若sin(+2α)=-,α∈(,π),则tan(α+)的值为()A.2 B. C. D.9.已知f(x)为定义在R上的偶函数,且f(x+2)=f(x),当x∈[0,1]时,f(x)=2x+1,记a=f(log0.56),b=f(log27),c=f(8),则a,b,c的大小关系为()B. C. D.A.10.已知等差数列{a n}的前n项和为S n(n∈N*),若是一个与n无关的常数,则该常数构成的集合为()A. {2}B. {4}C. {2,4}D. {1,2,4}11.对∀x∈(),∈(m,n)(m<n),则n-m的最小值为()A. B. C. D.12.设椭圆的焦点为,是椭圆上一点,且,若的外接圆和内切圆的半径分别为,当时,椭圆的离心率为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知向量与的夹角为,||=||=1,则|3+|=______.14.设等比数列{a n}的前n项和为S n,若a3a11=2a,且S4+S12=λS8,则λ=______.15.某几何体的三视图如图所示,主视图是直角三角形,侧视图是等腰三角形,俯视图是边长为的等边三角形,若该几何体的外接球的体积为,则该几何体的体积为_________.16.若函数f(x)=ax2+x lnx有两个极值点,则实数a的取值范围是______.三、解答题(本大题共7小题,共84.0分)17.已知函数g(x)=4sin(x)cos x,将函数y=g(x)的图象向左平移个单位得到y=f(x)的图象.(1)求函数g(x)的最小正周期;(2)在△ABC中,内角A,B,C的对边分别为a,b,c,若b=3,且f(B)=﹣3,求△ABC面积的最大值.18.在甲地,随着人们生活水平的不断提高,进入电影院看电影逐渐成为老百姓的一种娱乐方式.我们把习惯进入电影院看电影的人简称为“有习惯”的人,否则称为“无习惯的人”.某电影院在甲地随机调查了100位年龄在15岁到75岁的市民,他们的年龄的频数分布和“有习惯”的人数如表:()以年龄岁为分界点,请根据个样本数据完成下面列联表,并判99.9%()已知甲地从岁到岁的市民大约有万人,以频率估计概率,若每张电影票定价为x元(20≤x≤50),则在“有习惯”的人中约有的人会买票看电影(m为常数).已知票价定为30元的某电影,票房达到了69.3万元.某新影片要上映,电影院若将电影票定价为25元,那么该影片票房估计能达到多少万元?参考公式:K2=,其中n=a+b+c+d.参考临界值19.如图所示,在三棱柱ABC-A1B1C1中,底面ABC为等边三角形,AB=2,∠A1AB=∠A1AC=60°,M,N分別为AB,A1C1的中点.(1)证明:MN∥平面BCC1B1;(2)若MN=,求三棱柱ABC-A1B1C1的侧面积.20.已知抛物线y2=4x的焦点为F,△ABC的三个顶点都在抛物线上,且+=.(1)证明:B,C两点的纵坐标之积为定值;(2)设λ=,求λ的取值范围.21.设函数f(x)=x-,a∈且a≠0,e为自然对数的底数.(1)求函数y=的单调区间;(2)若a=,当0<x1<x2时,不等式f(x1)-f(x2)>恒成立,求实数m 的取值范围.22.已知平面直角坐标系xOy中,过点P(-1,-2)的直线l的参数方程为(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ•sinθ•tanθ=2a(a>0),直线l与曲线C相交于不同的两点M、N.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若|PM|=|MN|,求实数a的值.23.设函数f(x)=||(a∈R且a≠0)(1)证明:f(a2)+f(a+a2)≥1;(2)若关于x的不等式f(x)≤3的解集为A,且A⊆[-2,10],求实数a的取值范围.答案和解析1.【答案】C【解析】【分析】首先求得集合B,然后结合交集的定义即可求得最终结果.本题主要考查集合的表示方法,交集的运算法则等知识,意在考查学生的转化能力和计算求解能力.【解答】解:由题意可得B={x|-2<x<2},则A∩B={-1,0,1},即A∩B的元素个数为3.故选:C.2.【答案】B【解析】【分析】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解,【解答】解:∵z=2+=,∴|z|=,故选B.3.【答案】D【解析】【分析】本题考查双曲线的方程和性质,主要是双曲线的渐近线方程的运用,属于基础题,根据题意,由双曲线的方程分析其渐近线方程为y=±x,据此可得=,解可得m的值,即可得答案,【解答】解:根据题意,双曲线的方程为=1(m>0),则其渐近线方程为y=±x,又由双曲线=1(m>0)的渐近线为y=±,则有=,解可得m=9;故选D.4.【答案】D【解析】【分析】本题考查了古典概型的概率、考查事件与其对立事件的概率关系、计算原理等知识,属于基础题.可以从反面考虑,春节和端午节至少有一个被选中的反面为两个节日都没被选中,用1减去两个节日都没被选中的概率即可得到春节和端午节至少有一个被选中的概率.【解答】解:设事件A={春节和端午节至少有一个被选中},则={两个节日都没被选中},所以P(A)=1-P()=1-=0.7.故选D.5.【答案】B【解析】【分析】由约束条件作出可行域,再由z=x2+y2的几何意义,即原点(0,0)到阴影区域的距离的平方求解.本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.【解答】解:由实数x,y满足不等式组作出可行域如图,z=x2+y2表示原点(0,0)到阴影区域的距离的平方,∴z min是0,z max是原点(0,0)到点(1,1)的距离的平方,则z max=2,∴z的取值范围是[0,2].故选:B.6.【答案】A【解析】【分析】本题考查充分不必要条件的判定,比较基础.由“m>1”可以得到“f[f(-1)]>4”,但由“f[f(-1)]>4”不一定得到“m>1”,故“m>1”是“f[f(-1)]>4”的充分不必要条件.【解答】解:当“m>1”时,f[f(-1)]=f(2)=22m+1>4,但当“f[f(-1)]>4”时,f[f(-1)]=f(2)=22m+1>4=22,2m+1>2,m>,故“m>1”是“f[f(-1)]>4”的充分不必要条件.故选A.7.【答案】C【解析】【分析】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,模拟程序的运行,对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=++…+的值,由于S=++…+=1-+…+-=1-=.故选C.8.【答案】D【解析】解:sin(+2α)=cos2α===-,∴tanα=±3.又α∈(,π),∴tanα=-3,则tan(α+)==-,故选:D.由题意利用诱导公式、二倍角的余弦公式、同角三角函数的基本关系求得tanα的值,再利用两角和的正切公式化简要求的式子可得结果.本题主要考查应用诱导公式、两角和的正切公式化简三角函数式,属于基础题9.【答案】D【解析】【分析】本题考查了函数的周期性,单调性,奇偶性,以及利用单调性比较大小,是基础题.根据f(x)的周期性、奇偶性和单调性进行判断.【解答】解:当x∈[0,1]时,f(x)=2x+1,则f(x)在[0,1]上是增函数,且当x∈[0,1]时,1≤f(x)≤3,∵f(x+2)=f(x),∴f(x)的周期为2,又f(x)为定义在R上的偶函数,∴a=f(log0.56)=f(-log26)=f(2+)=f()=f(-)=f(),b=f(log27)=f(-2+log27)=f(),c=f(8)=f(0)=f(log21),∵,∴,∴f(log21),即c<a<b.故选D.10.【答案】C【解析】【分析】本题考查集合的求法,解决此类问题的关键是熟练掌握等差数列的前n项和公式,以及熟练掌握分式的性质,意在考查学生的转化能力和计算求解能力,难度较易,属于基础题,先根据等差数列的前n项和公式计算出S2n与S4n,进而表达,再结合题中的条件以及分式的特征可得答案.【解答】解:由题意可得数列{a n}是等差数列,则,,∴===,由题是一个与n无关的常数,则a1=或d=0,当a1=时,===4,当d=0时,===2,∴该常数构成的集合为{2,4},故选:C.11.【答案】C【解析】【分析】本题主要考查利用导数研究函数的单调性和值域,属中档题.求导,利用讨论函数的单调性,可得n-m的最小值.【解答】解:∀x∈(),∈(m,n)(m<n),设f(x)=x∈()则f′(x)=,x∈()设g(x)=sin x-x cosx,g′(x)=cos x-(cos x-x sinx)=x sinx,则:g′(x)=cos x-(cos x-x sinx)=x sinx>0,在x∈()上恒成立,函数g(x)=sin x-x cosx,在x∈()上单调递增,g(x)>g()=sin-cos≈0.05>0所以:f′(x)=>0,x∈()上恒成立,即函数设f(x)=在x∈()上单调递增,所以:f()<f(x)<f();即:<f(x)<;则n-m的最小值为,故选:C.12.【答案】B【解析】【分析】本题考查椭圆的离心率的求法,注意运用椭圆的定义和三角形的内切圆的半径的求法,以及正弦定理,余弦定理的应用,考查化简整理的运算能力,难度一般,是中档题,利用正弦定理计算R,得出r,设|PF1|=m,|PF2|=n,根据余弦定理计算mn,再根据面积公式列方程得出a,c的关系,从而可求出椭圆的离心率.【解答】解:椭圆的焦点为F1(-c,0),F2(c,0),|F1F2|=2c,根据正弦定理可得2R===,∴R=,r=R=.设|PF1|=m,|PF2|=n,则m+n=2a,由余弦定理得,4c2=m2+n2-2mn cos=(m+n)2-3mn=4a2-3mn,∴mn=,∴S=sin=,又S=(m+n+2c)•r=,∴=,即2a2-3c2-ac=0,故3e2+e-2=0,解得:e=或e=-1(舍).故选:B.13.【答案】【解析】解:因为向量与的夹角为,||=||=1,所以=-,所以||==.故答案为.由向量的模的运算可得||==,得解.本题主要考查了向量的运算,以及向量的数量积的运算,其中解答中熟记向量模的运算,以及向量的数量积的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.14.【答案】【解析】【分析】等比数列{a n}的首项为a1,公比为q,由a3a11=2a,结合等比数列的通项公式可求q,然后利用等比数列的前n项和公式,即可求解,得到答案.本题主要考查了等比数列的通项公式,以及前n项和公式的应用,其中解答中熟记等比数列的通项公式和前n项和公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.【解答】解:由题意,设等比数列{a n}的首项为a1,公比为q,因为a3a11=2a,所以=2,解得q4=2,因为S4+S12=λS8,所以=,即,解得λ=.故答案为.15.【答案】【解析】【分析】本题考查几何体的体积的求法,三视图的应用,考查转化思想以及计算能力.利用三视图对应几何体的外接球的体积,求解半径,然后求解三棱锥的高,然后求解体积.【解答】解:三视图的直观图为:该几何体的外接球的体积为36π,可得:,解得R=3,由题意可得AD==1,所以PA=2=4,几何体的体积可得:=.故答案为:.16.【答案】【解析】【分析】本题考查利用导数研究函数的极值,求出导数,属于中档题.将题目等价转化为导函数方程有两个不同的正实根后,既可以采用不完全分离参数法数形结合求解(如法1),也可以采用常规的完全分离参数法,数形结合求解(如法2),相比较而言,法2更容易理解.这类题目往往需要在函数和方程之间多次转化,需要我们对相关的知识要很清楚,另外需要了解常见的分离参数法的不同类型.【解答】解:法1:函数f(x)=ax2+x lnx有两个极值点,即导函数f'(x)=2ax+ln x+1在(0,+∞)上有两个不同的零点,即方程ln x=-2ax-1有两个不同正实数根,即函数y=ln x与函数y=-2ax-1有两个不同的交点,作出图象如右图;设恒过定点的函数y=-2ax-1与函数y=ln x相切于点(x0,y0),则有,解得x0=1,y0=0,即切点为(1,0),此时直线的斜率为k=1,由图象可知,要使函数y=ln x与函数y=-2ax-1有两个不同的交点,则0<-2a<1,即a∈(-,0),法2:转化为导函数f'(x)=2ax+ln x+1在(0,+∞)上有两个不同的零点,分离参数得到,方程-2a=在(0,+∞)上有两个不同的实根,令g(x)=,定义域为x>0,g′(x)=,则当x∈(0,1)时,g'(x)>0,函数g(x)单调递增,当x∈(1,+∞)时,g'(x)<0,函数g(x)单调递减,故g(x)max=g(1)=1,作出函数y=g(x)和y=-2a的图象于同一个坐标系中,则得到0<-2a<1,即a∈(-,0),故答案为(-,0).17.【答案】解:(1)∵g(x)=4sin(x-)cos x===.∴g(x)的最小正周期为T=;(2)f(x)=2sin[2(x+)-]-1=,由f(B)=,得sin(2B+)=-1,∵2B+∈(),∴,则B=.由余弦定理得,即a2+c2+ac=9,9=a2+c2+ac≥2ac+ac=3ac,即ac≤3,当且仅当a=c时取等号.∴△ABC的面积,∴△ABC面积的最大值为.【解析】本题考查三角函数图象和解析式,涉及三角函数图象变换,正弦定理,余弦定理,以及基本不等式等知识,属中档题.(1)利用二倍角的正弦、余弦公式,两角差的正弦公式化简解析式,得到g(x)=,由周期公式求出f(x)的最小正周期;(2)由题f(x)=,f(B)=,得sin(2B+)=-1,根据f(B)=-3,可得B=.由余弦定理得32=a2+c2,则a2+c2+ac=9,由此得到ac≤3,即可求出△ABC面积的最大值.由表中数据,计算K2=≈19.84>10.828,所以有99.9%的把握认为“有习惯”的人与年龄有关;(2)依题意,有11×××30=69.3,解得m=6,所以11×××25=77(万元),估计新影片上映票房能达到77万元.【解析】本题考查了列联表与独立性检验的应用问题,也考查了理解与计算能力,是基础题.(1)根据统计数据,可得2×2列联表,根据列联表中的数据,计算K2的值,即可得到结论;(2)依题意有11×××30=69.3,求出m的值,由此得到该影片票房.19.【答案】(1)证明:如图,取BC中点P,连接MP,C1P,∵M为AB的中点,∴MP∥AC,且MP=AC.又AC∥A1C1,AC=A1C1,且NC1=,∴NC1∥MP,且NC1=MP,∴四边形MNC1P为平行四边形,∴NM∥PC1,又PC1⊂平面BCC1B1,MN⊄平面BCC1B1,∴MN∥平面BCC1B1,(2)解:如图,作BH⊥A1A,交AA1于H,连接CH,∵AC=AB,∠A1AB=∠A1AC,AH为公共边,∴△ABH≌△ACH,∴∠CHA=∠BHA=90°,∴CH⊥AA1,而BH∩CH=H,BH、CH平面BCH,∴A 1A⊥平面BCH,又BC平面BCH,∴A1A⊥BC,又A1A∥C1C,∴C1C⊥BC,在直角△C1CP中,CP==1,C1P=MN=,∴C1C=,在直角△ABH中,BH=AB sin60°=,∴三棱柱ABC-A1B1C1的侧面积S=4×.【解析】本题考查线面平行的证明,考查三棱柱侧面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题,(1)取BC中点P,连接MP,C1P,推导出四边形MNC1P为平行四边形,从而NM∥PC1.由此能证明MN∥平面BCC1B1,(2)作BH⊥A1A,交AA1于H,连接CH,推导出△ABH≌△ACH,从而∠CHA=∠BHA,进而BH⊥AA1,CH⊥AA1,推导出A1A⊥平面BCH,A1A⊥BC,则C1C⊥BC,由此能求出三棱柱ABC-A1B1C1的侧面积.20.【答案】证明:(1)设A(,y0),B(,y1),C(,y2),F(1,0),∴=(-1,y0),=(-1,y1),=(-1,y2),∵+=,∴-1+-1=-1,y1+y2=y0,即y12+y22=y02+4,∴(y1+y2)2=y02,∴y02+4+2y1y2=y02,∴y1y2=-2;解:(2)由+=得四边形ABFC为平行四边形,故λ=•=•=(1-)(1-)+(-y1)(-y2)=1-(+)++y1y2=1-+-2=-y02-≤-.故λ的取值范围是(-∞,-].【解析】本题考查抛物线的定义、方程和性质,考查直线方程和抛物线的方程联立,同时考查向量共线和坐标表示,考查运算能力,属于中档题.(1)设A,B,C的坐标,根据向量的运算,由此可证明y1y2=-2为定值;(2)由+=得四边形ABFC为平行四边形,故λ=•=•,即可求出.21.【答案】解:(1)函数y==1-,∴y′=-=-,不等式->0等价于<0;①当a>0时,由<0,得<0,解得0<x<2;②当a<0时,由<0,得>0,解得x<0或x>2;综上:①当a>0时,函数y=的增区间为(0,2),减区间为(-∞,0),(2,+∞);②当a<0时,函数y=的增区间为(-∞,0),(2,+∞),减区间为(0,2);(2)当0<x1<x2时,f(x1)-f(x2)>等价于f(x1)-f(x2)>-,等价于f(x1)->f(x2)-;即函数g(x)=f(x)-=x-•-在(0,+∞)上为减函数,则g′(x)=1-+=≤0,∴em≤(x-1)e x-ex2;令h(x)=(x-1)e x-ex2,则h′(x)=e x+(x-1)e x-2ex=xe x-2ex=x(e x-2e)令h′(x)=0,解得e x=2e,即x=ln2e;当x∈(0,ln2e)时,h′(x)<0,h(x)为减函数;当x∈(ln2e,+∞)时,h′(x)>0,h(x)为增函数;∴h(x)的最小值为:h(ln2e)=(ln2e-1)•e ln2e-e ln22e=2e ln2-e(ln2+1)2=-e ln22-e;∴em≤-e ln22-e,解得m≤-1-ln22,∴m的取值范围是(-∞,-1-ln22].【解析】本题考查了利用导数研究函数的单调性与最值问题,也考查了不等式恒成立问题,是综合题.(1)求出函数y的导数y′,利用导数判断函数y的单调性与单调区间;(2)0<x1<x2时,f(x1)-f(x2)>等价于f(x1)->f(x2)-;构造函数g(x)=f(x)-,由g(x)在(0,+∞)上为减函数,得出g′(x)≤0,再利用构造函数求最值法求出m的取值范围.22.【答案】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程:x-y-1=0,∵曲线C的极坐标方程为ρsinθtanθ=2a(a>0),∴ρ2sin2θ=2aρcosθ(a>0),∴曲线C的普通方程:y2=2ax;(2)∵y2=2ax;∴x≥0,设直线l上点M、N对应的参数分别为t1,t2,(t1>0,t2>0),则|PM|=t1,|PN|=t2,∵|PM|=|MN|,∴|PM|=|PN|,∴t2=2t1,将(t为参数),代入y2=2ax得t2-2(a+2)t+4(a+2)=0,∴t1+t2=2(a+2),t1t2=4(a+2),∵t2=2t1,∴a=.【解析】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识.(1)利用同角的平方关系以及极坐标方程和直角坐标的互化公式求解;(2)结合直线的参数方程中参数的几何意义和二次方程的韦达定理,求解即可.23.【答案】解:(1)f(a2)+f(a+a2)≥|a-2|+|a-1|≥|(a-2)-(a-1)|=1当且仅当(a-2)(a-1)≤0,即1≤a≤2时取等号,∴f(a2)+f(a+a2)≥1;(2)∵|x-2|≤3∴-3≤x-2≤3,∴-1≤x≤5,∵A⊆[-2,10],∴当a>0时,A={x|-a≤x≤5a},则∴a≤2.即0<a≤2,当a<0时,A={x|5a≤x≤-a},则,∴a≥-,即-≤a<0,综上可知,实数a的取值范围是.【解析】本题考查了解绝对值不等式问题,考查绝对值的性质,考查分类讨论和等价转化的数学思想,难度一般,属中档题.(1)利用绝对值不等式的性质证明即可;(2)由f(x)≤3可得.由A⊆[-2,10],对a进行分类讨论,即可求出实数的取值范围.。
绝密★启封前河北衡水中学2019届高考押题模拟试卷(九)文科数学全卷满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试卷和草稿纸上无效。
3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试卷和草稿纸上无效。
考生必须保持答题卡的整洁。
考试结束后,只需上交答题卡。
参考公式:球的体积公式其中是球半径.锥体的体积公式锥体,其中是锥体的底面积,是锥体的高.台体的体积公式台体,其中分别是台体上、下底面的面积,是台体的高.第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,每小题只有一个正确答案) 在每小题给出的四个选项中,只有一项是最符合题目要求的,选出正确的选项并将该选项在答题卡上涂黑。
1. 已知集合(){}{}214,,1,0,1,2,3A x x x R B =-<∈=-,则A B =( )A. {}0,1,2B. {}1,0,1,2-C. {}1,0,2,3-D. {}0,1,2,32、设1iz i =-(i 为虚数单位),则1z=( )12 D 23、 已知命题p :x ∀∈N *, 1123xx⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭,命题q :x ∃∈R , 122x x -+=命题中为真命题的是( ).A p q ∧ B()p q ⌝∧ C ()p q ∧⌝ D ()()p q ⌝∧⌝4. 若,x y 满足223,,,x y x x y ≤≤⎧⎪⎨⎪+⎩≥则2x y +的最小值为 (A )0(B )4 (C )5(D )105. 执行如图所示的程序框图,输入5,3n m ==,那么输出的p 值为(A )360 (B )60 (C )36(D )126.在ABC ∆中,D 为BC的中点,2,AB AC ==AD BC ⋅=( )A .32 B .32- C .3 D .3- 7.函数()()sin f x A x ωϕ=+(其中0,0,2A πωϕ>><)的图象如图所示,为了得到函数()sin g x x ω=的图象,只需将()f x 的图象上所有点( )A.向右平移12π个单位长度 B. 向左平移12π个单位长度C. 向右平移6π个单位长度 D. 向左平移6π个单位长度 8的顶点都在同一球面上,则此球的表面积为 ( )A .4πB .3πC .2πD .π 9.设F 为抛物线C :24y x =的焦点,曲线,(0)ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12 B .1 C .32D .2正视侧视俯视10.设函数ln(),0()ln ,0x x f x x x -<⎧=⎨->⎩,若()()f m f m >-,则实数m 的取值范围是( )A .(1,0)(0,1)-B .(,1)(0,1)-∞-C .(1,0)(1,)-+∞ D .(,1)(1,)-∞-+∞11.在三棱锥ABC P -中,ABC PA 平面⊥,M AB AP BAC ,2,2,1200===∠是线段BC 上一动点,线段PM 长度最小值为3,则三棱锥ABC P -的外接球的表面积是( ) A.29πB .π40C .π29D .π18 12. 函数)(x f 是定义在()+∞,0上的可导函数,)(x f '为其导函数,若)1()()(-=+'⋅x e x f x f x x , 且0)2(=f ,则不等式0)(<x f 的解集为( )A.()1,0B.()2,0C.()2,1D.()+∞,2第II 卷二、 填空题(本大题共4小题,每小题5分 ,共20分) 13. 曲线()log 33a y x =-+()01a a >≠且恒过定点______14. 已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间. 若()ln g x x m x =++的保值区间是[,)e +∞ ,则m 的值为 .15. 已知三棱锥ABC P -的三条侧棱PA PB PC 、、两两互相垂直,且PA PB PC a ===,则该三棱锥的外接球的体积为 .16. 在正方体1111ABCD A BC D -中, ,M N 分别为棱11C D ,1C C 的中点,则直线AM 与BN 所成角的余弦值为_______三、 解答题(本大题共6小题,共70分。
河北省衡水中学2020-2021高考数学模拟试卷数学试题考试时间120分钟 总分160分参考公式:样本数据x 1,x 2,…,x n 的方差s 2=1n i =1∑n (x i --x )2,其中-x =1n i =1∑n x i . 一、填空题:(本大题共14小题,每小题5分,共70分.) 1.已知集合2{1,1,2,3},{|,3},A B x x R x =-=∈<则A B =_________. 2.复数()()12a i i ++纯虚数(i 是虚数单位),则实数a =_____________3.某算法的伪代码如图所示,如果输入的x 值为32,则输出的y 值为__________.(第11题)4.现有三张识字卡片,分别写有“抗”、“疫”、“情”这三个字.将这三张卡片随机排序,则能组成“抗疫情”的概率是_____________5.已知双曲线22221(0,0)x y a b a b-=>>的离心率2e =,则其渐近线的方程为 _________6.已知一组数据3,6,9,8,4,则该组数据的方差是_______.7.公差不为0的等差数列{}n a 的前n 项和为n S ,若2a 、5a 、14a 成等比数列,253S a =,则10a =______________8.将1个半径为1的小铁球与1个底面周长为2π,高为4的铁制圆柱重新锻造成一个大铁球,则该大铁球的表面积为_____________ 9.若函数π()2sin(2)(0)2f x x ϕϕ=+<<图象过点,则函数()f x 在[0,]π上的单调减区间是__.10.若正实数,x y 满足2210x xy +-=,则2x y +的最小值为______.11.如图,在由5个边长为1,一个顶角为60°的菱形组成的图形中,AB CD ⋅=_____________12.若对于任意的-15x ∈∞⋃+∞(,)(,),都有22(2)0,x a x a --+>则实数a 的取值范围是______.13.在平面直角坐标系xOy 中,圆()()22:23C x y m ++-=,若圆C上存在以G 为中点的弦AB ,且2AB GO =,则实数m 的取值范围为_________. 14.在ABC ∆中,若120C =,tan 3tan A B =,sin sin A B λ=,则实数λ=__________.二、解答题:(本大题共6小题,共90分..)15.如图,ABC ∆中,已知点D 在边AB 上,3AD DB =,4cos 5A =,5cos 13ACB ∠=,13BC =.(1)求cos B 的值; (2)求CD 的长.16.如图,在四棱锥P ABCD⊥,过CD-中,PC⊥平面ABCD,AB//CD,CD ACPA PB交于点,E F.的平面分别与,(1)求证:CD⊥平面PAC;AB EF(2)求证://17.如图,在平面直角坐标系xOy 中,已知椭圆22:143x y C +=的左、右顶点分别为A ,B ,过右焦点F的直线l 与椭圆C 交于P ,Q 两点(点P 在x 轴上方).(1)若2QF FP =,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为1k ,2k .是否存在常数λ,使得12k k λ=?若存在,求出λ的值;若不存在,请说明理由.18.某景区修建一栋复古建筑,其窗户设计如图所示.圆的圆心与矩形对角线的交点重合,且圆与矩形上下两边相切(为上切点),与左右两边相交(,为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1,且,设,透光区域的面积为.(1)求关于的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边的长度.19.已知函数()()22ln f x x x ax a R =-+∈.(1)当2a =时,求()f x 的图象在 1x =处的切线方程;(2)若函数()()g x f x ax m =-+在1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,求实数m 的取值范围;(3)若对区间()1,2内任意两个不等的实数1x ,2x ,不等式()()12122f x f x x x -<-恒成立,求实数a 的取值范围.20.已知数列{}n a 前n 项和为n S ,且满足22n n S a =-;数列{}n b 的前n 项和为nT ,且满足11b =,22b =,12n nn n T bT b ++=.(1)求数列{}n a 、{}n b 通项公式;(2)是否存在正整数n ,使得11n n n n a b a b +++-恰为数列{}n b 中的一项?若存在,求所有满足要求的n b ;若不存在,说明理由.河北省衡水中学2020-2021高考数学模拟试卷(参考答案)考试时间120分钟 总分160分一、填空题:1.【答案】{}1,1-.详解】2{|,3}B x x R x =∈<={x|x 又{}1,1,2,3,A =-则A ∩B ={=1=1}=【点睛】本题主要考查集合的基本运算,求出集合的等价条件以及利用集合交集的定义是解决本题的关键. 2.【答案】2【详解】因为复数()()12a i i ++是纯虚数,化简,()()()12221a i i a a i ++=-++,则20210a a -=⎧⎨+≠⎩,则实数2a = 【点睛】本题考查复数的概念,属于简单题 3.【答案】5【详解】由伪代码可得22,5log ,5x x y x x ⎧≤=⎨>⎩,当32x =时,2log 325y ==.【点睛】本题主要考查条件语句及分段函数,属于基础题. 4.【答案】16【详解】由题得“抗”、“疫”、“情”这三个字的排列有:抗疫情,抗情疫,疫抗情,疫情抗,情抗疫,情疫抗,共有6种,其中,组成“抗疫情”的只有1种. 故能组成“抗疫情”的概率是16P =.【点睛】本题主要考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题. 5.【答案】y =【【详解】双曲线的方程是()222210,0x y a b a b-=>>,∴双曲线渐近线为b y x a =±,又离心率为2c e a==,可得2c a =,224c a ∴=,即2224a b a +=,可得b =,由此可得双曲线渐近线为y =,故答案为y =. 6.【答案】265【详解】平均值为3698465++++=, 所以方差为()()()()()22222136669686465⎡⎤-+-+-+-+-⎣⎦99442655+++==. 【点睛】本小题主要考查样本方差的运算,考查运算求解能力,属于基础题. 7.【答案】19【详解】设等差数列{}n a 的公差为d ,可得出0d ≠,由题意得25214253a a a S a ⎧=⎨=⎩,即()()()()211121141351020a d a d a d a d a d d ⎧+=++⎪⎪+=+⎨⎪≠⎪⎩,解得112a d =⎧⎨=⎩, 因此,101919219a a d =+=+⨯=.【点睛】本题考查等差数列基本量的计算,解答的关键就是得出关于首项和公差的方程组,考查计算能力, 属于中等题. 8.【答案】【详解】半径为1的小铁球的体积为43π,底面周长为2π,高为4的铁制圆柱的底面半径为1,体积为4π,锻造成的大铁球的体积为341644333R ππππ+==,可得R =,所以该大铁球的表面积为2244R ππ==,故答案为:.【点睛】本题主要考查球的体积与表面积公式,考查了柱体的体积公式,属于基础题. 9.【答案】π7π(,)1212【详解】函数()()π2sin 2(0)2f x x ϕϕ=+<<的图象过点(=则2sin ϕ=,sin ϕ=,0,23ππϕϕ<<∴=,()2sin(2)3f x x π∴=+.0x π≤≤,022x π∴≤≤,72333x πππ≤+≤,有于sin y x =在3[,]22ππ为减函数,所以32232x πππ≤+≤,解得71212x ππ≤≤. 【点睛】根据函数图象过已知点,求出sin ϕ ,借助ϕ的范围求出ϕ的值.求三角函数在某一区间上的最值及单调区间时,务必要注意“范围优先原则”,根据x 的范围研究x ωϕ+的范围,有时还要关注A 的符号,因此当自变量有范围限制时,解题更要小心失误. 10.【详解】令2x y k +==则2y k x =-=()22210x x k x ∴+--==即23210x kx -+-==24120k ∴∆=-≥=且0k >=k ∴≥,即2x y +=点睛:基本不等式的考察的一个主要考察方法就是判别式法,可以应用判别式法的题型基本特点:(1)题干条件是二次式;(2)问题是一次式(或可以化简为一次式).熟悉判别式法的应用,可以提升考试中碰到不等式题型的准确率. 11.【答案】4-【详解】如图,由已知可得1,3,,60AF AF FB FB ===所以()()C AB A D FB E F CE D ⋅=+⋅+()133F F B AF A B F ⎛⎫=+⋅-+ ⎪⎝⎭2218333FB FB AF AF =-+-⋅18139134332=-+⨯-⨯⨯⨯=-故答案为:4-.【点睛】向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =. 12.【答案】(1,5] 【详解】利用一元二次方程根的分布去解决,设2()2(2)f x x a x a =--+ = 当24(2)40a a ∆=--<时,即14a << 时,()0f x > 对x ∈R 恒成立; 当1a =时,(1)0f -= ,不合题意; 当4a =时,(2)0f = 符合题意;当∆<0 时,0125(1)0(5)0a f f ∆<<-<≥≥⎧⎪⎪⎨⎪⎪⎩ 即:45a <≤综上所述:实数a 的取值范围是(1,5].【点睛】有关一元二次方程的根的分布问题,要结合一元二次方程和二次函数的图象去作,要求函数值在某区间为正,需要分别对判别式大于零、等于零和小于零进行分类研究,注意控制判别式、对称轴及特殊点的函数值的大小,列不等式组解题.13.在平面直角坐标系xOy 中,圆()()22:23C x y m ++-=,若圆C上存在以G 为中点的弦AB ,且2AB GO =,则实数m 的取值范围为_________. 【答案】[由于圆C 存在以G 为中点的弦AB ,且2AB GO =,所以OA OB ⊥,如图,过点O 作圆C 的两条切线,切点分别为B D 、,圆上要存在满足题意的点A ,只需090BOD ∠≥,即045COB ∠≥,连接CB ,CB OB⊥,由于(2,)C m -,CO =CB =,sin sin 45CB COB CO∠==≥=,解得m ≤≤14.【答案】12+ 【详解】在ABC ∆中,120C =,由余弦定理得222c a b ab =++,① 因为tan 3tan A B =,即sin sin 3cos cos A BA B =⋅,所以sin cos 3sin cos A B B A =,由正弦定理得cos 3cos a B b A =,所以222222322a c b b c a a b ac bc+-+-⋅=⋅,整理得22222c a b =-,②由①②可得2230a ab b --=,所以230a bb a⎛⎫--= ⎪⎝⎭,解得a b =,所以sin sin A B =,又sin sin A B λ=,所以sin sin =A λB =.故答案为:12二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.试题解析:(1)在ABC 中,4cos 5A =,()0,πA ∈,所以3sin 5A ===.…………………………2分 同理可得,12sin 13ACB ∠=. ……………………………………… 4分 所以()()cos cos πcos B A ACB A ACB ⎡⎤=-+∠=-+∠⎣⎦sin sin cos cos A ACB A ACB =∠-∠312451651351365=⨯-⨯=. ……………………………………………7分(2)在ABC 中,由正弦定理得,1312sin 203sin 135BC AB ACB A=∠=⨯=. …………9分 又3AD DB =,所以154BD AB ==. ……………………………………………………11分 在BCD中,由余弦定理得,CD ===.………………………………………………………14分【点睛】凑角求值是高考常见题型,凑角求知要“先备料”后代入求值,第二步利用正弦定理和余弦定理解三角形问题,要灵活使用正、余弦定理,有时还要用到面积公式,注意边角互化.16.详解:(1)证明:∵在四棱锥P ABCD -中,PC ⊥平面ABCD ,CD ⊂平面ABCD , (3)分∴CD PC ⊥,∵CD AC ⊥,PCAC C =,∴CD ⊥平面PAC .………………………………6分(2)∵//AB CD ,过CD 的平面分别与,PA PB 交于点,E F ,故平面CDEF 平面PAB EF =…………………9分 又CD ⊄平面PAB ,AB 平面PAB ,………………………………………………………… 11分∴//CD 平面PAB ,而CD ⊂平面CDEF , ∴//CD EF ∴//AB EF ……………………………………………………………………………………………14分点睛: (1)线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.(2)线线平行的判定可以由线面平行得到,注意其中一条线是过另一条线的平面与已知平面的交线,也可以由面面平行得到,注意两条线是第三个平面与已知的两个平行平面的交线.17.试题解析:(1)因为24a =,23b =,所以1c ==,所以F 的坐标为()1,0……2分设()11,P x y ,()22,Q x y ,直线l 的方程为1x my =+, 代入椭圆方程,得()2243690m ymy ++-=,…………………………………………………5分则12343m y m -+=+,22343m y m--=+.若2QF PF =,则2233204343m m m m---++⨯=++,………………………………6分解得m =l 的方程为20y -=. (8)分(2)由(1)知,122643m y y m -+=+,122943y y m -=+,…………………………………10分所以()1212293432mmy y y y m -==++, 所以()()12112212211223y my k y x k x y y my --=⋅=++ ………………………………………………………12分()()1211223123332y y y y y y +-==++, 故存在常数13λ=,使得1213k k =.……………………………………………………………14分【点睛】求直线方程首先要设出方程,根据题目所提供的坐标关系,求出直线方程中的待定系数,得出直线方程;第二步存在性问题解题思路是首先假设λ存在,利用所求的12y y +,12y y ,结合已知条件12k k λ=,得出坐标关系,再把12y y +,12y y 代入求出λ符合题意,则λ存在,否则不存在.18.试题分析: 解:(1) 过点作于点,则,所以,……………………………………………………………………2分.所以…………………………………………………………………………4分,…………………………………………………………………………………6分因为,所以,所以定义域为.…………………………………………7分(2)矩形窗面的面积为.……………………………………9分则透光区域与矩形窗面的面积比值为.设,.………………………………………………………………11分则,……………………………………………………………………………………13分因为,所以,所以,故,所以函数在上单调减.所以当时,有最大值,此时………………………………16分答:(1)关于的函数关系式为,定义域为;(2)透光区域与矩形窗面的面积比值最大时,的长度为1.19.【详解】(1)当时,,,切点坐标为………1分切线的斜率,则切线方程为,即.…………………… …………3分(2),则,…………………………………4分,故时,.当时,; 当时,. 故在处取得极大值.……………………………………………………………6分又,,,则, 在上的最小值是.……………………………… ……………………………………8分在上有两个零点的条件是2a =()22ln 2f x x x x =-+()222f x x x'=-+()1,1()12k f ==()121y x -=-21y x =-()22ln g x x x m =-+()()()21122x x g x x x x-+-'=-=1,x e e ⎡⎤∈⎢⎥⎣⎦()0g x '=1x =11x e <<()0g x '>1x e <<()0g x '<()g x 1x =()11g m =-2112g m e e ⎛⎫=-- ⎪⎝⎭()22g e m e =+-()2221140g e g e e e ⎛⎫-=-+<⎪⎝⎭()1g e g e ⎛⎫< ⎪⎝⎭()g x 1,e e ⎡⎤⎢⎥⎣⎦()g e ()110g m =->()g x 1,e e ⎡⎤⎢⎥⎣⎦()21101120g m g m e e ⎧=->⎪⎨⎛⎫=--≤ ⎪⎪⎝⎭⎩解得 实数m 的取值范围是…………………………………………………………………………10分(3)不妨设,恒成立等价于,即.………………………………………………………………………………12分令,由,具有任意性知,区间内单调递减,恒成立,即恒成立,,在上恒成立. 令,则……………………………………………………………14分 在上单调递增,则,实数a 的取值范围是 (16)分【点睛】本题主要考查导数的几何意义和函数的极值和最值、以及考查函数的恒成立问题和转化思想,属于难题20.【详解】解:(1)因为,所以当时,, 两式相减得,即,又,则,………………………………2分所以数列是以为首项,2为公比的等比数列,故 (3)分2112m e <≤+211,2e ⎛⎤+ ⎥⎝⎦1212x x <<<()()12122f x f x x x -<-()()()21212f x f x x x -<-()211222f x x f x x ->-()()()2u x f x x =-1x 2x ()u x ()1,2()()20u x f x '=-<()2f x <222x a x -+<222a x x<-+()1,2()222h x x x=-+()2220h x x'=+>()222h x x x=-+()1,2()()12h x h >=(],2-∞22n n S a =-2n ≥1122n n S a --=-122n n n a a a -=-12n n a a -=1122S a =-12a ={}n a 12a =2n n a =由得,,,…,,以上个式子相乘得,即①,当时,②,………………5分两式相减得,即(),所以数列的奇数项、偶数项分别成等差数列, ,,因此数列的通项公式为.…………………………………………………………………………………………………………6分 (2)当时,无意义,………………………………………………………………………7分设(,),显然.则,即………………………9分…………………………………………………………………………………………………11分显然,所以,所以存在,使得,,……………………………………………………………………………………………………13分下面证明不存在,否则,即, 此式右边为3的倍数,而不可能是3的倍数,故该式不成立. 综上,满足要求的为,.……………………………………………………………………………16分12n nn n T b T b ++=1123T b T b=2234T b T b=3345T b T b=111n n n n T b T b --+=n 1121n n n T b b T b b +=12n n n T b b +=2n ≥112n n n T b b --=()112n n n n b b b b +-=-112n n b b +--=2n ≥{}n b 2121k b k -=-22k b k ={}n b n b n =1n =11n n n n a b a b +++-()112121n n n n n n n a b n c a b n +++++==--+2n ≥*N n ∈1n c >()()11122212221n n n n n n n n c c n n +++++++-=--+-+()()11202221n n nn n n ++-⋅=<⎡⎤⎡⎤-+-+⎣⎦⎣⎦11n n c c +>>()2121n nn n ++>-+234731c c c =>=>>>2n =72b c =33b c =2n c =()21221n n nn c n ++==-+()231n n =+2n n b 3b 7b点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求. 应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.n S n a n a 1,2n n n a S S n -=-≥n a n S n S n n a 11,1,2n n n S n a S S n -=⎧=⎨-≥⎩1,2n n =≥。
2023年河北省衡水市桃城区衡水中学、石家庄二中、雅礼中学、长郡中学等名校高考数学模拟试卷(一)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.A .{2}B .{5}C .{1,3,4,5}D .{1,2,3,4}1.(5分)已知全集U ={l ,2,3,4,5},集合A ={1,2,4},B ={2,3},则(∁U A )∩(∁U B )=( )A .3B .4C .-3D .-42.(5分)复数25i 3+4i的虚部为( )A .OA 与OH 的夹角为π3B .OD +OF =OEC .|OA −OC |=22|DH |D .OA 在OD 上的投影向量为22e (其中e 为与OD 同向的单位向量)3.(5分)八卦是中国文化的基本学概念,图1是八卦模型图,其平面图形为图2所示的正八边形ABCDEFGH ,其中|OA |=1给出下列结论,其中正确的结论为( )→→→→→→→→√→→→√→→→A .67B .57C .914D .11144.(5分)从属于区间[2,8]的整数中任取两个数,则至少有一个数是质数的概率为( )A .[83,113)∪(4,143)B .[113,4)∪[143,173)C .[113,143)∪(5,173)D .[143,5)∪[173,203)5.(5分)已知函数f (x )=sin (ωx +π3)(ω>0)在[π3,π]上恰有3个零点,则ω的取值范围是( )A .2a =3b B .a 3b 2=1C .a 2=b 3D .a 3=b 26.(5分)在某款计算器上计算log a b 时,需依次按下“Log ”、“(”、“a ”、“,”、“b ”、“)”6个键.某同学使用该计算器计算log a b (a >1,b >1)时,误按下“Log ”、“(”、“b ”、“,”、“a ”、“)”这6键,所得到的值是正确结果的49倍,则( )二、选择题:本题共4小题,每小题5分,共20分。
2020届衡水中学高三高考模拟试卷-文科数学一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P={}0,1,M={}|x x P ⊆,则集合M 的子集个数为( )A.32B.16C.31D.642. 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=A.34i -B. 34i +C. 43i -D. 43i +3. 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π4. 已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q 作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )5.已知等比数列{}n a 的公比为q ,则’’01q <<”是.{}n a 为递减数列的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.已知()21f x -定义域为[]0,3则 ()21f x -的定义域为( )A.(0,92) B.902⎡⎤⎢⎥⎣⎦, C.(9,2-∞) D.(9,2⎤-∞⎥⎦7.在平行四边形ABCD 中,AB=8,AD=5,3CP PD =,2APBP =, AB AD ⋅=( )A,22 B.23 C.24 D.258. sin cos y x a x =+中有一条对称轴是53x π=,则 ()sin cos g x a x x =+最大值为( )A.333 B.233 C.332 D.2329. 如图所示,程序框图(算法流程图)的输出结果是( )A.34B.55C.78D.89x=1 y=1z=x+y50?z ≤x=y开始输出z是否10. 如图,一几何体正视图,俯视图是腰长为1的等腰三角形,俯视图是一个圆及其圆心,当这个几何体的体积最大时圆的半径是( )11. 设,a b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为 A .0B .1C .2D .312. ()f x 与()1f x +事定义在R 上的偶函数,若[]0,1x ∈时()f x =sin x x -,则32f ⎛⎫- ⎪⎝⎭-2f π⎛⎫⎪⎝⎭为( ) A.正数 B.负数 C.零 D.不能确定二、填空题(本大题共4小题,每小题5分,共20分.)13. 在ABC ∆中,AB=2,AC=3,1AB BC ⋅=,则 BC=___________________14. x,y 自变量满足x ≥0y ≥24y x +≤x y S +≤当35S ≤≤时,则32x y Z =+的最大值的变化范围为___________________15. 函数ay x =为偶函数且为减函数在()0,+∞上,则a 的范围为___________________16. 已知函数()f x =()lg ,0x x -<264,0x x x -+≥,若关于x 的方程()()210fx bf x -+=有8个不同根,则实数b 的取值范围是___________________三、解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤.)17. cos cos 1αβ=-,求()sin αβ+正侧俯18. 某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.()()2211221221212120.1000.0500.010,2.7063.841 6.635p x k n n n n n x n n n n k ++++-=≥19. 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE ,BD 上各有一点P ,Q ,且AP=DQ , 求证PQ 面BCE20. 已知椭圆中()222210x y a b a b +=>>长轴为4离心率为12,点P 为椭圆上异于顶点的任意一点,过点P 作椭圆的切线l 交y 轴于点A ,直线l'过点P 且垂直于l 交y 轴于B ,试判断以AB 为直径的圆能否经过定点,若能求出定点坐标,若不能说出理由21. 设函数()()()21xf x x e kxk R =--∈当1,12k ⎛⎫∈⎪⎝⎭时, 求函数()f x 在[]0,k 上的最大值M请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目的题号后的方框涂黑.22. 选修4-1几何证明选讲已知,ABC AB AC ∆=中,D ABC ∆为外接圆劣弧AC 上的点(不与点A C 、重合),延长BD 至E ,延长AD 交BC 的延长线于F . (Ⅰ)求证:CDF EDF ∠=∠;(Ⅱ)求证:AB AC DF AD FC FB ⋅⋅=⋅⋅.23. 选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24. 选修4-5:不等式选讲已知函数f (x )=|2x -a |+a.(Ⅰ)若不等式f (x )≤6的解集为{x |-2≤x≤3},求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n 使f (n )≤m-f (-n )成立,求实数m 的取值范围参考答案1. B考点:集合的子集问题 设有限集合A ,card ()A =n ()*n N ∈子集个数2n ,真子集21n -,非空真子集22n - 解析:M={}|x x P ⊆ P={}0,1则x 有如下情况:{}{}{},0,1,0,1φ 则有子集为42216n== 注意点:该类型常错在空集φ 2. A【解析】3. B 【解析】4. A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图 5.D考点:充分条件与必要条件的判定解析:若111,2a q =-=,则数列前n 项依次为-1,-11,24-,显然不是递减数列 若等比数列为-1,-2,-4,-8显然为递减数列,但其公比q=2,不满足01q综上01q 是{}n a 为递减数列的既不充分也不必要条件注意点:对于等比数列,递减数列的概念理解,做题突破点;概念,反例 6.B考点:关于定义域的考察解析:[][][]220,30,911,8x x x ∈∈-∈-所以[][]9211,8210,90,2x x x ⎡⎤-∈--∈∈⎢⎥⎣⎦所以定义域为90,2⎡⎤⎢⎥⎣⎦注意;一般题目中的定义域一般都是指x 的范围类似的题目:已知()f x 定义域为[]()()0,4,11f x f x ++-的定义域是? 考点;对定义域的问题考察的综合应用解析:[][][]0,411,511,3x x x ∈+∈-∈-所以综合在一起的定义域是[]1,3 注意;定义域在一定题目中指的是x 范围,但每个题目中的x 的取值是一样的 所以在这些关系中取这三个范围中都包括的范围 7.A考点;利用不同方法求解 解析:法一:坐标法 设A坐标原点B()8,0 设DAB θ∠=所以()5cos ,5sin D θθ所以()5cos 2,5sin P θθ=+AB AD ⋅=()8,0()5cos ,5sin θθ=40cos θAP BP ⋅=()5cos 2,5sin θθ+()5cos 6,5sin 2θθ-=因为0,2πθ⎛⎫∈ ⎪⎝⎭所以AB AD ⋅=22法二;AP BP ⋅=13244AD AB BC AB ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭所以AP BP ⋅=1344AD AB AD AB ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭=223134416AD AD AB AB AD AB -⋅+⋅-=25-13*642216AD AB ⋅-= 所以AB AD ⋅=22 注意;巧妙运用题目关系并且记住题目中条件不是白给的,一定要用 8.B考点:函数最值方面的考察解析:方法一;sin cos y x a x =+=当53x π=时,122y a =-+=平方得:22311424a a a -+=+ 求得3a =- 3= 方法二:因为对称轴为53π 所以可知此时的导函数值为0 'cos sin y x a x =-555'cos sin 0333y a πππ⎛⎫=-= ⎪⎝⎭所以12= 所以a = =注意;给三角函数求导也是一种办法,将三角函数求导后原三角函数的对称轴处的导函数都为09. B【解析】10.B解析:由三视图可得1hr所以22r h +=1 ()()223111113333V sh r h h h h h πππ===-=- 将V 看成函数 ()21'133V h π=- 所以当213h =时取得最值 22213h r h -== 所以63r =注意:可以将几何和函数相结合11. A 【解析】12.A 解析:32f ⎛⎫-⎪⎝⎭=31222f f ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭ 2f π⎛⎫⎪⎝⎭=222f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭则3122222f f f f ππ⎛⎫⎛⎫⎛⎫⎛⎫--=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()sin f x x x =- ()'1cos 0f x x =->恒成立∴()f x是单调递增1222π>-∴12022f fπ⎛⎫⎛⎫-->⎪ ⎪⎝⎭⎝⎭∴原式>0恒成立注意点:若关于轴x a=对称,T=2a ()()2f x f a x=-若关于点(),0a对称,T=2a ()()2f x f a x=-若关于(),a a对称,T=4a ()()22f x a f a x=--考点:在利用余弦转化时符号的正确利用解析:c=2 b=3 ()cos1a c B AB BCπ⋅⋅-=⋅=22225cos24a cb aBac a+--==()cos2cos1ac B B aπ-=-⋅=1cos2a B=-∴25142aaa-⋅=-∴252a-=∴23a=a=注意;()cos cosB Bπ-=-注意正负号AB BC⋅夹角是cos B-BA BC⋅夹角是cos B AB CB⋅夹角是cos B14. []7,8考点:线形规划中范围的判断解析:(1)当x+y=S与y+2x=4有交点时,最大值在两直线交点处取得,最小范围是此时S=3时代入Z=7(2)当x+y=S与y+2x=4没有交点时最大值在B()0,4处取得∴代入248Z=⨯=∴综上范围是[]7,815. a 0<且a 为偶数考点:偶函数的定义,幂函数定义的考察 解析:为减函数 ∴a 0< 为偶函数 ∴a 为偶数类似的,若ay x =为奇函数,减函数在(),a +∞上,求范围解析:为减函数 ∴0a <为奇函数 ∴a 为奇数注意;幂函数ay x =的定义性质必须弄懂 16. 172,4⎛⎤⎥⎦⎝ 解析:()226435x x x -+=--∴()()210f x bf x -+=在[]0,4上有2个根令()t f x = 210t bt -+=在[]0,4上有2个根>()0,42b∈()00f >()40f≥所以解得b ∈172,4⎛⎤⎥⎦⎝ 思路点拨;运用图像画出圆然后利用二次函数两个根 最后利用根分布求范围 17. 考点:对特殊函数值的理解 解析:cos 1α≤ cos 1β≤∴cos ,cos αβ中肯定一个为1,一个为-1若cos 1α=,则cos 1β=- 则2,2k k απβππ==+∴()41k αβπ+=+ ∴()sin 0αβ+= 反之也成立注意:cos α,cos β,sin ,sin αβ取值范围可利用取特值法进行分析 18. 【答案】 (1) 有95%的把握认为有关(2) 107【解析】(1)22100(60102010)1004.762 3.8418020703073x -==≈>所以,有95%的把握认为“南方和北方的学生在甜品饮食方面有差异”(2)10776116111035==+p 所以,所求事件的概率种人喜欢甜品的情况有种,所以至多有学生喜欢甜品的情况有个种,只有欢甜品的情况有种;其中,没有学生喜人,共有人中选从19. 解析:证明: 证法一:如图作PMAB 交BE 于M ,作QN AB 交BC 于N 连接MN正方形ABCD 和正方形ABEF 有公共边AB ∴AE=BD 又AP=DQ ∴PE=QB又PM AB QN ,PM PE QB QN BQAB AE BD DC BD∴===PM QNAB DC∴=PM ∴QN 且PM=QN 即四边形PMNQ 为平行四边形 PQ MN ∴又MC ⊂面BCE PQ ⊄面BCE∴PQ 面BCE证法二:如图连接AQ 并延长交BC 的延长线于K ,连接EKAE BD = AP DQ = PE BQ ∴= AP DQPE BQ∴= 又AD BK DQ AQ BQ QK ∴= AP AQPE QK∴= PQ EK ∴ 又PQ ⊄面BCE EK ⊂面BCEPQ ∴面BCE证法三:如图,在平面ABEF 内,过点P 作PMBE ,交AB 于M ,连接QMPM 面BCE ,且AP AMPE MB=又AE BD = AP DQ = PE BQ ∴=AP DQ PE BQ ∴= AM DQMB QB∴= MQ AD ∴ 又AD BC MQ BC ∴ MQ ∴面BCE又PM MQ M ⋂= ∴面PMQ 面BCE 又PQ ⊂面PMQ PQ ∴面BCE注意:把线面平行转化为线线平行时必须说清经过已知直线的平面与已知平面相交,则直线与交线平行20.解析:22143x y += 设P 为()00,x y ,P 为切点且P 在椭圆上 设l 为00143x x y y += l ’与l 是垂直的∴'l 为0034x x x ym -=直线l 过P ()00,x y 点代入 000034x y x y m ∴-= 0012x ym ∴= ∴'l 为00034y x x ym --= 在l 中令0x =得030,A y ⎛⎫ ⎪⎝⎭ 在'l 中令0x =得00,3yB ⎛⎫- ⎪⎝⎭AP BP ⊥ 0PA PB ∴⋅= 200303y x y y y ⎛⎫⎛⎫∴+-+= ⎪ ⎪⎝⎭⎝⎭22003103y x y y y ⎛⎫∴++--= ⎪⎝⎭过定点与P ()00,x y 无关 0y ∴= 21x ∴= 1x =±∴定点为()1,0或()1,0-思路点拨;本题技巧已知两线垂直的那以x 与y 前的系数好互例 体现在l ’与l 是垂直的∴0034x x x ym -=21.解析:解析:()()21x f x x e kx =--()()'20x f x x e k =-=可得120,ln 2x x k ==]1,12k ⎛∈ ⎝则](21,2k ∈ ](ln 20,ln 2k ∴∈ 令21x x >ln2k()()0ln 2k ln 2k,k ∴↓↑在,图像为ln2kk由图像可知最大值在0处或k 处取得()()()k 3f k f 0k 1e k 1∴-=--+()()()()()k 2k 2k 1e k 1k k 1k 1e k k 1=---++=----令()k 2h k e k k 1=--- ()k h'k e 2k 1=-- ()k h''k e 20=-= k=ln2∴ln2121在]112,⎛⎝上先减后增()h'1e 30=-< 1h 'e 202⎛⎫=-< ⎪⎝⎭ ()max h'k 0∴< 即()h k 单调递减()max 1137h k h e e 2424⎛⎫∴==--=- ⎪⎝⎭又()()49e 0f k f 0016-<∴-> ()()()()k 3k 3max f x f k k 1e k k 1e k ∴==--=--思路点拨:本题的精华点在于导函数与原函数的穿插运用,注意图像中导函数与原函数的图像可知 解:(Ⅰ)证明:A 、B 、C 、D 四点共圆∴CDF ABC ∠=∠.………………2分 AB AC =ABC ACB ∴∠=∠ 且ADB ACB ∠=∠,ABC ACB ADB EDF ∠=∠=∠=∠…………4分 ∴CDF EDF ∠=∠.………………5分(Ⅱ)由(Ⅰ)得ADB ABF ∠=∠,又BAD FAB ∠=∠, 所以BAD ∆与FAB ∆相似,AB ADAF AB∴=2AB AD AF ∴=⋅,…………7分 又AB AC =, AB AC AD AF ∴⋅=⋅,∴AB AC DF AD AF DF ⋅⋅=⋅⋅ 根据割线定理得DF AF FC FB ⋅=⋅,……………9分 AB AC DF AD FC FB ⋅⋅=⋅⋅.……………10分23. (Ⅰ)设11(,)x y 为圆上的点,经变换为C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y += 得22()12y x +=,即曲线C 的方程为2214y x +=.,故C 得参数方程为 cos 2sin x t y t⎧⎨⎩== (t 为参数). (Ⅱ)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12PP 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化为极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24. 解:(Ⅰ)由26x a a -+≤得26x a a -≤-,∴626a x a a -≤-≤-,即33a x -≤≤,∴32a -=-,∴1a =。
2019届河北省衡水中学 高三第一次摸底考试数学(文)试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题1.已知集合2,3,,,则 A . B . C . D .2.已知复数其中为虚数单位,则的共轭复数的虚部为 A .1 B . C . D .3.已知曲线在点处的切线与直线垂直,则实数的值为 A .5 B . C . D .4.如图的折线图是某农村小卖部2018年一月至五月份的营业额与支出数据,根据该折线图,下列说法正确的是A .该小卖部2018年前五个月中三月份的利润最高B .该小卖部2018年前五个月的利润一直呈增长趋势C .该小卖部2018年前五个月的利润的中位数为万元D .该小卖部2018年前五个月的总利润为万元5.如图是希腊著名数学家欧几里德在证明勾股定理时所绘制的一个图形,该图形由三个边长分别为的正方形和一个直角三角形围成现已知,,若从该图形中随机取一点,则该点取自其中的直角三角形区域的概率为A .B .C .D .6.已知椭圆的离心率为,且椭圆的长轴长与焦距之和为6,则椭圆的标准方程为 A . B . C . D .7.在直三棱柱中,,且,点M 是的中点,则异面直线与所成角的余弦值为 A . B . C . D .8.设命题将函数的图象向右平移个单位得到函数的图象;命题若,则,则下列命题为真命题的是A .B .C .D .9.设函数,,若直线,分别是曲线与的对称轴,则 A .2 B .0 C . D .10.某几何体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积不可能是A .B .2C .4D .611.已知双曲线的离心率为2,左,右焦点分别为,,点在双曲线上,若的周长为,则 A . B . C . D .12.对于函数,若存在,使,则称点是曲线的“优美点”.已知,则曲线的“优美点”个数为 A .1 B .2 C .4 D .6此卷只装订不密封班级 姓名 准考证号 考场号 座位号二、解答题13.已知数列满足,且.求证:数列为等差数列;求数列的通项公式;记,求数列的前2018项和.14.在如图所示的多面体中,,平面.(Ⅰ)证明:平面;(Ⅱ)若,,求三棱锥的体积.15.如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率最高的甲、乙两家网络外卖企业(以下简称外卖甲,外卖乙)的经营情况进行了调查,调查结果如表:(1)据统计表明,与之间具有线性相关关系.(ⅰ)请用相关系数加以说明:(若,则可认为与有较强的线性相关关系(值精确到0.001))(ⅱ)经计算求得与之间的回归方程为.假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于2500单时,外卖甲所获取的日纯利润的大致范围:(值精确到0.01)(2)试根据表格中这五天的日接单量情况,从平均值和方差角度说明这两家外卖企业的经营状况.相关公式:相关系数,参考数据:.16.已知点是抛物线的焦点,若点在抛物线上,且求抛物线的方程;动直线与抛物线相交于两点,问:在轴上是否存在定点其中,使得向量与向量共线其中为坐标原点?若存在,求出点的坐标;若不存在,请说明理由.17.已知函数,其中为自然对数的底数.讨论函数的极值;若,证明:当,时,.18.在平面直角坐标系中,圆的参数方程为,为参数,以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为求圆的普通方程和圆的直角坐标方程;若圆与圆相交于点,求弦的长.19.已知函数.求不等式的解集;若关于的方程存在实数解,求实数的取值范围.三、填空题20.已知向量,,若,则______.21.已知实数满足不等式组,则的最小值为______.22.在中,角所对的边分别为,且满足,若的面积为,则______.23.已知正方体的棱的中点为与交于点,平面过点,且与直线垂直,若,则平面截该正方体所得截面图形的面积为______.2019届河北省衡水中学高三第一次摸底考试数学(文)试题数学答案参考答案1.C【解析】【分析】求出的定义域,化简集合,根据交集的定义求解即可.【详解】因为,,所以,故选C.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.C【解析】【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,再利用共轭复数及虚部的定义求解即可.【详解】,,则的共轭复数的虚部为,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的摸这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.D【解析】【分析】求出函数的导数,可得曲线在点处的切线斜率为5,再利用切线与已知直线垂直的条件:斜率之积为,建立方程,可求的值.【详解】的导数为,可得曲线在点的处的切线的斜率为,直线的斜率为,因为切线与直线垂直,可得,解得,故选D.【点睛】本题主要考查导数的几何意义,考查两条直线垂直斜率之间的关系,属于简单题.两直线垂直的性质:(1);(2).4.D【解析】【分析】由图中数据,分别求出5个月的利润,根据中位数的定义求出利润的中位数,结合选项即可判断.【详解】前五个月的利润,一月份为万元,二月份为万元,三月份为万元,四月份为万元,五月份为万元,故选项错误;其利润的中位数万元,故C错误;利润总和为万元,故D正确.【点睛】本题主要考查对折线图理解与的应用,中位数的求解方法,意在考查灵活应用所学知识解决实际问题的能力以及数形结合思想的应用,属于中档题.如果样本容量是奇数中间的数既是中位数,如果样本容量为偶数中间两位数的平均数既是中位数.5.A【解析】【分析】根据正方形的面积公式、直角三角形的面积公式求出图形总面积,由几何概型概率公式可得结果.【详解】因为,,,,其中,该点取自其中的直角三角形区域的概率为,故选A.【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.6.D【解析】【分析】根据椭圆的离心率为,椭圆的长轴长与焦距之和为6,结合性质,列出关于、、的方程组,求出、,即可得结果.【详解】依题意椭圆:的离心率为得,椭圆的长轴长与焦距之和为6,,解得,,则,所以椭圆的标准方程为:,故选D.【点睛】本题考查椭圆的简单性质与椭圆方程的求法,属于简单题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.7.B【解析】【分析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,求得,,利用空间向量夹角余弦公式能求出异面直线与所成角的余弦值.【详解】在直三棱柱中,,且,点是,以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,则,,,,,,设异面直线与所成角为,则,异面直线与所成角的余弦值为,故选B.【点睛】本题主要考查异面直线所成角的余弦值的求法,是基础题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.8.C【解析】【分析】由三角函数的图象平移法则判断为假命题,由,利用二倍角的正弦公式结合同角三角函数的关系,求得的值,判断为真命题,再由复合命题的真假逐一判断选项中的命题即可.【详解】将函数的图象向右平移个单位,得到函数的图象,故命题为假命题,为真命题;由,得,故命题为真命题,为假命题;由真值表可得为假;为假;为真命题;为假命题,故选C.【点睛】本题通过判断或命题、且命题以及非命题的真假,综合考查三角函数图象的平移变换以及二倍角的正弦公式的应用,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.9.C【解析】【分析】利用辅助角公式以及降幂公式,化简函数的解析式,,再利用三角函数的图象的对称轴求得的值,从而可得的值.【详解】函数,,若直线,分别是曲线与的对称轴,则,,.即,,,则,故选C.【点睛】本题主要考查辅助角公式与降幂公式以及三角函数图象的对称性,属于中档题.函数的称轴方程可由求得;函数的称轴方程可由求得.10.C【解析】【分析】判断几何体的形状,几何体可能是圆锥、正四棱锥、三棱锥,然后求解几何体的体积,判断选项即可.【详解】几何体可能是圆锥,底面半径为1,高为3,几何体的体积为:,排除;几何体如果是正四棱锥,底面是正方形边长为2,高为3,几何体的体积为:,排除;几何体如果是三棱锥,底面是等腰三角形,底边长为2,三角形的高为2,三棱锥的高为3,几何体的体积为:,排除,故选C.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.11.B【解析】【分析】利用双曲线的离心率以及双曲线的定义、结合的周长为,列方程组求出、;然后推出结果.【详解】双曲线的离心率为2,左,右焦点分别为,,点在双曲线上,若的周长为,不妨在双曲线右支,可得:,,,解得,,所以,故选B.【点睛】本题主要考查双曲线定义与简单性质的应用,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.12.B【解析】【分析】曲线的“优美点”个数,就是的函数关于原点对称的函数图象,与的图象的交点个数,求出的函数关于原点对称的函数解析式,与联立,解方程可得交点个数.【详解】曲线的“优美点”个数,就是的函数关于原点对称的函数图象,与的图象的交点个数,由可得,关于原点对称的函数,,联立和,解得或,则存在点和为“优美点”,曲线的“优美点”个数为2,故选B.【点睛】本题考查新定义的理解和运用,考查转化思想和方程思想,属于难题.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.13.(1)证明见解析;(2);(3).【解析】【分析】由,两边取倒数,化为,从而可得结论;利用的结论,由等差数列的通项公式可得,进一步求出数列的通项公式;,利用分组法求出数列的和.【详解】数列满足,且.则:,所以:数列为等差数列.由于,当时,则.所以,.当时,符合通项公式.所以,.由于=所以:,,.【点睛】本题主要考查等差数列的定义以及由数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:(1)等差数列、等比数列(先根据条件判定出数列是等差、等比数列);(2)累加法,相邻两项的差成等求和的数列可利用累加求通项公式;(3)累乘法,相邻两项的商是能求出积的特殊数列时用累乘法求通项;(4)构造法,形如的递推数列求通项,往往用构造出等比数列,进而得出的通项公式.14.(1)证明见解析;(2).【解析】【分析】由线面垂直的性质推导出,,结合,可得,进而,由此能证明平面;由(1)可得是到平面的距离,等于到平面的距离,根据“等积变换”可得,,由此能求出结果.【详解】多面体中,,平面ADE,平面ADE,平面ADE,,,,,,又平面ABEF,,,平面EFCD.平面ADE,平面EFCD,,,三棱锥的体积:.【点睛】本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间想象能力,是中档题.证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.15.(1) 可认为有较强的线性相关关系;6030元;(2)从平均值看,甲的平均值大些,即甲的接单量多些;从方差看,甲的方差小些,即甲的接单量波动性小些.【解析】【分析】由题中数据,利用公式计算相关系数,与比较即可得出结论;由题意令解得的取值范围,计算的取值范围即可;根据表格中数据,直接利用平均数公式与方差公式计算平均数与方差,比较大小,由平均数与方差的实际意义即可得结论.【详解】由,,则相关系数;,可认为y与x有较强的线性相关关系;由题意y与x之间的回归方程为,由,解得,,外卖甲所获取的日纯利润大于或等于6030元;根据表格中数据,计算,,,,从平均值看,甲的平均值大些,即甲的接单量多些;从方差看,甲的方差小些,即甲的接单量波动性小些.【点睛】本题考查了平均数与方差的计算问题,也考查了相关系数的计算问题,是基础题.平均数与方差都是重要的数字特征,是对总体简明的描述,它们所反映的情况有着重要的实际意平均数描述其集中趋势, 方差和标准差描述其波动大小.16.(1);(2)存在,.【解析】【分析】求得抛物线的焦点和准线方程,运用抛物线的定义可得的坐标,代入抛物线方程,解得,进而得到抛物线的方程;在轴上假设存在定点其中,使得与向量共线,可得轴平分,设,,联立和,根据恒成立,运用韦达定理和直线的斜率公式,化简整理可得的方程,求得,可得结论.【详解】抛物线C:的焦点为,准线方程为,即有,即,则,解得,则抛物线的方程为;在x轴上假设存在定点其中,使得与向量共线,由,均为单位向量,且它们的和向量与共线,可得x轴平分,设,,联立和,得,恒成立.,设直线DA、DB的斜率分别为,,则由得,,,联立,得,故存在满足题意,综上,在x轴上存在一点,使得x轴平分,即与向量共线.【点睛】本题考查抛物线的方程、定义和性质,以及直线和抛物线的位置关系、转化与划归思想的应用,属于综合题.存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.①当条件和结论不唯一时要分类讨论.②当给出结论而要推导出存在的条件时,先假设成立,再推出条件.③当条件和结论都不知,按常规方法很难时,采取另外的途径.17.(1)时,时,函数取得极小值;时,函数取得极大值;时,无极值;(2)证明见解析.【解析】【分析】,对分类讨论,通过判断导函数的符号可得出单调性,根据单调性可得函数的极值;当,时,,只要证明即可,由可知:在内单调递减,可得可得,令,利用导数研究其单调性可得,从而可得结果.【详解】解:.时,,令,解得或.则函数在上单调递减,在内单调递增,在上单调递减.时,函数取得极小值;时,函数取得极大值.时,,函数在R上单调递减,无极值.证明:当,时,,只要证明即可,由可知:在内单调递减,.,令,,函数在上单调递减,,因此结论成立.【点睛】本题考查了利用导数研究其单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.18.(1),;(2)4.【解析】【分析】利用平方法消去参数方程中的参数,可得普通方程,极坐标方程两边同乘以利用即可得直角坐标方程;利用两圆方程相减,首先求出公共弦所在的直线方程,进一步利用点到直线的距离公式,判定圆心在直线上,从而求出弦长.【详解】)圆的参数方程为,为参数,可得,平方相加转换为直角坐标方程为:.圆的极坐标方程为可得,转换为直角坐标方程为:,即:.由于,整理得:.所以圆心到直线的距离,圆心在直线上,所以弦长.【点睛】本题主要考查参数方程与普通方程、直角坐标方程和极坐标方程之间的转换,点到直线的距离公式的应用.参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.19.(1);(2)或.【解析】【分析】对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;利用绝对值三角不等式求出的最小值为,解不等式,即可得结果.【详解】不等式,即,可化为,或,或,解无解,解得,解得,综合得:,即原不等式的解集为.因为,关于x的方程存在实数解,有解,则解得:或.实数m的取值范围为或.【点睛】绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.20.-30【解析】【分析】根据向量平行求出的值,再根据向量的数量积公式以及向量模的公式求解即可.【详解】因为向量,,,,,,故答案为【点睛】本题考查了向量平行的性质和向量的数量积的运算,属于基础题.向量数量积的运算主要掌握两点:一是数量积的基本公式或;二是向量的平方等于向量模的平方.21.-6【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出实数满足不等式组表示的平面区域,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,当目标函数过点时,取得最小值,由,解得,的最小值为.故答案为.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.22.4【解析】【分析】由正弦定理化简已知等式可得,由余弦定理可得,根据同角三角函数基本关系式可得,进而利用三角形面积公式即可计算得解.【详解】,由正弦定理可得,,即:,由余弦定理可得,,可得,的面积为,可得,解得,故答案为4.【点睛】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用,属于中档题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.23.【解析】【分析】利用勾股定理证明,由线面垂直的性质证明,根据线面垂直的判定定理可得平面,求出的面积即可得结果.【详解】如图所示,正方体中,为棱的中点,,则,,,,;又平面,,且,平面,且,即截该正方体所得截面图形的面积为.故答案为.【点睛】本题主要考查正方体的性质、线面垂直的判定定理,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.。
衡水中学高考模拟考试文科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|23,Z}A x x x =-<<∈,{2,1,0,1,2,3}B =--,则集合AB 为( )A .{2,1,0,1,2}--B .{1,0,1,2}-C .{1,0,1,2,3}-D .{2,1,0,1,2,3}-- 2.若复数i z x y =+(x ,R y ∈)满足()1i 3i z +=-,则x y +的值为( ) A .3- B .4- C .5- D .6- 3.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( )718D 4.抛掷一枚质地均匀的骰子两次,记事件{A =两次的点数均为偶数且点数之差的绝对值为2},则()P A =( ) A .19 B .13 C .49 D .595.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6πB .[,]63ππ C.[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A.(3)22π+ B.3()242π++C.2+ D.4+7.函数sin ln ||y x x =+在区间[3,3]-的图象大致为( )A .B .C .D .8.已知函数()()1312,2,22,2R,0,2x x x f x a x a a x +-⎧+≤⎪⎪=⎨⎪->∈≠⎪-⎩若()()()635f f f =-,则a 为( )A .1 B.9.执行下图的程序框图,若输入的x ,y ,n 的值分别为0,1,1,则输出的p 的值为( )A.81 B .812 C.814 D .81810.已知数列{}n a 是首项为1,公差为2的等差数列,数列{}n b 满足关系312123a a a b b b +++12n n n a b +=L ,数列{}n b 的前n 项和为n S ,则5S 的值为( )A .454-B .450-C .446-D .442-11.若函数()2ln f x m x x mx =+-在区间()0,+∞内单调递增,则实数m 的取值范围为( )A .[]0,8B .(]0,8C .(],0-∞U [)8,+∞D .(),0-∞U ()8,+∞ 12.已知函数()sin()f x A x ωϕ=+(0,0,||,R)2A x πωϕ>><∈的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A. 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈B .函数()g x的最大值为C. 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行 D .方程()2g x =的两个不同的解分别为1x ,2x ,则12||x x -的最小值为2π 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且||2||a b =,则mn 的值为 .14.已知点()1,0A -,()1,0B ,若圆228x y x +--6250y m +-=上存在点P 使0PA PB ⋅=uu r uu r,则m 的最小值为 .15.设x ,y 满足约束条件240,20,10,x y x y y +-≤⎧⎪-+≥⎨⎪-≥⎩则32x y +的最大值为 .16.在平面五边形ABCDE 中,已知120A ∠=︒,90B ∠=︒,120C ∠=︒,90E ∠=︒,3AB =,3AE =,当五边形ABCDE的面积S ∈时,则BC 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22cos cos B C -=2s i n s i n A A B .(1)求角C ; (2)若6A π∠=,ABC V的面积为M 为AB 的中点,求CM 的长.18.如图所示的几何体P ABCD -中,四边形ABCD 为菱形,120ABC ∠=︒,AB a =,PB =,PB AB ⊥,平面ABCD ⊥平面PAB ,AC BD O =I ,E 为PD 的中点,G 为平面PAB 内任一点.(1)在平面PAB 内,过G 点是否存在直线l 使OE l ∥?如果不存在,请说明理由,如果存在,请说明作法;(2)过A ,C ,E 三点的平面将几何体P ABCD -截去三棱锥D AEC -,求剩余几何体AECBP 的体积.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查的数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为E 的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,且过点,22P ,动直线l :y kx m =+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点) (1)求椭圆C 的方程.(2)讨论2232m k -是否为定值.若为定值,求出该定值,若不是,请说明理由. 21.设函数22()ln f x a x x ax =-+-()a R ∈. (1)试讨论函数()f x 的单调性;(2)如果0a >且关于x 的方程()f x m =有两解1x ,2x (12x x <),证明122x x a +>.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C :3cos ,2sin x t y tαα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围; (2)当3a =时,两曲线相交于A ,B 两点,求||AB 的值. 23.选修4-5:不等式选讲 已知函数()|21||1|f x x x =-++.(1)在给出的直角坐标系中作出函数()y f x =的图象,并从图中找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,R a b ∈,且有22a b m +=,试证明:221418117a b +≥++.试卷答案一、选择题1-5:BCAAD 6-10:AADCB 11、12:AC二、填空题13.8- 14.16 15.22316.三、解答题17.解:(1)由22cos cos B C -=2sin sin A A B ,得22sin sin C B -=2sin sin A A B -.由正弦定理,得222c b a -=,即222c a b =+.又由余弦定理,得222cos 2a b c C ab+-=22ab ==. 因为0C π<∠<,所以6C π∠=.(2)因为6A C π∠=∠=,所以ABC V 为等腰三角形,且顶角23B π∠=.故21sin 2ABC S a B ==V 24a =4a =. 在MBC V 中,由余弦定理,得222CM MB BC =+-2cos MB BC B ⋅=4162++⨯124282⨯⨯=.解得CM =.18.解:(1)过G 点存在直线l 使OE l ∥,理由如下: 由题可知O 为BD 的中点,又E 为PD 的中点, 所以在PBD V 中,有OE PB ∥.若点G 在直线PB 上,则直线PB 即为所求作直线l , 所以有OE l ∥;若点G 不在直线PB 上,在平面PAB 内, 过点G 作直线l ,使l PB ∥, 又OE PB ∥,所以OE l ∥, 即过G 点存在直线l 使OE l ∥.(2)连接EA ,EC ,则平面ACE 将几何体分成两部分: 三棱锥D AEC -与几何体AECBP (如图所示).因为平面ABCD ⊥平面PAB ,且交线为AB , 又PB AB ⊥,所以PB ⊥平面ABCD . 故PB 为几何体P ABCD -的高.又四边形ABCD 为菱形,120ABC ∠=︒,AB a =,PB =,所以2ABCD S =⨯四边形22=,所以13P ABCD ABCD V S PB -=⋅=四边形231132a =. 又12OE PB ∥,所以OE ⊥平面ACD ,所以D AEC E ACD V V --==三棱锥三棱锥13ACD S EO ⋅=V 31148P ABCD V a -=, 所以几何体AECBP 的体积P ABCD D EAC V V V --=-=三棱锥333113288a a a -=.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,故可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩等级为B 的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为1(321005690780370260)100⨯+⨯+⨯+⨯+⨯91.3=(分),因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)按分层抽样抽取的4人中有1名男生,3名女生,记男生为a ,3名女生分别为1b ,2b ,3b .从中抽取2人的所有情况为1ab ,2ab ,3ab ,12b b ,13b b ,23b b ,共6种情况,其中恰好抽到1名男生的有1ab ,2ab ,3ab ,共3种情况,故所求概率12P =.20.解:(1)由题意可知2c a =, 所以222222()a c a b ==-,整理,得222a b =,①又点,22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =,故所求的椭圆方程为2212x y +=. (2)2232m k -为定值,理由如下: 设1122(,),(,)A x y B x y ,由0OA OB ⋅=, 可知12120x x y y +=.联立方程组22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,化简得222(12)4220k x kmx m +++-=, 由2222168(1)(12)0k m m k ∆=--+>, 得2212k m +>, 由根与系数的关系,得122412kmx x k +=-+,21222212m x x k -=+,③ 由12120x x y y +=,y kx m =+, 得1212()()0x x kx m kx m +++=,整理,得221212(1)()0k x x km x x m ++++=.将③代入上式,得22222224(1)01212m km k km m k k-+-⋅+=++. 化简整理,得222322012m k k--=+,即22322m k -=. 21.解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-=222(2)()x ax a x a x a x x--+-=.因为函数()f x 的定义域为(0,)+∞,所以,①若0a >,则当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =,则当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <,则当(0,)2ax ∈-时,'()0f x <,函数()f x 单调递减,当(,)2ax ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)要证122x x a +>,只需证122x x a +>. 设()()g x f x '==-22a x a x +-, 因为()2220a g x x'=+>,所以()()g x f x '=为单调递增函数. 所以只需证()1202x x f f a +⎛⎫''>=⎪⎝⎭,即证2121220a x x a x x -++->+,只需证122x x -++()12210x x a a+->.(*)又22111ln a x x ax m -+-=,22222ln a x x ax m -+-=,所以两式相减,并整理,得1212ln ln x x x x --+-()12210x x a a+-=.把()1221x x a a+-=1212ln ln x x x x --代入(*)式, 得只需证121212ln ln 20x x x x x x --+>+-,可化为12112221ln 01x x x x x x ⎛⎫- ⎪⎝⎭-+<+.令12x t x =,得只需证()21ln 01t t t --+<+. 令()()21ln 1t t t t ϕ-=-++(01t <<), 则()()2411t t t ϕ'=-++()()22101t t t-=>+, 所以()t ϕ在其定义域上为增函数, 所以()()10t ϕϕ<=. 综上得原不等式成立. 22.解:(1)曲线1C :3cos ,2sin ,x t y t αα=+⎧⎨=+⎩消去参数t 可得普通方程为222(3)(2)x y a -+-=.由4sin ρθ=,得24sin ρρθ=.故曲线2C :4sin ρθ=化为平面直角坐标系中的普通方程为22(2)4x y +-=.当两曲线有公共点时a 的取值范围为[1,5].(2)当3a =时,曲线1C :33cos ,23sin ,x t y t =+⎧⎨=+⎩即22(3)(2)9x y -+-=,联立方程()2222(3)(2)9,24,x y x y ⎧-+-=⎪⎨+-=⎪⎩消去y ,得两曲线的交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =,所以||3AB ==.23. 解:(1)因为()|21||1|f x x x =-++=3,1,12,1,213,.2x x x x x x ⎧⎪-<-⎪⎪-+-≤≤⎨⎪⎪>⎪⎩ 所以作出函数()f x 的图象如图所示.从图中可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:从图中可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 故221411a b +=++2222214[(1)(1)]()71a b a a b ++++=++2222214(1)[5()]711b a a b ++++≥++218[577+=. 当且仅当222214(1)11b a a b ++=++时,等号成立, 即216a =,243b =时,原式有最小值, 所以221418117a b +≥++得证.。