高三数学总复习第二轮——立体几何部分
- 格式:ppt
- 大小:889.00 KB
- 文档页数:86
第1讲空间几何体专题强化训练1.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4 B.8C.12 D.16解析:选D.如图,以AA1为底面矩形一边的四边形有AA1C1C、AA1B1B、AA1D1D、AA1E1E这4个,每一个面都有4个顶点,所以阳马的个数为16个.故选D.2.正方体ABCDA1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的正视图为( )解析:选C.过点A,E,C1的平面与棱DD1相交于点F,且F是棱DD1的中点,截去正方体的上半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C .323cm 3D .403cm 3解析:选C.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).4.(2019·某某模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于( )A .34B .41C .5 2D .215解析:选C.由正视图、侧视图、俯视图的形状,可判断该几何体为三棱锥,形状如图,其中SC ⊥平面ABC ,AC ⊥AB ,所以最长的棱长为SB =5 2.5.(2019·某某十校联考)某几何体的三视图如图所示,则该几何体的体积是( )A .15π2B .8π C.17π2D .9π解析:选B.依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.6.如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为123,圆柱的底面直径与母线长相等,则圆柱的侧面积为( )A .12πB .14πC .16πD .18π解析:选C.设圆柱的底面半径为R ,则三棱柱的底面边长为3R ,由34(3R )2·2R =123,得R =2,S 圆柱侧=2πR ·2R =16π.故选C.7.(2019·某某市第一次模拟)某几何体的三视图如图所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )A .48B .54C .64D .60解析:选D.根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.8.在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π3解析:选B.由题意可得若V 最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径R =32,该球的体积最大,V max =43πR 3=4π3×278=9π2.9.(2019·某某八校联考)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )A.12B.24C.22 D.32解析:选C.依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-(a2a)2=22,选C. 10.已知圆柱OO 1的底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则y =f (θ)的图象大致为( )解析:选A.将圆柱的侧面沿轴截面ABCD 展平,则曲线Γ是展开图形(即矩形)的对角线,根据题意,将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则f (θ)应当是一次函数的一段,故选A.11.(2019·某某省重点中学高三12月期末热身联考)某空间几何体的三视图如图所示,则该几何体的体积是________;表面积是________.解析:根据三视图可得,该几何体是长方体中的四棱锥C BB 1D 1D ,由三视图可得:AB =2,BC =2,BB 1=4,VC BB 1D 1D =23×12×2×2×4=163,S C BB 1D 1D =12×2×2+22×4+12×2×4+12×2×4+12×22×18=16+8 2.答案:16316+8 212.(2019·某某市余姚中学期中检测)某几何体的三视图如图所示(单位:cm),则该几何体的体积为________ cm 3,表面积为________cm 2.解析:由三视图可知:该几何体是由一个半球去掉14后得到的几何体.所以该几何体的体积=34×12×43×π×13=π2cm 3.表面积=34×12×4π×12+12×π×12+34×π×12=11π4 cm 2.答案:π211π413.(2019·某某省“五校联盟”质量检测)已知球O 的表面积为25π,长方体的八个顶点都在球O 的球面上,则这个长方体的表面积的最大值等于________.解析:设球的半径为R ,则4πR 2=25π,所以R =52,所以球的直径为2R =5,设长方体的长、宽、高分别为a 、b 、c ,则长方体的表面积S =2ab +2ac +2bc ≤a 2+b 2+a 2+c 2+b 2+c 2=2(a 2+b 2+c 2)=50.答案:5014.(2019·某某省高三考前质量检测)某几何体的三视图如图所示,当xy 取得最大值时,该几何体的体积是____________.解析:分析题意可知,该几何体为如图所示的四棱锥P ABCD ,CD =y2,AB=y ,AC =5,CP =7,BP =x ,所以BP 2=BC 2+CP 2,即x 2=25-y 2+7,x 2+y2=32≥2xy ,则xy ≤16,当且仅当x =y =4时,等号成立.此时该几何体的体积V =13×2+42×3×7=37.答案:3715.(2019·某某市高考数学二模)在正方体ABCD A 1B 1C 1D 1中,E 是AA 1的中点,则异面直线BE 与B 1D 1所成角的余弦值等于________,若正方体棱长为1,则四面体B EB 1D 1的体积为________.解析:取CC 1中点F ,连接D 1F ,B 1F ,则BE 綊D 1F , 所以∠B 1D 1F 为异面直线BE 与B 1D 1所成的角.设正方体棱长为1,则B 1D 1=2,B 1F =D 1F =1+14=52.所以cos ∠B 1D 1F =12B 1D 1D 1F =2252=105. V B EB 1D 1=V D 1BB 1E =13S △BB 1E ·A 1D 1=13×12×1×1×1=16.答案:1051616.已知棱长均为a 的正三棱柱ABC A 1B 1C 1的六个顶点都在半径为216的球面上,则a 的值为________.解析:设O 是球心,D 是等边三角形A 1B 1C 1的中心,则OA 1=216,因为正三棱柱ABC A 1B 1C 1的所有棱长均为a ,所以A 1D =32a ×23=33a ,OD =a 2,故A 1D 2+OD 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫a 22=⎝ ⎛⎭⎪⎫2162,得712a 2=2136,即a 2=1,得a =1. 答案:117.(2019·瑞安四校联考)已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为________.解析:如图,设球心为O ,三棱柱的上、下底面的中心分别为O 1,O 2,底面正三角形的边长为a ,则AO 1=23×32a =33a .由已知得O 1O 2⊥底面, 在Rt △OAO 1中,由勾股定理得OO 1=12-⎝ ⎛⎭⎪⎫33a 2=3·3-a 23,所以V 三棱柱=34a 2×2×3·3-a 23=3a 4-a62,令f (a )=3a 4-a 6(0<a <2), 则f ′(a )=12a 3-6a 5=-6a 3(a 2-2),令f ′(a )=0,解得a = 2.因为当a ∈(0,2)时,f ′(a )>0;当a ∈(2,2)时,f ′(a )<0,所以函数f (a )在(0,2)上单调递增,在(2,2)上单调递减. 所以f (a )在a =2处取得极大值.因为函数f (a )在区间(0,2)上有唯一的极值点,所以a =2也是最大值点.所以(V 三棱柱)max=3×4-82=1. 答案:118.如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD .(2)取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN , 则PN ⊥CD ,所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P ABCD 的体积V =13×2×(2+4)2×23=4 3.19.如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′PBCD 的体积最大时,求PA 的长;(2)若P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE . 解:(1)设PA =x ,则PA ′=x , 所以V A ′PBCD =13PA ′·S 底面PBCD =13x ⎝ ⎛⎭⎪⎫2-x 22.令f (x )=13x ⎝ ⎛⎭⎪⎫2-x 22=2x 3-x36(0<x <2),则f ′(x )=23-x22.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎪⎫0,233233 ⎝ ⎛⎭⎪⎫233,2 f ′(x )0 f (x )单调递增极大值单调递减由上表易知,当PA =x =233时,V A ′PBCD 取最大值.(2)证明:取A ′B 的中点F ,连接EF ,FP . 由已知,得EF 綊12BC 綊PD .所以四边形EFPD 是平行四边形, 所以ED ∥FP .因为△A ′PB 为等腰直角三角形, 所以A ′B ⊥PF .所以A ′B ⊥DE .。
第3讲立体几何中的向量方法[真题再现]1.(2018·课标Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC使点C到达点P的位置,且PF⊥BF。
(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.[解](1)证明:由已知可得BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD。
(2)解:如图,作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD。
以H为坐标原点,错误!的方向为y轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系H.xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=错误!.又PF=1,EF=2,所以PE⊥PF.所以PH=错误!,EH=错误!.则H(0,0,0),P错误!,D错误!,错误!=错误!,错误!=错误!.又错误!为平面ABFD的法向量,设DP与平面ABFD所成角为θ,则sin θ=错误!=错误!=错误!。
所以DP与平面ABFD所成角的正弦值为错误!.2.(2018·课标Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M。
P A-C为30°,求PC与平面P AM所成角的正弦值[解](1)证明:因为P A=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2错误!.如图,连接OB.因为AB=BC=错误!AC,所以△ABC为等腰直角三角形,且OB ⊥AC,OB=错误!AC=2。
由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,错误!的方向为x轴正方向,建立空间直角坐标系O。
xyz。
由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2错误!),错误!=(0,2,2错误!).取平面P AC的一个法向量错误!=(2,0,0).设M (a ,2-a,0)(0≤a ≤2),则错误!=(a ,4-a,0).设平面P AM 的法向量为n =(x ,y ,z ).由AP ,→·n =0,错误!·n =0得错误!可取y =错误!a ,得平面P AM 的一个法向量为n =(错误!(a -4),错误!a ,-a ),所以cos 错误!,n =错误!。
[A卷]1.(2021·宁波市高三模拟) 用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B.由题意知,用平行于水平面的平面去截球所得的底面圆是看不见的,所以在俯视图中该部分应当是虚线圆,结合选项可知选B.2.下列命题中,错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台C.圆台的全部平行于底面的截面都是圆D.圆锥全部的轴截面都是全等的等腰三角形解析:选B.依据棱台的定义,用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.3.(2021·台州市高三调考)一个空间几何体的三视图如图所示,其体积为()A.16B.32C.48 D.96解析:选A.由题意作出直观图P-ABCD如图所示,则该几何体是一个四棱锥,底面是一个直角梯形,其面积为12×(2+4)×4=12,高为4,因此其体积V=13×12×4=16.4.(2021·高考全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2C.4 D.8解析:选B.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=12×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,所以(5π+4)r2=16+20π,所以r2=4,r=2,故选B.5.如图是一个体积为10的空间几何体的三视图,则图中x的值为()A.2 B.3C.4 D.5解析:选A.依据给定的三视图可知,该几何体对应的直观图是一个长方体和四棱锥的组合体,所以几何体的体积V=3×2×1+13×3×2×x=10,解得x=2.故选A.6. 如图,水平放置的三棱柱的侧棱长为1,且侧棱AA1⊥平面A1B1C1,正视图是边长为1的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为()A.2 3 B. 3C.32D.1解析:选C.由直观图、正视图以及俯视图可知,侧视图是宽为32,长为1的长方形,所以面积S=32×1=32.故选C.7.一平面截一球得到直径为2 5 cm的圆面,球心到这个平面的距离是2 cm,则该球的体积是() A.12πcm3B.36πcm3C.646πcm3D.108πcm3解析:选B.由于球心和截面圆心的连线垂直于截面,由勾股定理得,球半径R=22+(5)2=3,故球的体积为43πR3=36π(cm3).8.(2021·石家庄市第一次模拟)一个几何体的三视图如图所示,则该几何体的体积是()A.64B.72C.80D.112解析:选B.由三视图可知该几何体是一个组合体,下面是一个棱长为4的正方体;上面是一个三棱锥,三棱锥的高为3.故所求体积为43+13×12×4×4×3=72.9.已知某组合体的正视图与侧视图相同(其中AB=AC,四边形BCDE为矩形),则该组合体的俯视图可以是________(把正确的图的序号都填上).解析:几何体由四棱锥与四棱柱组成时,得①正确;几何体由四棱锥与圆柱组成时,得②正确;几何体由圆锥与圆柱组成时,得③正确;几何体由圆锥与四棱柱组成时,得④正确.答案:①②③④10.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长是10 cm,则圆锥的母线长为________ cm.解析:作出圆锥的轴截面如图,设SA=y,O′A′=x,利用平行线截线段成比例,得SA′∶SA=O′A′∶OA,则(y-10)∶y=x∶4x,解得y=403.所以圆锥的母线长为403cm.答案:40311.(2022·高考课标全国卷Ⅱ改编)正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为 3,D为BC中点,则三棱锥AB1DC1的体积为________.解析:由题意可知AD⊥BC,由面面垂直的性质定理可得AD⊥平面DB1C1,又AD=2sin 60°=3,所以V AB1DC1=13AD·S△B1DC1=13×3×12×2×3=1,故选C.答案:112.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥的侧面积为________,体积为________.解析:由题意可知该四棱锥为正四棱锥,底面边长为2,高为2,侧面上的斜高为22+12=5,所以S 侧=4×⎝⎛⎭⎫12×2×5=45,V=13×22×2=83.答案:458313.(2021·南昌市第一次模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为________.解析:依据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1. 答案:1∶114.如图是某空间几何体的三视图,则该几何体的体积为________.解析:由三视图可知,该几何体是棱长为2,2,1的长方体挖去一个半径为1的半球,所以长方体的体积为2×2×1=4,半球的体积为12×43π×13=2π3,所以该几何体的体积是4-2π3.答案:4-2π315.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1EDF的体积为________.解析:由于B 1C ∥平面ADD 1A 1,所以F 到平面ADD 1A 1的距离d 为定值1,△D 1DE 的面积为12D 1D ·AD =12,所以V D 1EDF =V F D 1DE =13S △D 1DE ·d =13×12×1=16.答案:16[B 卷]1.一个锥体的正视图和侧视图如图所示,下面选项中,不行能是该锥体的俯视图的是( )解析:选C.依据三视图中“正俯长一样,侧俯宽一样,正侧高一样”的规律,C 选项的侧视图宽为32,不符合题意,故选C.2.(2021·邢台市摸底考试)已知一个几何体的三视图是三个全等的边长为1的正方形,如图所示,则该几何体的体积为( )A.16 B.13 C.23D .56解析:选D.依题意得,题中的几何体是从棱长为1的正方体ABCD -A ′B ′C ′D ′中截去三棱锥A ′ABD 后剩余的部分,因此该几何体的体积等于13-13×⎝⎛⎭⎫12×12×1=56,故选D. 3.(2022·高考湖南卷)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B.由三视图可知该几何体是一个直三棱柱,如图所示.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大,故其半径r =12×(6+8-10)=2.因此选B.4.(2021·高考山东卷)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B .4π3 C.5π3D .2π 解析:选C.过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.5.(2021·郑州市第一次质量猜测)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A .32B .327C .64D .647解析:选C.依题意,题中的几何体是三棱锥P -ABC (如图所示), 其中底面ABC 是直角三角形,AB ⊥BC ,P A ⊥平面ABC , BC =27,P A 2+y 2=102,(27)2+P A 2=x 2,因此xy =x 102-[x 2-(27)2]=x128-x 2≤x 2+(128-x 2)2=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64,故选C.6.(2021·山西省第三次四校联考)在半径为10的球面上有A ,B ,C 三点,假如AB =83,∠ACB =60°,则球心O 到平面ABC 的距离为( )A .2B .4C .6D .8解析:选C.设A ,B ,C 三点所在圆的半径为r ,圆心为P .由于∠ACB =60°,所以∠APB =120°.在等腰三角形ABP 中,AP =43sin 60°=8,所以r =8,所以球心O 到平面ABC 的距离为102-82=6,故选C.7.如图是一个几何体的三视图,则该几何体的表面积是( )A .5+ 3B .5+2 3C .4+2 2D .4+2 3解析:选A.该几何体的直观图如图.表面积S =1×1+12×1×1×2+2×12×(1+2)×1+12×6×2=5+3,所以选A.8.在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,D 为侧棱PC 上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )A .AD ⊥平面PBC ,且三棱锥D -ABC 的体积为83B .BD ⊥平面P AC ,且三棱锥D -ABC 的体积为83C .AD ⊥平面PBC ,且三棱锥D -ABC 的体积为163D .BD ⊥平面P AC ,且三棱锥D -ABC 的体积为163解析:选C.由正视图可知,P A =AC ,且点D 为线段PC 的中点,所以AD ⊥PC .由侧视图可知,BC =4.由于P A ⊥平面ABC ,所以P A ⊥BC .又由于BC ⊥AC ,且AC ∩P A =A ,所以BC ⊥平面P AC ,所以BC ⊥AD .又由于AD ⊥PC ,且PC ∩BC =C ,所以可得AD ⊥平面PBC ,V D ABC =13×12×P A ×S △ABC =163.9.某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为________.解析:侧视图由一个矩形和一个等腰三角形构成,矩形的长为3,宽为2,面积为3×2=6.等腰三角形的底边为3,高为3,其面积为12×3×3=32,所以侧视图的面积为6+32=152.答案:15210.(2021·洛阳市高三班级统考)如图是某几何体的三视图,则该几何体的外接球的表面积为( )解析:由三视图知,该几何体可以由一个长方体截去一个角后得到,该长方体的长、宽、高分别为5、4、3,所以其外接球半径R 满足2R =42+32+52=52,所以该几何体的外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π.答案:50π 11.(2021·绍兴市高三诊断性测试)若某几何体的三视图如图所示,则该几何体的体积为________,最长的侧棱长为________.解析:依据三视图及有关数据还原该几何体,得该几何体是底面为直角梯形的四棱锥P -ABCD ,如图,过点P 作PH ⊥AD 于点H ,连接CH .底面面积S 1=(1+2)×12=32,V =13×32×1=12,最长的侧棱长为PB = 3.答案:12312.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 解析:设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32.由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,则h 1h 2=23,所以V 1V 2=πr 21h 1πr 22h 2=32.答案:3213.(2021·洛阳市统考)已知点A ,B ,C ,D 均在球O 上,AB =BC =6,AC =23,若三棱锥D -ABC 体积的最大值为3,则球O 的表面积为________.解析:由题意可得,∠ABC =π2,△ABC 的外接圆半径r =3,当三棱锥的体积最大时,V D ABC =13S △ABC ·h (h为D 到底面ABC 的距离),即3=13×12×6×6h ⇒h =3,即R +R 2-r 2=3(R 为外接球半径),解得R =2,所以球O 的表面积为4π×22=16π.答案:16π 14.(2021·杭州市联谊学校高三其次次联考)一个等腰直角三角形的三个顶点分别在正三棱柱ABC -A 1B 1C 1的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为________.解析:如图,在正三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,边长为2,△DEF 为等腰直角三角形,DF 为斜边,设DF 的长为x ,则DE =EF =22x ,作DG ⊥BB 1,GH ⊥CC 1,EI ⊥CC 1,垂足分别为G ,H ,I ,则EG =DE 2-DG 2=x 22-4,FI =EF 2-EI 2=x 22-4,FH =FI +HI =FI +EG=2x 22-4.连接DH ,在Rt △DHF 中,DF 2=DH 2+FH 2,即x 2=4+⎝⎛⎭⎫2x 22-42,解得x =23,即该三角形的斜边长为2 3.答案:2 3 15.(2021·浙江省名校新高考联盟第一次联考)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形,则BC =________,四棱锥F-OBED的体积为________.解析:取AO的中点M,连接CM,BM,由△OAB,△OAC是正三角形,OA=1,可知CM⊥AO,BM⊥AO,且BM=CM=32,又平面ABED⊥平面ACFD,所以CM⊥平面ABED,所以CM⊥BM,故BC=62.过点F作FQ⊥OD于点Q,由于平面ABED⊥平面ACFD,所以FQ⊥平面ABED,FQ就是四棱锥F-OBED的高.易知FQ=3,又S△OBE=12×1×2×32=32,S△OED=12×2×2×32=3,所以S四边形OBED=32+3=332,故V四棱锥F-OBED=13×332×3=32.答案:6232。
专题八 立体几何知识点1.空间几何体的三视图:正俯长对正,正左高平齐,左俯宽相等.2.空间几何体的侧面积、表面积、体积(1)直棱柱的侧面积S ch =侧.V Sh =柱体(2)正棱锥的周长为c ,斜高为h ',12S ch '=侧.13V Sh =锥体(3)正棱台的上、下底面的周长是c c ',,斜高是h ',1()2S c c h ''=+侧.1()3V S S S S h '=++台体 (4)圆柱母线的长为l ,底面半径为r ,2πS rl =侧,2πS r =底.圆柱的表面积222π2π2π()S S S rl r r r l =+=+=+侧底.2πV r h =圆柱(5)圆锥底面半径为r ,母线长为l,πS rl=侧,2πππ()S S S rl r r r l =+=+=+侧底.21π3V r h =圆锥(6)圆台的上、下底面半径分别为r r ',,母线长为l ,π()S r r l '=+侧.圆台的表面积2222π()πππ()S S S S r r l r r r r r l rl ''''=++=+++=+++侧上底下底.221π()3V r Rr R h =++圆台(7)球的表面积24πS R =.334R V π=3.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
(2)公理2:过不在一条直线上的三点,有且只有一个平面。
(3)公理3:如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线。
4. 直线与直线的位置关系(1)空间直线位置分三种:相交、平行、异面. (2)平行公理:平行于同一条直线的两条直线互相平行.(3)等角定理:如果一个角的两边和另一个角的两边分别平行那么这两个角相等或互补。
5. 直线与平面的位置关系.(1)空间直线与平面位置分三种:相交、平行、在平面内. (2)直线与平面平行判定定理:ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂ (3)直线和平面平行性质定理:m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα(4)直线与平面垂直判定定理:αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,推论:如果两条直线同垂直于一个平面,那么这两条直线平行. (5)直线与平面垂直的性质定理:m l m l ⊥⇒⎭⎬⎫⊂⊥αα6. 平面与平面的位置关系:(1)空间两个平面的位置关系:相交、平行.ml αlmβαABC αlm αlγmβαllαβ(2)平面平行判定定理:βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交m l m l推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. (3)两个平面平行的性质定理:m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα αββα////l l ⇒⎭⎬⎫⊂(4)两个平面垂直性质判定:βαβα⊥⇒⎭⎬⎫⊂⊥l l(5)两个平面垂直性质定理:αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m , 7.空间距离,空间角(1)点到平面的距离的求解方法①直接求解法:从该点向平面引垂线,求垂线的长度 ②等体积代换法(2)空间角:①异面直线所成的角②直线和平面所成的角:直线和在平面的摄影所成的角 二面角例题1.(2008安徽文\理)已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖例2 .下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ( )A .9πB .10π C .11π D .12π例3.如图,在四棱锥P-ABCD 中,PD⊥平面ABCD ,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900. (1)求证:PC⊥BC; (2)求点A 到平面PBC 的距离.例4.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,045ADC ∠=,1AD AC ==,O 为AC 中点,PO ⊥平面ABCD , 2PO =,M 为PD 中点.(Ⅰ)证明:PB //平面ACM(Ⅱ)证明:AD ⊥平面PAC ;(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.DCABPMOmβαllβαlβαmP A B D C练习1.(2010浙江)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //2.(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )133.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )A.26B. 23C. 33D. 234.(湖北卷)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.38π B. 328πC. π28D. 332π 5.(2010全国卷)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A ) 34 (B) 54(C)74(D) 346.设图1是某几何体的三视图,则该几何体的体积为A .429+πB .1836+πC .1229+πD .1829+π7.几何体的三视图如图所示,则这个几何体的直观图可以是8.已知正方体ABCD-A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为 .9.(2011.上海)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为 .10.如图,在四棱台111A B C D A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD,11AD=A B ,BAD=∠60°(Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11CC A BD ∥平面.11.如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP,AD的中点求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PAD正视图俯视图侧视图图1233FE ADPxyz NMABD C OP利用空间向量解立体几何一、用向量法解空间位置关系 1.平行关系线线平行⇔两线的方向向量平行线面平行⇔线的方向向量与面的法向量垂直 面面平行⇔两面的法向量平行 2.垂直关系线线垂直(共面与异面)⇔两线的方向向量垂直 线面垂直⇔线与面的法向量平行 面面垂直⇔两面的法向量垂直 三、用向量法解空间距离1.点点距离:点()111,,P x y z 与()222,,Q x y z 的距离为222212121()()()PQ x x y y z z =-+-+-2.点线距离:求点()00,P x y 到直线:l 0Ax By C ++=的距离:方法:在直线上取一点(),Q x y ,则向量PQ在法向量(),n A B =上的射影P Q n n⋅ =0022Ax By C A B+++即为点P 到l 的距离. 3.点面距离 :求点()00,P x y 到平面α的距离:方法:在平面α上去一点(),Q x y ,得向量PQ ,计算平面α的法向量n ,计算PQ在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角1.线线夹角(共面与异面)线线夹角⇔两线的方向向量的夹角或夹角的补角 2.线面夹角:求线面夹角的步骤:① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角;②再求其余角,即是线面的夹角. 3.面面夹角(二面角):若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.1.(2009北京卷)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.2.安徽卷(18)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。
专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。
高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
高三数学二轮复习教学案——立体几何(2)班级__________姓名_____________学号_________【基础训练】1. 如图,正方体ABCD A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.2.三棱锥P -ABC 中,三条侧棱两两垂直,且长度都为1,点E 为BC 上一点,则截面PAE 面积的最小值为_____________.3、已知a 、b 、c 是三条不重合直线,α、β、γ是三个不重合的平面,下列命题:⑴a ∥c ,b ∥c ⇒a ∥b ;⑵a ∥γ,b ∥γ⇒a ∥b ;⑶c ∥α,c ∥β⇒α∥β;⑷γ∥α,β∥α⇒γ∥β;⑸a ∥c ,α∥c ⇒a ∥α;⑹a ∥γ,α∥γ⇒a ∥α。
其中正确的命题是 。
4、已知正方体ABCD -A'B'C'D',则该正方体的体积、四棱锥C'-ABCD 的体积以及该正方体的外接球的体积之比为 _________________.5.. 如图,四棱锥P -ABCD 的底面是边长为3的正方形,侧棱PA ⊥平面ABCD ,点E 在侧棱PC 上,且BE ⊥PC ,若6=BE ,则四棱锥P -ABCD 的体积为 _________ .6. 由曲线22x y =,2||=x 围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足422≤+y x ,1)1(22≥-+y x ,1)1(22≥++y x 的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,则1V :2V = .【典型例题】7. 已知三棱锥P —ABC 中,PC ⊥底面ABC ,AB=BC ,D 、F 分别为AC 、PC 的中点,DE ⊥AP 于E .(1)求证:AP ⊥平面BDE ;(2)求证:平面BDE ⊥平面BDF ;(3)若AE ∶EP=1∶2,求截面BEF 分三棱锥P —ABC 所成两部分的体积比.8. 如图,四棱锥P -ABCD 中,底面ABCD 是一个边长为2的正方形,PA⊥平面ABCD ,且24=PC .M 是PC 的中点,在DM 上有点G ,过G 和AP作平面交平面BDM 于GH .(1)求四棱锥P -ABCD 的体积;(2)求证:AP ∥GH .9. 如图,在棱长均为4的三棱柱111ABC A B C -中,D 、1D分别是BC 和11B C 的中点. (1)求证:11A D ∥平面1AB D ;(2)若平面ABC ⊥平面11BCC B ,160B BC ∠= ,求三棱锥1B ABC -的体积.10. 如图一简单几何体的一个面ABC 内接于圆O ,G ,H 分别是AE ,BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(1)求证:GH //平面ACD ;(2)证明:平面ACD ⊥平面ADE ;(3)若AB =2,BC =1,23tan =∠EAB ,试求该几何体的体积V .。
高三数学二轮复习-立体几何专题证明线面平行,要抓住上述判定定理中的“内” “外”两关键字眼,“内应外合”。
通过勾股定理的逆定理计算得出垂直也是常用手段。
• 3•点到平面的距离一一过 外一点A 向 作垂线,则 A 和垂足B 之间的距离叫做点 A 到平面 的距离。
• 4.线面所成的角一一平面的一条斜线I 与它在该平面内的射影所成的锐角,叫做这条直线与这个平面所成的角•I 时称I 与 所成的角为直角;I//时称I 与 所成的角为o 角。
线面角范围为[0,三]。
• 5.三垂线定理:如果平面内一条直线和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
• 6.三垂线逆定理:如果平面内一条直线和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂 直。
、空间的平面与平面• 3.二面角一一从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。
棱为I,两个半平面分别为,的二面角记为I 。
二面角范围为[0,]。
• 4.二面角平面角的作法:一是定义,在棱上取一点,分别在二面角的两个面作与棱垂直的射线,这两条射线所成的角就是二面角的平面角;二是利用线面垂直的判定和性质,在二面角的一个面内取一点P作另一个面的垂线,自垂足A作二面角的棱的垂线AO,AO与棱交于点°,则POA即为二面角的平面角或其补角;三是过空间一点作二面角的棱的垂面,垂面与二面角的两个面的交线所成的角是二面角的平面角。
三、立体几何中的向量方法1•线线关系证明设直线I的方向向量为a= (a i, b i, c i),平面a, B的法向量分别为卩=(a2, b2,⑵,v = (a3, b3, C3)则有:(1) 线面平行I // a a丄口? a •尸 0? a i a2+ b i b2 + c i c2= 0.(2) 线面垂直I 丄o? a / (1? a = k^? a i = ka2, b i = kb2, c i = kC2.(3) 面面平行a / i/ v? ?v? a2入3, b2^ 入b, c2入c(4) 面面垂直a丄B? i丄v? i v = 0? a2a3 + b2b3+ c2c3= 0.2•夹角和距离设直线I, m的方向向量分别为 a = (a i, b i, c i), b = (a2, b2, C2).平面a, B的法向量分别为i= (a3, b3, C3) , v = (a4, b4, C4)(以下相同).(i) 线线夹角设I, m的夹角为6(0 W n,设直线l与平面贝U sin 0= -a-^|= |cos〈a,”|a||a|(3)面面夹角设平面a B的夹角为00 W 0<n )则|cos 0= •-= |cos〈u, v> |.1 -|v|⑷距离问题①利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB是平面的一条射线,其中A则点B到平面的距离为1 AB?n 1.CD ? n②.异面直线间的距离 d —=—( l1,l2是两异面直线,其公垂向量为n , C、D分别是h,l2上任一点,n ld为hl间的距离).题型一、定理应用类(纯证明)1、如图,几何体E-ABCD是四棱锥,△ ABD为正三角形,CB=CD, EC丄BD.⑴求证:BE=DE;(2) 若/ BCD=120 , M 为线段AE的中点,求证:DM //平面BEC.|a i a2+ b i b2 + c i c2|a2+ b1+ c l :a2+ b2+ C(2)线面夹角2、如图,在四棱锥P-ABCD中,AB II CD, AB丄AD, CD=2AB,平面PAD丄底面ABCD, PA丄AD. E和F分别是CD 和PC的中点.求证:⑴PA丄底面ABCD;(2) BE I 平面PAD;(3) 平面BEF丄平面PCD.3、如图,四棱锥P-ABCD中, AB 丄AC, AB丄PA, AB II CD, AB=2CD, E, F, G, M, N 分别为PB, AB, BC, PD, PC 的中点.(1) 求证:CE I平面PAD; (2) 求证:平面EFG丄平面EMN.“ C题型二、体积、距离求解类1、如图,点C是以AB为直径的圆上一点,直角梯形BCDE所在平面与圆0所在平面垂直,且DE// BC, DC! BC, DE= :BC=2, AC=CD=3.(1) 证明:E0 //平面ACD;(2) 证明:平面ACDL平面BCDE;⑶求三棱锥E-ABD的体积.2、如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,/ BAD=60 .已知PB=PD=2, PA=-.证明:PC丄(1)BD;P-BCE的体积.(i) 求证:平面BCD!平面ABC; ⑵求证:AF //平面BDE; (3) 求四面体B-CDE的体积.3、如图,直四棱柱ABCD-ABGD i 中,AB II CD, AD 丄AB, AB=2, AD=车,AA 1=3, E 为CD上一点,DE=1, EC=3.(1) 证明:BE丄平面BB i C i C; (2) 求点B i到平面EAC i的距离.4、如图,直角梯形ACDE与等腰直角厶ABC所在平面互相垂直,F 为BC的中点,/ BACK ACD=90 , AE II CD,DC=AC=2AE=2.题型三、折叠探索类1、如图1,在Rt △ ABC中,/ C=90° , D, E 分别为AC, AB的中点,点F为线段CD上的一点.将厶ADE沿DE折起到△ ADE的位置,使AF丄CD,如图2.(1) 求证:DE //平面A i CB;(2) 求证:A i F丄BE;⑶线段A i B上是否存在点Q,使A i C丄平面DEQ?说明理由2、如图,在平行四边形ABCD中, AB=2BC=4, / ABC=120 , E、M分别为AB DE的中点,将厶ADE沿直线DE翻折成△ A' DE,连结A' C, A' B, F 为A' C 的中点,A' C=4.(1) 求证:平面A' DE丄平面BCD;⑵求证:FB //平面A' DE.3、如图,在四面体 PABC 中,PC 丄AB, PA 丄BC,点D, E, F, G 分别是棱 AP, AC, BC, PB 的中点. (1) 求证:DE //平面BCP; ⑵求证:四边形DEFG 为矩形;⑶ 是否存在点Q,到四面体PABC 六条棱的中点的距离相等 ?说明理由题型四 利用向量证明平行与垂直【例题】如图,在底面是矩形的四棱锥 P — ABCD 中,PA 丄底面ABCD ,点E , F 分别是PC , PD 的中点,=1 , BC = 2.(1)求证:EF //平面FAB ;PA = AB⑵求证:平面PAD丄平面PDC.题型五利用空间向量求空间角和距离【例题】1如图,在五面体中,四边形ABCD是矩形,AB // EF, AD丄平面ABEF,且AD = 1, AB =^EF = 2 2, BE = 2,点P、Q分别为AE、BD的中点.(1)求证:PQ //平面BCE ;⑵求二面角A-DF —E的余弦值.【练习】1.(2017年新课标2第10题)已知直三棱柱ABC ABQ!中,ABC 120 , AB 2 , BC C。
几何体外接球“球心”探究外接球问题是立体几何的一个重点,也是高考考查的一个热点,简单多面体外接球问题是立体几何中的难点和高考重要的考点,此类问题实质是定球心求半径,确定球心位置是解决此类问题的关键,本专题我们来研究定球心的办法:预备知识:1.平面内的线段的垂直平分线:平面内到线段AB两端点距离相等的点在中垂线上,如下图,平面内经过AB中点垂直于AB的直线即为线段AB的中垂线2.多边形各顶点都在圆上的圆叫做多边形的外接圆,三角形的外接圆圆心是任意两边或三边的垂直平分线的交点,三角形外接圆圆心叫外心。
3.三角形外接圆半径求解需先求出三角形三条边垂直平分线的交点,再用两边的乘积除以第三边上的高,这样求出来是外接圆直径,然后再根据假设的方程代入即可得出。
4.正弦定理是解三角形的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a b c2 sin sin sinRA B C===5.空间内线段的中垂面:在空间内到两定点的距离相等的点在线段AB的中垂面上,如下图:在空间内过AB中点C作垂直于AB的平面即为线段AB的中垂面6.空间内到多边形各定点距离相等的点的轨迹:过多边形的外心作多边形所在平面的垂线即为点的轨迹。
如下为到三角形三点的距离相等的点的轨迹(直线)7.定义:在空间内如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个点就是该简单多面体的外接球的球心,距离即为球半径。
8.直棱柱的外接球的球心是上、下底面多边形外心连线的中点;(1)长方体或正方体的外接球的球心是其体对角线的中点;(2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)顶点在底面射影在多边形顶点的棱锥可构造成直棱柱寻找球心;可利用公式222h 2R r =+()(R 为球的半径,r 为底面多边形外接圆的半径,h 为直棱柱的高)求几何体外接球的半径。