重力坝稳定分析方法及提高坝体抗滑稳定的工程措施样本
- 格式:doc
- 大小:770.00 KB
- 文档页数:11
水工建筑物重力坝的稳定分析一、重力坝滑动失稳模式(一)表面滑动(二)浅层滑动(三)深层滑动二、抗滑稳定计算截面选取及计算方法★破坏机理:重力坝岩基的破坏开始于坝踵附近的拉裂缝和扩张松弛,而后坝趾出现剪切屈服区且逐渐向上游发展,最后在坝下浅层岩基中上下游贯通,形成滑动通道,导致大坝的整体失稳破坏。
★(一)计算截面:坝基面或者坝体薄弱面选择受力大,抗剪强度较低,最容易产生滑动的截面作为计算截面。
重力坝抗滑稳定计算主要是核算坝基面及碾压混凝土层面上的滑动稳定性。
另外坝基内有软弱夹层、缓倾角结构面时,也应核算其深层滑动性。
★(二)抗滑稳定分析方法1.单一的安全系数法:计算公式有抗剪强度公式和抗剪断公式2. 分项系数法极限状态设计方法:《混凝土重力坝设计规范》DL 5108—1999规定,重力坝的抗滑稳定承载能力极限状态进行计算,认为滑动面为胶结面,滑动体为刚体。
三、单一的安全系数计算法(一)抗剪公式1.滑动面水平时:Ks = f(∑W-U)/ ∑P2.滑动面倾向上游:Ks = [f(∑WCosβ-U+∑PSinβ)]/( ∑PSinβ+∑WCosβ)公式评价:本公式不考虑凝聚力,偏于安全,凝聚力作为安全储备,所以规定的安全系数较低。
(二)抗剪断公式1.假定:认为砼与基岩接触良好,直接采用接触面上的抗剪断参数f′和c′。
2.公式:Ks′=[f′(∑W-U)+C′A]/∑P3.安全系数Ks′,设计规范规定:不分等级。
基本荷载组合:采用3.0;特殊荷载组合:(1)采用2.5;(2)采用不小于2.3。
四、分项系数法(一)特点:与原设计规范相比,用概率极限状态设计法代替了定值设计法,用分项系数极限状态表达式代替单一安全系数表达式。
即以结构重要性系数γ0、设计状况系数φ、作用分项系数γf 、材料性能分项系数γm和结构系数γd来代替设计的安全系数K。
(二)分项系数法基本公式(课本37页3-1、3-2)核算坝基面抗滑稳定极限状态时,应按材料的标准值和荷载的标准值或代表值分别计算基本组合和偶然组合两种情况。
重力坝抗滑稳定的措施1. 引言重力坝是一种常见的水利工程结构,用于蓄水和控制洪水。
然而,重力坝在面临沉积物侵蚀和地震等自然力的作用下,容易发生滑动和破坏。
为了确保重力坝的安全和稳定运行,需要采取一系列的抗滑稳定措施。
本文将介绍一些常见的重力坝抗滑稳定的措施,包括增加重力坝的自重,采用防滑桩,设置坝脚抗滑槽等。
2. 增加重力坝的自重重力坝的稳定性主要依靠自身的重量来抵御外部力的作用。
因此,增加重力坝的自重是一种有效的抗滑稳定措施。
常见的增加重力坝自重的方法包括增加坝体的厚度和采用高密度的材料。
这样可以增加坝体的摩擦力,提高坝体与地基之间的抗滑稳定性。
3. 防滑桩的使用防滑桩是一种常见的应用于重力坝的抗滑稳定措施。
防滑桩通过嵌入到地基中形成防滑抵抗,提高重力坝的整体稳定性。
在设计防滑桩时,需要考虑桩的深度、直径和间距等参数。
合理设计的防滑桩能够提供足够的抗滑稳定力,防止重力坝的滑动和破坏。
4. 坝脚抗滑槽的设置坝脚抗滑槽是一种常见的重力坝抗滑稳定措施,通常位于坝体底部的外围,用于增加重力坝与基岩之间的搭接面积,提高抗滑稳定性。
坝脚抗滑槽采用防滑槽的形式,通过增加重力坝的自重和摩擦力,提高重力坝的整体稳定性。
在设计坝脚抗滑槽时,需要考虑槽的宽度、深度和锚杆的使用等因素。
5. 地基加固地基加固是一项重要的重力坝抗滑稳定措施。
地基加固可以通过注浆、灌浆、岩石锚固等方式实现。
注浆和灌浆是常见的地基加固方法,通过将浆液注入地基中,增加地基的强度和稳定性。
岩石锚固则是将锚杆固定在地基中,提供额外的抗滑稳定力。
选择适当的地基加固方法可以提高重力坝的整体稳定性。
6. 定期检测和维护重力坝的抗滑稳定措施需要定期检测和维护,确保其有效性和可靠性。
定期检测和维护可以发现和修复潜在的问题,防止重力坝滑动和破坏的发生。
常见的检测方法包括测量重力坝变形、监测地下水位和地震活动等。
根据检测结果,及时采取维护措施,以保证重力坝的安全性和稳定性。
坝体工程抗滑稳定性分析与改进引言:坝体工程的抗滑稳定性是坝体工程设计与施工中一个重要的考虑因素。
坝体工程的安全性直接关系到人民群众生命财产的安全,因此,对于坝体工程的抗滑稳定性进行分析与改进,具有重要的现实意义。
一、坝体工程抗滑稳定性分析方法坝体工程抗滑稳定性分析是通过评估坝体工程在外力作用下的稳定性,判断其是否具备抵御滑移的能力。
目前常用的分析方法有:古典方法、有限元法和边坡稳定分析法。
古典方法是最早被使用的一种坝体工程抗滑稳定性分析方法,其基本原理是根据力学原理和土力学原理,通过计算坝体与土体的受力关系,确定坝体的抗滑稳定性。
然而,古典方法只能进行简单的力学计算,难以考虑到复杂的工程地质情况,因此在实际工程中应用有一定的局限性。
有限元法是一种近年来发展起来的坝体工程抗滑稳定性分析方法,它通过将坝体划分为无数个小单元,计算每个小单元受力情况,并将这些力的计算结果进行综合,得到坝体的整体受力情况。
有限元法具有计算精度高、可以考虑到复杂的工程地质因素等优点,但是由于计算量大、计算时间长等问题,使得其在实际应用中存在一定的困难。
边坡稳定分析法是一种综合考虑边坡稳定性各种因素的坝体工程抗滑稳定性分析方法,其基本原理是通过对坝体工程边坡稳定性各种因素的量化分析,综合考虑这些因素对坝体工程抗滑稳定性的影响。
边坡稳定分析法充分考虑了地质地形、工程结构及土体力学等因素,可以较全面地评估坝体工程的抗滑稳定性,因此在实际应用中被广泛采用。
二、坝体工程抗滑稳定性改进方法针对坝体工程抗滑稳定性分析的结果,如何进行改进,提高坝体工程的抗滑稳定性成为一个重要问题。
目前常用的改进方法有:增加支撑结构、地下浇筑坎、加固边坡和改善土质条件等。
增加支撑结构是一种常见的坝体工程抗滑稳定性改进方法,通过增加支墩、桩等支撑结构来提高坝体的承载能力和整体抗滑稳定性。
这种方法通常用于对坝体工程边坡稳定性较差的地区,能够有效改善坝体工程的抗滑稳定性。
0引言重力坝基层结构面域较为软弱,一旦说此类单元产状主动迎合上层建筑物滑动需求之时,就可立即过渡转化成为安全控制要点。
长久以来,我国已经构筑并投入沿用的大中型水利工程项目众多,包括三峡、沙坡头以及金安桥等,始终遗留较深的坝基深层抗滑稳定隐患,对于相关产业秩序流畅衔接带来诸多不便。
由此看来,进行此类领域潜心研究与改造是迎合时代发展的必要途径。
1目前我国在重力坝抗滑稳定性课题方面相关解析经验的吸纳整编最近阶段,国内外大部分工程技术人员以及学者,都针对重力坝基深层抗滑稳定安全系数、特定结构面物理力学指标等内容加以潜心探讨,但是始终无法提供标准化控制方案,反倒令此类事业领域内的思维观念百般交织,局势紊乱迹象更是可想而知。
相关实践管制主体开始大力提倡沿用稳定分析、数值精准计算、安全标准控制等途径,进行抗剪公式适用结果检验,希望能够为日后相关施工秩序协调监管提供些许启示。
事实上,过往我国水利施工单位在进行重力坝深层抗滑稳定性能研究期间,基本上将自身注意力全面投射在刚体结构极限平衡与物理模型综合验证方式之上,至此过后便衍生一类规模适当的安全检验控制方针。
客观角度鉴定,当我国全面吸纳计算机软件、硬件技术成就过后,有关上述强调的数值校验解析工作的确获得前所未有的便利支撑优势,并且持续到上世纪末期阶段,可靠度分析技术开始在水利电力项目中大肆拓展,有关其间交接的工序流程的适应成果开始受到相关领域广泛认可。
并且随着施工经验的完善,针对不同结构面开始提出以下及时性应对建议。
首先,一旦说重力坝基岩体内部软弱面比重较大时,技术人员提高重力坝抗滑稳定的技术措施邵艳丽安徽水利开发股份有限公司安徽蚌埠233000摘要:笔者结合以往重力坝施工实践经验整理解析,发现内部深层抗滑稳定分析工作支撑地位极高,尽管长期以来我国相关技术部门已经在此类项目中投入大量精力,阶段性成就还算丰硕,可是却始终遗留诸多隐患。
由此,笔者决定利用特定区域水利工程设计案例进行科学验证解析,试图将其中结构稳定手段、抗剪计算公式以及整体架构安全调试标准提炼完全,避免以往单纯应用一类措施带来的弊端结果,确保深层地质条件下坝基深层抗滑稳定绩效得以顺利彰显,最终为后期水利供电等事业可持续发展奠定协调适应基础。
提高重力坝抗滑稳定的措施重力坝是水利工程中的重要部分,而其抗滑稳定性关乎重力坝的质量和安全性,文章将结合作者的研究经验,分析重力坝抗滑稳定性的特点,研究提高抗滑稳定的措施,为相关的研究提供一份参考,文中观点存在一定的不足,有待进一步的分析论证。
标签:重力坝;抗滑稳定;特点;措施引言重力坝是水利建设中的基础设施,由石料、混凝土等材料修筑而成,依靠坝体的自重保证稳定性,本身具有很高的稳定性,具有安全、可靠,设计、施工简单的特点,适应不同的地形和地质条件,在坝体中可布置泄水、引水孔口等,目前被广泛采用。
但是重力坝的坝体应力低,无法发挥材料强度,温度应力和收缩应力大,并且水压和水冲击会造成一定程度的滑动,影响重力坝的稳定性和安全性,论文以下将针对重力坝抗滑稳定的特点和相关的提高措施进行讨论。
1 重力坝抗滑稳定的特点(1)大坝滑动通道具有特定性和多元性:重力坝内有软弱结构面,抗剪强度低于基岩,形成了滑动的特定通道,而这种软弱结构面是多层的,通道具有多元性,性状、成因和充填物等都比较复杂。
(2)坝体连同坝基部分岩体同时滑动:如果滑动发生在介质分界面上,物理力学性质很难界定,属于不连续各向异性体,应力应变状态十分复杂。
(3)对下游尾岩抗力体的依赖性:在水平载荷下,基岩不能维持自身的稳定,坝体只有依靠下游尾岩抗力体才能满足稳定性,并且自身稳定性的安全系数小于1。
(4)抗滑稳定安全度判据的多元性:坝体滑动带动滑动面以上的部分,而只有依靠下游尾岩抗力体才能维持稳定,其稳定平衡系统由五个部分构成,坝体、滑动基岩、软弱结构面、软弱结构面下部基岩、下游尾岩抗力体,难以用单一的安全系数来衡量,要靠坝基、坝体、安全系数、尾岩等应力应变来综合判定。
2 提高重力坝抗滑稳定的措施2.1 抗滑强度参数的选择重力坝的抗滑参数的选择对工程的造价、施工和设计有很大的影响,主要包含几个方面:其一,影响软弱夹层抗滑强度的主要参数,如土层颗粒的粒径大小,当粒径大于5mm时,可以起到抗滑作用,当粒径小于5mm时,抗滑作用不明显;如岩性,岩性对连通率、起伏差和厚度等有影响,岩性均匀,夹层厚度大时,抗滑能力强,对于大型的重力坝工程,要辅助大型剪、中型剪等工程,可以起到提升抗滑的作用。
坝抗滑稳定的工程措施
一、增加重量
在坝体的上游侧或下游侧增加重量,以增大坝体的滑阻力,提高其抗滑稳定性。
可以通过加厚坝体、增加压重块等方式实现。
二、排水减压
通过排水减压,降低坝体中的孔隙水压力,使坝体能够更好地抵抗滑移。
可以在坝体内部设置排水孔,将水排出,降低水压力。
三、放缓边坡
通过放缓坝体的边坡,降低滑移的倾向性,提高抗滑稳定性。
放缓边坡可以通过改变坝体的几何形状实现。
四、防滑桩
在坝体中设置防滑桩,通过桩的支撑作用,增加坝体的抗滑稳定性。
防滑桩可以设置在坝体的基础部位或上游侧。
五、防滑锚杆
在坝体中设置防滑锚杆,通过锚杆的锚固作用,将坝体与基岩连接在一起,提高其抗滑稳定性。
防滑锚杆可以设置在坝体的基础部位或下游侧。
六、坡面防护
在坝体的上游侧和下游侧设置防护措施,如混凝土护面、草皮护面等,以防止水流对坝体的冲刷和侵蚀,保护坝体的稳定性。
七、加强监测
通过加强监测,及时发现坝体的滑移迹象,采取相应的措施进行加固和修复。
监测的设备可以包括测斜仪、位移计等。
八、紧急预案
制定紧急预案,以便在坝体出现险情时能够及时采取措施进行抢险和修复。
预案中应包括抢险队伍的组织、物资的调配、交通的保障等方面的内容。
重力坝的稳定性汪祥胜3008205112(46)前言:重力坝是世界出现最早的一种坝型,早在2900年前在埃及就出现了最早的重力挡水坝。
随着我国重力坝建设的繁荣,数量的增多和高度的不断提升,使得对稳定分析有着重要的理论和实践意义。
大坝的稳定性直接关系到大坝安全性和人民群众的生命财产息息相关,而此次实习的三峡和向家坝皆是重力坝的代表杰作,通过实习定能从深层次上了解有关大坝稳定性的相关问题,包括什么是重力坝,重力坝稳定的意义,其稳定性分析方法和提高坝体抗滑稳定性的工程措施及在实际中的应用情况和应注意的问题。
一.什么是重力坝1.重力坝是由砼或浆砌石修筑的大体积档水建筑物,其基本剖面是直角三角形,整体是由若干坝段组成。
重力坝在水压力及其他荷载作用下,主要依靠坝体自重产生的抗滑力来满足稳定要求;同时依靠坝体自重产生的压力来抵消由于水压力所引起的拉应力以满足强度要求。
2.优缺点:重力坝优点:重力坝之所以得到广泛应用,是由于有以下优点:①相对安全可靠,耐久性好,抵抗渗漏、洪水漫溢、地震和战争破坏能力都比较强;②设计、施工技术简单,易于机械化施工;③对不同的地形和地质条件适应性强,任何形状河谷都能修建重力坝,对地基条件要求相对地说不太高;④在坝体中可布置引水、泄水孔口,解决发电、泄洪和施工导流等问题。
重力坝缺点:①坝体应力较低,材料强度不能充分发挥;②坝体体积大,耗用水泥多;③施工期混凝土温度应力和收缩应力大,对温度控制要求高。
3.工作原理;重力坝在水压力及其它荷载作用下必需满足:A、稳定要求:主要依靠坝体自重产生的抗滑力来满足。
B、强度要求:依靠坝体自重产生的压应力来抵消由于水压力所引起的拉应力来满足。
4.重力坝类型:重力坝按筑坝材料的不同分为:混凝土重力坝和浆砌石重力坝。
重力坝按其结构形式分为:①实体重力坝;②宽缝重力坝;③空腹重力坝。
重力坝按泄水条件可分为非溢流坝和溢流坝两种剖面。
实体重力坝因横缝处理的方式不同可分为三类。
重力坝的稳定性
汪祥胜 ( 46) 前言:
重力坝是世界出现最早的一种坝型, 早在29 前在埃及就出现了最早的重
力挡水坝。
随着中国重力坝建设的繁荣, 数量的增多和高度的不断提升, 使得对稳定分析有着重要的理论和实践意义。
大坝的稳定性直接关系到大坝安全性和人民群众的生命财产息息相关, 而此次实习的三峡和向家坝皆是重力坝的代表杰作, 经过实习定能从深层次上了解有关大坝稳定性的相关问题, 包括什么是重力坝, 重力坝稳定的意义, 其稳定性分析方法和提高坝体抗滑稳定性的工程措施及在实际中的应用情况和应注意的问题。
一.什么是重力坝
1.重力坝是由砼或浆砌石修筑的大致积档水建筑物, 其基本剖面是直角三角形, 整体是由若干坝段组成。
重力坝在水压力及其它荷载作用下, 主要依靠坝体自重产生的抗滑力来满足稳定要求;同时依靠坝体自重产生的压力来抵消由于水压力所引起的拉应力以满足强度要求。
2.优缺点:
重力坝优点: 重力坝之因此得到广泛应用,是由于有以下优点: ①相对安全可靠,耐久性好, 抵抗渗漏、洪水漫溢、地震和战争破坏能力都比较强; ②设计、施工技术简单, 易于机械化施工; ③对不同的地形和地质条件适应性强, 任何形状河谷都能修建重力坝, 对地基条件要求相对地说不太高; ④在坝体中可布置引水、泄水孔口, 解决发电、泄洪和施工导流等问题。
重力坝缺点: ①坝体应力较低, 材料强度不能充分发挥; ②坝体体积大, 耗用水泥多; ③施工期混凝土温度应力和收缩应力大, 对温度控制要求高。
3.工作原理; 重力坝在水压力及其它荷载作用下必须满足:
A、稳定要求: 主要依靠坝体自重产生的抗滑力来满足。
B、强度要求: 依靠坝体自重产生的压应力来抵消由于水压力所引起的拉应力来满足。
4.重力坝类型:
重力坝按筑坝材料的不同分为:混凝土重力坝和浆砌石重力坝。
重力坝按其结构形式分为:①实体重力坝;②宽缝重力坝; ③空腹重力坝。
重力坝按泄水条件可分为非溢流坝和溢流坝两种剖面。
实体重力坝因横缝处理的方式不同可分为三类。
①悬臂式重力坝: 横缝不设键槽, 不灌浆; ②铰接式重力坝: 横缝设键槽, 但不灌浆; ③整体
式重力坝: 横缝设键槽, 并进行灌浆
二.稳定性分析方法:
1.抗滑稳定分析的目的是核算坝体沿坝基面或沿地基深层软弱结构面抗滑稳定的安全度。
当岸坡坝段地形陡峻时, 还需核算这些坝段在三向荷载作用下的抗滑稳定。
2.重力坝滑动失稳模式极其计算方法
重力坝可能沿坝基平面滑动, 也可能沿地在中缓倾角断层或软弱夹层滑动。
中国修建了大中型重力坝100余座, 其中有1/3存在深层滑动问题。
( 一) 沿坝基面的抗滑稳定分析
假定坝体与坝基的连接有三种物理模式:”触接”、
”粘接”、
”咬接”
单一的安全系数法:
( 1) 抗剪强度公式( 摩擦公式)
a、滑动面水平面时:
b、滑动面倾向上时:
本公式不考虑凝聚力, 偏于安全, 凝聚力作为安全储备, 因此规定的安全系数较低。
摩擦系数f的选取问题
一般由若干组试验确定。
但由于试验岩体自身的非均匀性质和每次试验条件不可能完全相同, 导致试验成果具有较大的离散性, 如何选用试验值, 还值得研究。
规范规定, f的最后选取应以野外和室内试验成果为基础, 结合现场实际情况, 参照地质条件类似的已建工程的经验等, 由地质、试验和设计人员研究确定。
根据国内外已建工程的统计资料, 混凝土与基岩的f值常取在0.5~0.8之间。
摩擦系数的选定直接关系到大坝的造价与安全, f值愈小, 要求坝体剖面愈大。
以新安江为例, 若f值减小0.01, 坝体混凝土方量增加2万m3。
( 2) 抗剪断公式
1、假定: 认为砼与基岩接触良好, 直接采用接触面上的抗剪断参数f′和c′。
2、公式:
3、安全系数Ks’,设计规范规定: 不分等级
基本荷载组合: 采用3.0
特殊荷载组合: ( a) 采用2.5;
( b) 采用不小于2.3。
本公式既考虑了抗剪断摩擦力, 又考虑了滑动面上的凝聚力, 比较符合实际情况。
抗剪断参数的选定
对于大、中型工程, 在设计阶段, f ′,c′应由野外及室内试验成果决定。
在规划和可行性研究阶段, 能够参考规范给定的数值选用。
规范规定如下: Ⅰ类基岩——很好的岩石,
f ′=1.2~1.5, c′=1.3~1.5Mpa
Ⅱ类基岩——好的岩石,
f ′=1.0~1.3, c′=1.1~1.3Mpa
Ⅲ类基岩——中等的岩石,
f ′=0.9~1.2, c′=0.7~1.1Mpa
Ⅳ类基岩——较差的岩石,
f ′=0.7~0.9, c′=0.3~0.7Mpa
上述结果不包括基岩内有软弱夹层的情况; 同时, 胶结面的 f ′,c′值不能高于混凝土的f ′,c′; 对于Ⅰ、Ⅱ类基岩, 如果建基面做成较大的起伏差, 可采用混凝土的抗剪断参数。
( 二) 深层抗滑稳定分析
深层滑动: 地基内往往存在着较弱夹层或缓倾角断层, 坝体挡水后, 有可能沿这些薄弱面产生滑动, 就叫做深层滑动。