2011-2012年深圳南山区八年级数学期末考试卷
- 格式:doc
- 大小:697.50 KB
- 文档页数:6
2011-2012学年第二学期期末八年级数学试卷2011-2012学年第二学期期末八年级数学试卷一.选择题(本大题共有10小题,每小题3分,共30分.)1.对于函数x y k =,若2=x 时,3-=y ,则这个函数的解析式是 ( ) A.xy 6=B.xy 61=C.xy 6 -= D.xy 61 -=2.xy 2-=图象上有两点A(x 1,y 1)和 B(x 2,y 2),若y 1<y 2<0,则x 1与x 2的关系是( )A .0 < x 1 < x 2B .0 > x 1 > x 2C .x 1 < x 2 < 0D .x 1 > x 2> 0 3.下列命题是真命题的是( )(A)相等的角是对顶角 (B)两直线被第三条直线所截,内错角相等 (C)若nm n m ==则,22(D)有一角对应相等的两个菱形相似.4.若16)3(22+-+x m x 是完全平方式,则m的值是( ) (A)-1 (B)7 (C)7或-1 (D)5或1.9.若分式方程244x a x x =+--有增根,则a的值为( ) A. 4 B. 2 C. 1 D. 010.如图所示,△ABC 中,点D 在边BC 上,点E 在边AC 上,且AB ∥ED ,连接BE ,若AE ︰EC =3︰5,则下列结论错误的是( )A.AB ︰ED =5︰3B.△EDC与△ABC 的周长比为5︰8C.△EDC 与△ABC 的面积比为25︰64D.△BED与△EDC 的面积比为3︰5EAB D C二.填空题(本大题共有8小题,每小题2分,共16分.)11.如果不等式组⎩⎨⎧>-≥+mx x x 148无解,则m 的取值范围是 12.若1x =-是关于x 的方程2220xax a +-=的一个根,则a =_______.13.如图所示:∠A=50°,∠B=30°,∠BDC=110°, 则∠C=______°;A14.如果一次函数y =(2-m)x+m-3的图象经过第二、三、四象限,那么m的取值范围是_________15.如图所示,是某建筑工地上的人字架. 已知这个人字架的夹角∠1=120°,那么∠2-∠3的度数为________.23116.一组按规律排列的式子:3xy ,52xy-,73x y,94x y-,…,(0xy≠),则第2011个式子是________(n为正整数).17.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.18.小康利用下面的方法测出月球与地球的距离:如图所示,在月圆时,把一枚五分的硬币(直径约为2.4cm)放在离眼睛点O约2.6米的AB处,正好把月亮遮住. 已知月球的直径约为3500km ,那么月球与地球的距离约为____________________(结果保留两个有效数字).3.8×510kmDECBAO三.解答题(本大题共54分)17、(1)(5分)已知x = -2,求x x x x 12112+-÷⎪⎭⎫ ⎝⎛-的值。
---南山区八年级期末数学试卷一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √9B. πC. √-16D. 0.1010010001…2. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 1 < b + 1D. a - 1 > b - 13. 已知一次函数y = kx + b的图象经过点(2,3),则k和b的值分别是()A. k = 2, b = 1B. k = 1, b = 2C. k = 3, b = 2D. k = 2, b = 34. 在直角坐标系中,点A(3,4)关于y轴的对称点坐标是()A.(-3,4)B.(3,-4)C.(-3,-4)D.(3,4)5. 若一个三角形的三个内角分别为30°、45°、105°,则该三角形是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形二、填空题(每题5分,共20分)6. 若a² = 16,则a的值为_________。
7. 在数轴上,点A表示的数是-3,则点B表示的数是2,则AB之间的距离为_________。
8. 已知二次函数y = ax² + bx + c的图象开口向上,顶点坐标为(1,-4),则a的值为_________。
9. 在△ABC中,AB = 5,AC = 8,BC = 10,则△ABC是_________三角形。
10. 已知正方形的边长为a,则对角线的长度为_________。
三、解答题(共40分)11. (10分)解下列方程:(1) 2x - 5 = 3x + 1(2) 5(x - 2) - 3(x + 1) = 212. (10分)已知一次函数y = kx + b的图象经过点(-2,3)和(1,-1),求该一次函数的解析式。
13. (10分)已知二次函数y = -2x² + 4x + 3的图象与x轴交于A、B两点,求AB两点的坐标。
广东深圳市南山区八年级下期末数学考试卷(解析版)(初二)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】不等式2x+1>x+2的解集是()A.x>1 B.x<1 C.x≥1 D.x≤1【答案】A【解析】试题分析:先移项,再合并同类项,把x的系数化为1即可.解:移项得,2x﹣x>2﹣1,合并同类项得,x>1,故选A点评:本题考查的是在解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.【题文】多项式2x2﹣2y2分解因式的结果是()A.2(x+y)2 B.2(x﹣y)2 C.2(x+y)(x﹣y) D.2(y+x)(y﹣x)【答案】C【解析】试题分析:首先提公因式2,再利用平方差进行分解即可.解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y),股癣:C.点评:此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.【题文】下列图案中,不是中心对称图形的是()A. B. C. D.【答案】B【解析】试题分析:根据中心对称图形的概念求解.解:A、是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项正确;C、是中心对称图形,故C选项错误;D、是中心对称图形,故D选项错误;故选:B.点评:本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.【题文】如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A.6cm B.7cm C.8cm D.9cm【答案】D【解析】试题分析:由于AB的垂直平分线交AC于D,所以AD=BD,而△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,而AC=5cm,BC=4cm,由此即可求出△DBC的周长.解:∵DE是AB的垂直平分线,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,而AC=5cm,BC=4cm,∴△DBC的周长是9cm.故选:D.点评:此题主要考查了线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.结合图形,进行线段的等量代换是正确解答本题的关键.【题文】要使分式有意义,那么x的取值范围是()A.x≠3 B.x≠3且x≠﹣3 C.x≠0且x≠﹣3 D.x≠﹣3【答案】D【解析】试题分析:根据分式有意义的条件列出关于x的不等式,求解即可.解:∵x2+6x+9≠0,∴(x+3)2≠0,∴x+3≠0,∴x≠﹣3,∴分式有意义,x的取值范围x≠﹣3,故选D.点评:本题考查了分式有意义的条件:分母不为0,掌握不等式的解法是解题的关键.【题文】如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a<﹣1 B.a<0 C.a>﹣1 D.a>0a<﹣1【答案】A【解析】试题分析:根据不等式的性质,两边同时除以a+1,a+1是正数还是负数不确定,所以要分两种情况,再根据解集为x<1,发现不等号的符号发生了变化,所以确定a+1<0,从而得到答案.解:(a+1)x>a+1,当a+1>0时,x>1,当a+1<0时,x<1,∵解集为x<1,∴a+1<0,a<﹣1.故选:A.点评:此题主要考查了解不等式,当不等式两边除以同一个数时,这个数的正负性直接影响不等号.【题文】如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C. D.2【答案】B【解析】试题分析:根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB ,得出AD=2DE即可.解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选:B.点评:本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.【题文】将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.cm D.cm【答案】D【解析】试题分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.解:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6,又∵三角板是有45°角的三角板,∴AB=AC=6,∴BC2=AB2+AC2=62+62=72,∴BC=6,故选:D.点评:此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先求得直角边,再由勾股定理求出最大边.【题文】如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,平行四边形ABCD的周长为40.则平行四边形ABCD的面积为()A.24 B.36 C.40 D.48【答案】D【解析】试题分析:已知平行四边形的高AE、AF,设BC=xcm,则CD=(20﹣x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.解:设BC=xcm,则CD=(20﹣x)cm,根据“等面积法”得4x=6(20﹣x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48.故选D.点评:本题应用的知识点为:平行四边形一组邻边之和为平行四边形周长的一半,平行四边形的面积=底×高,可用两种方法表示.【题文】如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x< B.x<3 C.x> D.x>3【答案】A【解析】试题分析:先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.点评:此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.【题文】已知a2+b2=6ab,则的值为()A. B. C.2 D.±2【答案】B【解析】试题分析:首先由a2+b2=6ab,即可求得:(a+b)2=8ab,(a﹣b)2=4ab,然后代入即可求得答案.解:∵a2+b2=6ab,∴a2+b2+2ab=8ab,a2+b2﹣2ab=4ab,即:(a+b)2=8ab,(a﹣b)2=4ab,a+b=±2,a﹣b=±2,∴当a+b=2,a﹣b=2时,=;当a+b=2,a﹣b=﹣2时,=﹣;当a+b=﹣2,a﹣b=2时,=﹣;当a+b=﹣2,a﹣b=﹣2时,=.故选:B.点评:本题主要考查完全平方公式.注意熟记公式的几个变形公式,还要注意整体思想的应用.【题文】△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,P为线段AB上一动点,D为BC上中点,则PC+PD 的最小值为()A. B.3 C. D.【答案】C【解析】试题分析:作D关于AB的对称点F,连接CF交AB于P,连接PD,BF,则AB垂直平分DF,于是可得PF=PD ,BD=BF,即可求得∠CBF=90°,根据勾股定理即可得到结论.解:作D关于AB的对称点F,连接CF交AB于P,则CF的长度=PC+PD的最小值,连接PD,BF,则AB垂直平分DF,∴PF=PD,BD=BF=BC=1,∠FBP=∠DBP,∵△ABC为等腰直角三角形,AC=BC,∴∠ACB=45°,∴∠CBF=90°,∴CF2=BC2+BF2=5,∴CF=,∴PC+PD的最小值是.故选C.点评:此题考查了线路最短的问题,确定动点P何位置时,使PC+PD的值最小是关键.【题文】分解因式:2x2﹣4x+2=.【答案】2(x﹣1)2.【解析】试题分析:先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.点评:本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.【题文】一个多边形的内角和与外角和的比是4:1,则它的边数是.【答案】10.【解析】试题分析:多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.点评:本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.【题文】如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.【答案】2【解析】试题分析:过P作PE垂直与OB,由∠AOP=∠BOP,PD垂直于OA,利用角平分线定理得到PE=PD,由PC与OA平行,根据两直线平行得到一对内错角相等,又OP为角平分线得到一对角相等,等量代换可得∠COP=∠CPO,又∠ECP为三角形COP的外角,利用三角形外角的性质求出∠ECP=30°,在直角三角形ECP中,由30°角所对的直角边等于斜边的一半,由斜边PC的长求出PE的长,即为PD的长.解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.点评:此题考查了含30°角直角三角形的性质,角平分线定理,平行线的性质,以及三角形的外角性质,熟练掌握性质及定理是解本题的关键.同时注意辅助线的作法.【题文】如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则BE的长是.【答案】2+2【解析】试题分析:首先考虑到BE所在的三角形并不是特殊三角形,所以猜想到要求BE,可能需要构造直角三角形.由旋转的性质可知,AC=AE,∠CAE=l∴AC=CE=AE=4在△ABE与△CBE中,∴△ABE≌△CBE(SSS)∴∠ABE=∠CBE=45°,∠CEB=∠AEB=30°∴在△ABF中,∠BFA=180°﹣45°﹣45°=90°∴∠AFB=∠AFE=90°在Rt△ABF中,由勾股定理得,BF=AF==2又在Rt△AFE中,∠AEF=30,°∠AFE=90°FE=AF=2∴BE=BF+FE=2+2故,本题的答案是:2+2点评:此题是旋转性质题,解决此题,关键是思路要明确:“构造”直角三角形.在熟练掌握旋转的性质的基础上,还要应用全等的判定及性质,直角三角形的判定及勾股定理的应用【题文】解方程:.【答案】无解【解析】试题分析:找出分式方程的最简公分母为(x+2)(x﹣2),去分母后转化为整式方程,求出方程的解得到x的值,代入最简公分母中检验即可得到原分式方程的解.解:最简公分母为(x+2)(x﹣2),去分母得:(x﹣2)2﹣(x+2)(x﹣2)=16,整理得:﹣4x+8=16,解得:x=﹣2,经检验x=﹣2是增根,故原分式方程无解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.【题文】解不等式组:.【答案】x<2【解析】试题分析:分别解两个不等式得到x>﹣2和x≤2,然后根据同小取小确定不等式组的解集.解:,解①得x≤4,解②得x<2,所以不等式的解集为x<2.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.【题文】先化简,再求值:,其中a满足方程a2+4a+1=0.【答案】原式=【解析】试题分析:把原式括号里的第二项提取﹣1,然后把原式的各项分子分母都分解因式,找出括号里两项分母的最简公分母,利用分式的基本性质对括号里两项进行通分,然后利用同分母分式的减法运算法则:分母不变,只把分子相减,计算出结果,然后利用分式的除法法则:除以一个数等于乘以这个数的倒数,变形为乘法运算,约分后即可把原式化为最简分式,把a满足的方程变形后,代入原式化简后的式子中即可求出值.解:原式=====,(6分)∵a2+4a+1=0,∴a2+4a=﹣1,∴原式=.(10分)点评:此题考查了分式的混合运算,以及多项式的运算.分式的化简求值题,应先对原式的分子分母分解因式,在分式的化简运算中,要通观全局,弄清有哪些运算,然后观察能否用法则,定律,分解因式及公式来简化运算,同时注意运算的结果要化到最简,然后再代值计算.【题文】如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC在变换到A1C2的过程中扫过区域的面积(重叠部分不重复计算)【答案】见解析【解析】试题分析:(1)根据图形平移及旋转的性质画出△A1B1C1及△A1B2C2即可;(2)根据图形平移及旋转的性质可知,将△ABC向下平移4个单位AC所扫过的面积是以4为底,以2为高的平行四边形的面积;再向右平移3个单位AC扫过的面积是以3为底以2为高的平行四边形的面积;当△A1B1C1绕点A1顺时针旋转90°到△A1B2C2时,A1C1所扫过的面积是以A1为圆心以以2为半径,圆心角为90°的扇形的面积,再减去重叠部分的面积,根据平行四边形的面积及扇形面积公式进行解答即可.解:(1)如图所示:(2)∵图中是边长为1个单位长度的小正方形组成的网格,∴AC==2,∵将△ABC向下平移4个单位AC所扫过的面积是以4为底,以2为高的平行四边形的面积;再向右平移3个单位AC扫过的面积是以3为底以2为高的平行四边形的面积;当△A1B1C1绕点A1顺时针旋转90°到△A1B2C2时,A1C1所扫过的面积是以A1为圆心以2为半径,圆心角为90°的扇形的面积,重叠部分是以A1为圆心,以2为半径,圆心角为45°的扇形的面积,∴线段AC在变换到A1C2的过程中扫过区域的面积=4×2+3×2+﹣=14+π.点评:本题考查的是旋转变换及平移变换,扇形的面积公式,熟知图形旋转、平移不变性的特点是解答此题的关键.【题文】如图,在△ABC中,D、E分别是AB、AC的中点,F是DE延长线上的点,且EF=DE(1)图中的平行四边形有哪几个?请选择其中一个说明理由;(2)若△AEF的面积是3,求四边形BCFD的面积.【答案】(1)平行四边形ADCF,平行四边形BDFC,(2)12.【解析】试题分析:(1)由E为AC的中点,可得AE=CE,再由条件EF=DE 可得四边形ADCF是平行四边形;(2)根据等底等高的三角形面积相等可得平行四边形对角线分成的四个小三角形面积相等可得△CEF的面积和△CED的面积都等于△AEF的面积为3,从而可得四边形BCFD的面积为12.(1)图中的平行四边形有:平行四边形ADCF,平行四边形BDFC,理由是:∵E为AC的中点,∴AE=CE,∵DE=EF,∴四边形ADCF是平行四边形,∴AD∥CF,AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,BD∥CF,∴四边形BDFC是平行四边形.(2)由(1)知四边形ADCF是平行四边形,四边形BDFC是平行四边形,∴S△CEF=S△CED=S△AEF=3,∴平行四边形BCFD的面积是12.点评:此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形的判定定理,掌握平行四边形对角线分成的四个小三角形面积相等.【题文】我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【答案】见解析【解析】试题分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.解:(1)设今年5月份A款汽车每辆售价x万元.根据题意得:=,解得:x=9,经检验知,x=9是原方程的解.所以今年5月份A款汽车每辆售价9万元.(2)设A款汽车购进y辆.则B款汽车每辆购进(15﹣y)辆.根据题意得:解得:6≤y≤10,所以有5种方案:方案一:A款汽车购进6辆;B款汽车购进9辆;方案二:A款汽车购进7辆;B款汽车购进8辆;方案三:A款汽车购进8辆;B款汽车购进7辆;方案四:A款汽车购进9辆;B款汽车购进6辆;方案五:A款汽车购进10辆;B款汽车购进5辆.(3)设利润为W则:W=(8﹣6)×(15﹣y)﹣a(15﹣y)+(9﹣7.5)y=30﹣2y﹣a(15﹣y)+1.5y=30﹣a(15﹣y)﹣0.5y方案一:W=30﹣a(15﹣6)﹣0.5×6=30﹣9a﹣3=27﹣9a方案二:W=30﹣a(15﹣7)﹣0.5×7=30﹣8a﹣3.5=26.5﹣8a方案三:W=30﹣a(15﹣8)﹣0.5×8=30﹣7a﹣4=26﹣7a方案四:W=30﹣a(15﹣9)﹣0.5×9=30﹣6a﹣4.5=25.5﹣6a方案五:W=30﹣a(15﹣10)﹣0.5×10=30﹣5a﹣5=25﹣5a由27﹣9a=26.5﹣8a 得a=0.5方案一对公司更有利.点评:本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.【题文】已知两个共一个顶点的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【答案】(1)见解析(2)BM=ME==a(3)见解析【解析】试题分析:(1)如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;(2)如答图2a所示,作辅助线,推出BM、ME是两条中位线;(3)如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME.(1)证明:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF;(2)如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=CD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=2a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=2a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.(3)如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF,延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG,在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.点评:本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.。
2013-2014学年广东省深圳市南山区八年级(下)期末数学试卷一、选择题:本题有12小题,每题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的 B x 23.(3分)(2014秋•茌平县期末)如图,△ABC 中,AB=AC ,D 是BC 中点,下列结论中不正确的是( )4.(3分)(2014•衡阳)不等式组的解集在数轴上表示为( )B5.(3分)(2014春•深圳期末)如图,▱ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3cm ,则AB 的长为( )7.(3分)(2013•攀枝花)如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()8.(3分)(2014春•深圳期末)若解分式方程=产生増根.则m等于()20132014210.(3分)(2014春•深圳期末)如图,△ABC中,AB边的垂直平分线交AB于点E,交BC于点D,已知AC=5cm,△ADC的周长为17cm,则BC的长为()11.(3分)(2014春•深圳期末)关于x的不等式组的整数解共有6个,则a的12.(3分)(2014•江阴市校级模拟)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为()二、填空题:本题共4小题,每小题3分,共12分,把答案填在答题卡上13.(3分)(2014春•深圳期末)分解因式:ax2﹣16ay2=.14.(3分)(2014•淮阴区校级模拟)如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.15.(3分)(2014春•深圳期末)已知4x2+mxy+y2是完全平方式,则m的值是.16.(3分)(2013•菏泽)如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.三、解答题(本大题有七题,其中第17题9分、第18题6分、第19题6分、第20题6分、第21题9分、第22题7分、第23题9分,共52分)解答应写出文字说明或演算步骤.17.(9分)(2014春•深圳期末)(1)解不等式:+1>x﹣3;(2)解方程:=3﹣.18.(6分)(2014春•深圳期末)先化简(﹣)÷,然后从﹣1≤x≤1的范围内选取一个合适的整数作为x的值代入求值.19.(6分)(2014春•深圳期末)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1,并直接写出A1、B1、C1各点的坐标;(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.20.(6分)(2011•禅城区模拟)已知:如图,点D是△ABC的BC边上的中点,DE⊥AC 于E,DF⊥AB于F,且DE=DF.求证:△ABC是等腰三角形.21.(9分)(2012•淮安模拟)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?22.(7分)(2014春•深圳期末)如图,在▱ABCD中,AE、AF是高,∠BAE=30°,BE=2,CF=1,DE交AF于点G.(1)求▱ABCD的面积;(2)求证:△AEG是等边三角形.23.(9分)(2014春•深圳期末)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=8cm,AB=6cm,BC=10cm,点Q从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s 的速度在线段BC间往返运动,P、Q两点同时出发,当点Q到达点D时,两点同时停止运动.(1)当t=s时,四边形PCDQ的面积为36cm2;(2)若以P、Q、C、D为顶点的四边形是平行四边形,求t的值;(3)当0<t<5时,若DQ≠DP,当t为何值时,△DPQ是等腰三角形?2013-2014学年广东省深圳市南山区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本题有12小题,每题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的Bx2分母中不含有字母,因此它们是整式,而不是分式,故分母中不含有字母,因此它们是整式,而不是分式,故分母中含有字母,因此是分式,故、不是字母,是常数,所以3.(3分)(2014秋•茌平县期末)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()4.(3分)(2014•衡阳)不等式组的解集在数轴上表示为()B在数轴上可表示为:5.(3分)(2014春•深圳期末)如图,▱ABCD中,对角线AC、BD交于点O,点E是BC 的中点.若OE=3cm,则AB的长为()7.(3分)(2013•攀枝花)如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()8.(3分)(2014春•深圳期末)若解分式方程=产生増根.则m等于()==产生増根,20132014210.(3分)(2014春•深圳期末)如图,△ABC中,AB边的垂直平分线交AB于点E,交BC于点D,已知AC=5cm,△ADC的周长为17cm,则BC的长为()11.(3分)(2014春•深圳期末)关于x的不等式组的整数解共有6个,则a的,得12.(3分)(2014•江阴市校级模拟)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为()DN=2DN=2×二、填空题:本题共4小题,每小题3分,共12分,把答案填在答题卡上13.(3分)(2014春•深圳期末)分解因式:ax2﹣16ay2=a(x+4y)(x﹣4y).14.(3分)(2014•淮阴区校级模拟)如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2.15.(3分)(2014春•深圳期末)已知4x2+mxy+y2是完全平方式,则m的值是±4.16.(3分)(2013•菏泽)如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.BE=BD=1=BE=..故答案为:三、解答题(本大题有七题,其中第17题9分、第18题6分、第19题6分、第20题6分、第21题9分、第22题7分、第23题9分,共52分)解答应写出文字说明或演算步骤.17.(9分)(2014春•深圳期末)(1)解不等式:+1>x﹣3;(2)解方程:=3﹣.18.(6分)(2014春•深圳期末)先化简(﹣)÷,然后从﹣1≤x≤1的范围内选取一个合适的整数作为x的值代入求值.=[﹣=•=19.(6分)(2014春•深圳期末)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1,并直接写出A1、B1、C1各点的坐标;(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.20.(6分)(2011•禅城区模拟)已知:如图,点D是△ABC的BC边上的中点,DE⊥AC 于E,DF⊥AB于F,且DE=DF.求证:△ABC是等腰三角形.21.(9分)(2012•淮安模拟)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?=22.(7分)(2014春•深圳期末)如图,在▱ABCD中,AE、AF是高,∠BAE=30°,BE=2,CF=1,DE交AF于点G.(1)求▱ABCD的面积;(2)求证:△AEG是等边三角形.=23==22;(23.(9分)(2014春•深圳期末)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=8cm,AB=6cm,BC=10cm,点Q从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度在线段BC间往返运动,P、Q两点同时出发,当点Q到达点D时,两点同时停止运动.(1)当t=2s时,四边形PCDQ的面积为36cm2;(2)若以P、Q、C、D为顶点的四边形是平行四边形,求t的值;(3)当0<t<5时,若DQ≠DP,当t为何值时,△DPQ是等腰三角形?==QD=(((t=;t=,t=或时,。
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 0C. 2D. -52. 已知二次函数y=ax^2+bx+c的图象开口向上,且a=1,b=-4,c=3,则该函数的顶点坐标是()A. (2, 1)B. (1, 3)C. (-2, 1)D. (-1, 3)3. 在等腰三角形ABC中,AB=AC,若∠BAC=50°,则∠ABC的度数是()A. 40°B. 50°C. 60°D. 70°4. 已知等差数列{an}的前三项分别是2,5,8,则该数列的公差是()A. 3B. 4C. 5D. 65. 下列各图中,对应角∠A和∠B相等的是()A.B.C.D.6. 已知一次函数y=kx+b的图象经过点(1, 2)和(2, 3),则该函数的解析式是()A. y=1x+1B. y=1x+2C. y=2x+1D. y=2x+27. 在直角坐标系中,点P(3, 4)关于y轴的对称点是()A. (3, -4)B. (-3, 4)C. (-3, -4)D. (3, 4)8. 下列等式中,正确的是()A. a^2 = b^2,则a=bB. a^2 = b^2,则a=b或a=-bC. a^2 = b^2,则a=b或a+c=bD. a^2 = b^2,则a=c或a+b=c9. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°10. 已知等比数列{an}的首项a1=2,公比q=3,则该数列的第5项是()A. 18B. 24C. 30D. 36二、填空题(每题3分,共30分)11. 已知x+1=0,则x的值是______。
12. 若a+b=0,则a和b互为______。
13. 下列各数中,正数是______。
14. 下列各数中,有理数是______。
一、选择题(每题4分,共40分)1. 下列数中,不是有理数的是()A. 3.14B. -5C. √9D. 0.1010010001……2. 若a、b是实数,且a+b=0,则下列结论正确的是()A. a=0,b=0B. a≠0,b≠0C. a=0,b≠0D. a≠0,b=03. 下列方程中,解集不为空集的是()A. x^2 = -1B. x^2 - 4x + 3 = 0C. x^2 - 2x - 3 = 0D. x^2 + 2x + 5 = 04. 若一个三角形的三边长分别为3、4、5,则这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形5. 下列函数中,是二次函数的是()A. y = x^3 - 2x + 1B. y = 2x^2 - 3x + 4C. y = √xD. y = 1/x6. 若a、b是方程x^2 - 4x + 3 = 0的两个根,则a+b的值为()A. 2B. 3C. 4D. 57. 在直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,3)8. 若一个正方形的对角线长为6,则这个正方形的面积为()A. 18B. 24C. 36D. 489. 下列不等式中,正确的是()A. 2x + 3 > 5B. 2x + 3 < 5C. 2x - 3 > 5D. 2x - 3 < 510. 若m、n是方程x^2 - 2x - 3 = 0的两个根,则m^2 + n^2的值为()A. 4B. 5C. 6D. 7二、填空题(每题5分,共50分)11. 计算:-3 + 5 - 2 - 1 + 4 = _______12. 简化表达式:2a - 3b + 5a - 2b = _______13. 求方程2x - 3 = 7的解:x = _______14. 若一个等腰三角形的底边长为6,腰长为8,则这个三角形的面积是 _______15. 求函数y = -2x + 3的对称轴方程:_______16. 若一个长方体的长、宽、高分别为3、4、5,则这个长方体的体积是 _______17. 若a、b是方程x^2 - 5x + 6 = 0的两个根,则a^2 + b^2的值为 _______18. 在直角坐标系中,点P(-1,2)关于x轴的对称点的坐标是 _______19. 若一个圆的半径为5,则这个圆的周长是 _______20. 若m、n是方程x^2 - 3x + 2 = 0的两个根,则m+n的值为 _______三、解答题(每题10分,共30分)21. 解下列方程组:$$\begin{cases}x + y = 5 \\2x - 3y = 1\end{cases}$$22. 已知一个等腰三角形的底边长为10,腰长为13,求这个三角形的面积。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-1C. πD. √02. 若a=3,b=-2,则下列各式中,正确的是()A. a+b=5B. a-b=-5C. ab=6D. a÷b=-3/23. 下列各数中,无理数是()A. √4B. √9C. √0.25D. √-14. 若x²=9,则x的值为()A. 3B. -3C. 3或-3D. 无法确定5. 下列各式中,正确的是()A. 2x + 3 = 7B. 2x + 3 = 5C. 2x - 3 = 7D. 2x - 3 = 56. 下列各式中,二次根式是()A. √xB. √(x+1)C. √(x²+1)D. √(x³)7. 若a=2,b=3,则下列各式中,正确的是()A. a²+b²=13B. a²+b²=14C. a²-b²=5D. a²-b²=68. 下列各数中,正数是()A. -2B. 0C. 1/2D. -1/29. 若x=2,则下列各式中,正确的是()A. 2x=4B. 2x=3C. 2x=1D. 2x=010. 下列各数中,偶数是()A. 3B. 4C. 5D. 6二、填空题(每题3分,共30分)11. 3的平方根是________,9的立方根是________。
12. 若x=5,则2x+1的值为________。
13. 若a=4,b=2,则a²-b²的值为________。
14. 下列各式中,正确的是________。
15. 若x²=16,则x的值为________。
16. 下列各数中,无理数是________。
17. 若a=3,b=-2,则ab的值为________。
18. 下列各式中,正确的是________。
19. 若x=3,则下列各式中,正确的是________。
深圳市南山区八年级(上)期末数学试卷2014-2015学年广东省深圳市南山区八年级(上)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)的立方根是()A.8 B.﹣8 C.2 D.﹣22.(3分)下列运算正确的是()A.B.C.D.3.(3分)已知点P(x,y)是第三象限内的一点,且x2=4,|y|=3,则P点的坐标是()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(2,﹣3)4.(3分)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.5.(3分)下列命题中,真命题有()①实数和数轴上的点是一一对应的;②无限小数都是无理数;③Rt△ABC中,已知两边长分别是3和4,则第三边长为5;④两条直线被第三条直线所截,内错角相等;⑤三角形的一个外角大于任何一个和它不相邻的内角;⑥相等的角是对顶角.A.1个B.2个C.3个D.4个6.(3分)本学期的五次数学测验中,甲、乙两位同学的平均成绩一样,甲的方差S甲2=110,乙的五次成绩分别为80、85、100、90、95,则下列说法正确的是()A.甲、乙的成绩一样稳定B.甲的成绩稳定C.乙的成绩稳定D.不能确定7.(3分)如图,AB=AC,则数轴上点C所表示的数为()A.B.C.D.8.(3分)如图,一次函数y=kx+b的图象经过(2,0)和(0,4)两点,下列说法正确的是()A.函数值y随自变量x的增大而增大B.当x<2时,y<4C.k=﹣2D.点(5,﹣5)在直线y=kx+b上9.(3分)如图,五角星的顶点为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°10.(3分)两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B. C. D.11.(3分)如图,在长方形ABCD中,AB=4,BC=8,将△ABC沿着AC对折至△AEC位置,CE与AD交于点F,则AF的长为()A.3 B.4 C.5 D.612.(3分)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,下面结论错误的是()A.快递车从甲地到乙地的速度为100千米/时B.甲、乙两地之间的距离为120千米C.图中点B的坐标为(3,75)D.快递车从乙地返回时的速度为90千米/时二、填空题(本题有4小题,每小题3分,共12分.把答案填在答题卡上.)13.(3分)一次函数y=2x﹣3与一次函数y=6﹣x的交点坐标是.14.(3分)如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED=度.15.(3分)m为的整数部分,n为的小数部分,则m﹣n=.16.(3分)若,则﹣5x﹣6y的平方根=.三、解答题(本大题有7题,其中17题9分,18题6分,19题6分,20题6分,21题7分,22题8分,23题10分,共52分)17.(9分)(1)计算:;(2)已知:x=2+,求代数式x 2+3xy+y2的值;(3)解方程组.18.(6分)如图,已知△ABO(1)点A关于x轴对称的点坐标为,点B 关于y轴对称的点坐标为;(2)判断△ABO的形状,并说明理由.19.(6分)甲、乙两班参加市英语口语比赛,两班参赛人数相等.比赛成绩分为A、B、C、D 四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,组委会将甲、乙两所学校的成绩整理并绘制成统计图,已知乙学校有11人的成绩是A等级.根据以上提供的信息解答下列问题:(1)将甲学校的成绩统计图补充完整;(2)补全下面的表格,并根据表格回答问题学校平均分中位数众数甲学校87.6乙学校87.6 80①从平均数和中位数角度来比较甲、乙两所学校的成绩;②从平均数和众数角度来比较甲、乙两所学校的成绩.20.(6分)阅读下列解题过程:在进行含根号的式子的运算时,我们有时会碰上如一类的式子,其实我们可以将其进一步化简,如:===以上这种化简的步骤叫做分母有理化.请回答下列问题:(1)观察上面的解题过程,请化简;(2)利用上面提供的信息,求:+++…+的值.21.(7分)在△ABC中(1)如图1,∠A=50°,BO平分∠ABC,CO 平分∠ACB,∠BOC=;(2)如图2,∠A=60°,BO、CO分别是∠ABC、∠ACB的三等分线(即∠OBC=∠ABC,∠OCB=∠ACB),求∠BOC的度数;(3)如图3,BO、CO分别是∠ABC、∠ACB 的n等分线(即∠OBC=∠ABC,∠OCB=∠ACB),求∠BOC与∠A的数量关系.22.(8分)为鼓励居民节约用电,我市于2012年8月1日起,对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费.第一档为用电量在200千瓦时(含200千瓦时)以内的部分,执行基本价格;第二档为用电量在200千瓦时到400千瓦时(含400千瓦时)的部分,实行提高电价;第三档为用电量超出400千瓦时的部分,执行市场调节价格,每千瓦时0.98元.小明家2014年11月用电300千瓦时,电费209元,12月份用电210千瓦时,电费143.3元(1)请问我市家庭用电,第一档基本价格和第二档提高电价分别为多少元每千瓦时?(2)请写出电费y与家庭用电量x之间的函数关系式,并写出相应的自变量取值范围.23.(10分)如图,平面直角坐标系中,直线AB:y=﹣x+3与坐标轴分别交于A、B两点,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点.(1)直接写出A、B的坐标;A,B;(2)是否存在点P,使得△AOP的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.(3)是否存在点P使得△ABP是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2014-2015学年广东省深圳市南山区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)(2014秋•深圳期末)的立方根是()A.8 B.﹣8 C.2 D.﹣2【解答】解:∵﹣=﹣8,∴的立方根是﹣2,故选D.2.(3分)(2014秋•深圳期末)下列运算正确的是()A.B.C.D.【解答】解:A、+,无法计算,故此选项错误;B、+2,无法计算,故此选项错误;C、3﹣2,无法计算,故此选项错误;D、﹣=,正确,故选:D.3.(3分)(2014秋•深圳期末)已知点P(x,y)是第三象限内的一点,且x2=4,|y|=3,则P点的坐标是()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(2,﹣3)【解答】解:∵点P(x,y)是第三象限内的一点,∴x<0,y<0,∵x2=4,|y|=3,∴x=﹣2,y=﹣3,∴点P的坐标为(﹣2,﹣3).故选A.4.(3分)(2013•扬州)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.5.(3分)(2014秋•深圳期末)下列命题中,真命题有()①实数和数轴上的点是一一对应的;②无限小数都是无理数;③Rt△ABC中,已知两边长分别是3和4,则第三边长为5;④两条直线被第三条直线所截,内错角相等;⑤三角形的一个外角大于任何一个和它不相邻的内角;⑥相等的角是对顶角.A.1个B.2个C.3个D.4个【解答】解:①实数和数轴上的点是一一对应的,是真命题;②无限不循环小数都是无理数,故原命题是假命题;③Rt△ABC中,已知两边长分别是3和4,则第三边长为5或,故原命题是假命题;④两条平行线被第三条直线所截,内错角相等,故原命题是假命题;⑤三角形的一个外角大于任何一个和它不相邻的内角,是真命题;⑥相等的角不一定是对顶角,故原命题是假命题;真命题有2个,故选:B.6.(3分)(2014秋•深圳期末)本学期的五次数学测验中,甲、乙两位同学的平均成绩一样,甲的方差S甲2=110,乙的五次成绩分别为80、85、100、90、95,则下列说法正确的是()A.甲、乙的成绩一样稳定B.甲的成绩稳定C.乙的成绩稳定D.不能确定【解答】解:数据80、85、100、90、95平均数为:(85+80+100+90+95)÷5=90,方差为S 2=[(80﹣90)2+(85﹣90)2+(100﹣90)2+(90﹣90)2+(95﹣90)2]=50.∵S甲2=110,∴乙的方差小,∴乙更稳定,故选C.7.(3分)(2014秋•深圳期末)如图,AB=AC,则数轴上点C所表示的数为()A.B.C.D.【解答】解:由勾股定理得,AB==,∵AB=AC,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故选D.8.(3分)(2014秋•深圳期末)如图,一次函数y=kx+b的图象经过(2,0)和(0,4)两点,下列说法正确的是()A.函数值y随自变量x的增大而增大B.当x<2时,y<4C.k=﹣2D.点(5,﹣5)在直线y=kx+b上【解答】解:A、由于一次函数经过第二、四象限,则y随x的增大而减小,所以A选项错误;B、当x<2时,y>0,所以B选项错误;C、把(2,0)和(0,4)代入y=kx+b得,解得,所以C选项正确;D、一次函数解析式为y=﹣2x+4,当x=5时,y=﹣10+4=﹣6,则点(5,﹣5)不在直线y=kx+b 上,所以D选项错误.故选C.9.(3分)(2014秋•深圳期末)如图,五角星的顶点为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°【解答】解:如图,由三角形的外角性质得,∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故选B.10.(3分)(2014秋•深圳期末)两条直线y=ax+b 与y=bx+a在同一直角坐标系中的图象位置可能是()A.B. C. D.【解答】解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.11.(3分)(2014秋•深圳期末)如图,在长方形ABCD中,AB=4,BC=8,将△ABC沿着AC 对折至△AEC位置,CE与AD交于点F,则AF的长为()A.3 B.4 C.5 D.6【解答】解:∵四边形ABCD为矩形,∴AD=BC=8,DC=AB=4;AD∥BC,∠D=90°;∴∠FAC=∠ACB;由题意得:∠FCA=∠ACB,∴∠FAC=∠FCA,∴FA=FC(设为λ),则DF=8﹣λ;由勾股定理得:λ2=(8﹣λ)2+42,解得:λ=5,故选C.12.(3分)(2014秋•深圳期末)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,下面结论错误的是()A.快递车从甲地到乙地的速度为100千米/时B.甲、乙两地之间的距离为120千米C.图中点B的坐标为(3,75)D.快递车从乙地返回时的速度为90千米/时【解答】解:A、设快递车的速度为a千米/小时,由题意,得3a﹣3×60=120,解得:a=100.故A正确;B、由题意,得甲乙两地间的距离为:100×3=300≠120.故错误;C、120﹣60×=75,∴B(3,75).故正确;D、快递车从乙地返回时的速度为b千米/时,由题意,得(4﹣3)(60+b)=75,解得:b=90.故正确.故选B.二、填空题(本题有4小题,每小题3分,共12分.把答案填在答题卡上.)13.(3分)(2014秋•深圳期末)一次函数y=2x ﹣3与一次函数y=6﹣x的交点坐标是(3,3).【解答】解:联立两个一次函数的解析式有:,解得.所以两个函数图象的交点坐标是(3,3).故答案为:(3,3).14.(3分)(2014秋•深圳期末)如图,D是AB 上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED=52度.【解答】解:∵EA⊥BA,∴∠EAD=90°,∵CB∥ED,∠ABC=38°,∴∠EDA=∠ABC=38°,∴∠AED=180°﹣∠EAD﹣∠EDA=52°.15.(3分)(2014秋•深圳期末)m为的整数部分,n为的小数部分,则m﹣n=.【解答】解:∵3<<4,∴m=3,n=﹣3,∴m﹣n=3﹣(﹣3)=6﹣,故答案为:6﹣.16.(3分)(2014秋•深圳期末)若,则﹣5x﹣6y的平方根=±.【解答】解:由题意得,x2﹣9≥0且9﹣x2≥0,x﹣3≠0,所以,x2≥9且x2≤9,x≠3,所以,x2=9,x≠3,解得x=﹣3,所以,y=0,﹣5x﹣6y=﹣5×(﹣3)=15,﹣5x﹣6y的平方根是±.故答案为:±.三、解答题(本大题有7题,其中17题9分,18题6分,19题6分,20题6分,21题7分,22题8分,23题10分,共52分)17.(9分)(2014秋•深圳期末)(1)计算:;(2)已知:x=2+,求代数式x 2+3xy+y2的值;(3)解方程组.【解答】解:(1)原式=1+2﹣3﹣2+3=1;(2)∵x=2+,∴x+y=4,xy=1,∴原式=(x+y)2+xy=42+1=17;(3)方程组化简为,①×9﹣②得63y﹣3y=30,解得y=,把y=代入①得x+=5,解得x=所以方程组的解为.18.(6分)(2014秋•深圳期末)如图,已知△ABO(1)点A关于x轴对称的点坐标为(2,﹣4),点B关于y轴对称的点坐标为(﹣6,2);(2)判断△ABO的形状,并说明理由.【解答】解:(1)∵A(2,4),B(6,2),∴点A关于x轴对称的点坐标为(2,﹣4),点B关于y轴对称的点坐标为(﹣6,2),故答案为:(2,﹣4);(﹣6,2);(2)△ABO是等腰直角三角形.理由是:∵AO2=22+42=20,AB2=22+42=20,BO2=22+62=40,∴AO2+AB2=BO2,∴△ABO是等腰直角三角形.19.(6分)(2014秋•深圳期末)甲、乙两班参加市英语口语比赛,两班参赛人数相等.比赛成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,组委会将甲、乙两所学校的成绩整理并绘制成统计图,已知乙学校有11人的成绩是A等级.根据以上提供的信息解答下列问题:(1)将甲学校的成绩统计图补充完整;(2)补全下面的表格,并根据表格回答问题学校平均分中位数众数甲学校87.6 9090乙学校87.6 80 100①从平均数和中位数角度来比较甲、乙两所学校的成绩;②从平均数和众数角度来比较甲、乙两所学校的成绩.【解答】解:(1)乙学校参赛人数=11÷44%=25,由于两校参赛人数相等,所以甲学校成绩统计图中的C等级人数=25﹣6﹣12﹣5=2人;如图(2)甲学校中第13个成绩为90(分),90分出现的次数最多,所以甲学校的中位数为90(分),众数为90(分);乙甲学校中100分出现的次数最多,所以乙学校的众数为100(分),所以从平均数和中位数的角度看,甲学校的成绩好;从平均数和众数的角度看,乙学校的成绩好.故答案为90,90,100.20.(6分)(2014秋•深圳期末)阅读下列解题过程:在进行含根号的式子的运算时,我们有时会碰上如一类的式子,其实我们可以将其进一步化简,如:===以上这种化简的步骤叫做分母有理化.请回答下列问题:(1)观察上面的解题过程,请化简;(2)利用上面提供的信息,求:+++…+的值.【解答】(6分)(1)==;(2)利用上面提供的信息请化简,得+++…+==21.(7分)(2014秋•深圳期末)在△ABC中(1)如图1,∠A=50°,BO平分∠ABC,CO 平分∠ACB,∠BOC=115°;(2)如图2,∠A=60°,BO、CO分别是∠ABC、∠ACB的三等分线(即∠OBC=∠ABC,∠OCB=∠ACB),求∠BOC的度数;(3)如图3,BO、CO分别是∠ABC、∠ACB 的n等分线(即∠OBC=∠ABC,∠OCB=∠ACB),求∠BOC与∠A的数量关系.【解答】解:(1)∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°,故答案为:115°;(2)∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵BO、CO分别是∠ABC、∠ACB的三等分线,∴,∴∠BOC=180°﹣(∠OBC+∠OCB)=140°,(3)∵∠ABC+∠ACB=180°﹣∠A,BO、CO 分别是∠ABC、∠ACB的n等分线,∴∠OBC+∠OCB=(180°﹣∠A),∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(180°﹣∠A)=•180°+∠A.22.(8分)(2014秋•深圳期末)为鼓励居民节约用电,我市于2012年8月1日起,对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费.第一档为用电量在200千瓦时(含200千瓦时)以内的部分,执行基本价格;第二档为用电量在200千瓦时到400千瓦时(含400千瓦时)的部分,实行提高电价;第三档为用电量超出400千瓦时的部分,执行市场调节价格,每千瓦时0.98元.小明家2014年11月用电300千瓦时,电费209元,12月份用电210千瓦时,电费143.3元(1)请问我市家庭用电,第一档基本价格和第二档提高电价分别为多少元每千瓦时?(2)请写出电费y与家庭用电量x之间的函数关系式,并写出相应的自变量取值范围.【解答】解:(1)设第一档基本价格为x元,第二档提高电价为y元,根据题意列方程得,解得:.答:第一档基本电价为0.68元,第二档提高电价为0.73元;(2)当0≤x≤200时,y=0.68x;当200<x≤400时,y=0.68×200+0.73(x﹣200)=136+0.73x﹣146=0.73x﹣10;当x>400时,y=0.68×200+0.73×200+0.98×(x ﹣400)=136+146+0.98x﹣392=0.98x﹣110.综上所述,y=.23.(10分)(2014秋•深圳期末)如图,平面直角坐标系中,直线AB:y=﹣x+3与坐标轴分别交于A、B两点,直线x=1交AB于点D,交x 轴于点E,P是直线x=1上一动点.(1)直接写出A、B的坐标;A(0,3),B(4,0);(2)是否存在点P,使得△AOP的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.(3)是否存在点P使得△ABP是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)当x=0时,y=3.即A 点坐标是(0,3),当y=0时,﹣x+3=0,解得x=4,即B点坐标是(4,0);(2)存在这样的P,使得△AOP周长最小作点O关于直线x=1的对称点M,M点坐标(2,0)连接AM交直线x=1于点P,由勾股定理,得AM===由对称性可知OP=MP ,C△AOP =AO +OP +AP=AO +MP +AP=AO +AM=3+;(3)设P 点坐标为(1,a ),①当AP=BP 时,两边平方得,AP 2=BP 2,12+(a ﹣3)2=(1﹣4)2+a 2.化简,得6a=1.解得a=.即P 1(1,);②当AP=AB=5时,两边平方得,AP 2=AB 2,12+(a ﹣3)2=52.化简,得a 2﹣6a ﹣15=0.解得a=3±2,即P 2(1,3+2),P 3(1,3﹣2); ③当BP=AB=5时,两边平方得,BP 2=AB 2,即(1﹣4)2+a 2=52.化简,得a 2=16.解得a=±4,即P 4(1,4),P 5(1,﹣4).综上所述:P 1(1,);P 2(1,3+2),P 3(1,3﹣2);P 4(1,4),P 5(1,﹣4).参与本试卷答题和审题的老师有:zjx111;sd2011;星期八;zcx;lantin;sjzx;HJJ;gsls;CJX;郝老师;sjw666;hdq123;守拙;智波;lanchong;Ldt;2300680618;dbz1018(排名不分先后)菁优网2017年1月7日。
一、选择题(每题3分,共30分)1. 下列数中,是整数的是()A. √9B. -2.5C. 0.25D. √162. 下列式子中,正确的是()A. 2a + 3b = 5B. 2a + 3b = 5aC. 2a + 3b = 2a + 5bD. 2a + 3b = 2a - 5b3. 已知 a = 3,b = 4,则a² + b² 的值是()A. 9B. 16C. 25D. 494. 下列图形中,是平行四边形的是()A.B.C.D.5. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 4x + 5 = 9D. 5x - 6 = 116. 已知三角形的三边长分别为 3、4、5,则这个三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形7. 下列函数中,是反比例函数的是()A. y = x + 2B. y = 2xC. y = 2/xD. y = x²8. 下列不等式中,正确的是()A. 2x > 4B. 3x < 6C. 4x ≤ 8D. 5x ≥ 109. 下列式子中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²10. 下列图形中,是圆的是()A.B.C.D.二、填空题(每题3分,共30分)11. √16 = (),(-2)² = (),3/4 = (),0.25 = ()12. 已知 a = -3,b = 5,则 a + b = (),a - b = (),ab = ()13. 已知 a = 2,b = 3,则(a + b)² = (),(a - b)² = ()14. 已知 x + y = 5,x - y = 1,则 x = (),y = ()15. 已知a² - 5a + 6 = 0,则 a = ()16. 已知 2x - 3 = 7,则 x = ()17. 已知 3x + 4 = 9,则 x = ()18. 已知 4x - 5 = 11,则 x = ()19. 已知 5x + 6 = 10,则 x = ()20. 已知 6x - 7 = 13,则 x = ()三、解答题(每题10分,共40分)21. 简化下列式子:2(a + b) - 3(a - b)22. 已知 a = 3,b = 4,求(a + b)² - (a - b)²23. 已知 x + y = 5,x - y = 1,求 x 和 y 的值24. 已知 2x - 3 = 7,求 x 的值25. 已知 3x + 4 = 9,求 x 的值四、应用题(每题10分,共40分)26. 一辆汽车从甲地出发,以每小时60公里的速度行驶,经过3小时到达乙地。