高等数学第3版(张卓奎 王金金)第七章习题解答
- 格式:doc
- 大小:1.42 MB
- 文档页数:21
1第八章 重积分习题全解习题 8-11. 利用二重积分定义证明:(1)d Dσσ=⎰⎰ ( 其中σ是D 的面积);(2)(,)d (,)d DDkf x y k f x y σσ=⎰⎰⎰⎰ (k 为常数); 2.证明性质8 中(1)设积分域D 关于x 轴对称,1D 表示D 中0y ≥的部分, (i)若(,)f x y 是y 的奇函数,即(,)(,),f x y f x y -=-则(,)0Df x y d σ=⎰⎰;(ii)若(,)f x y 是y 的偶函数,即(,)(,),f x y f x y -=则1(,)d 2(,)d DD f x y f x y =⎰⎰⎰⎰σσ。
证:由积分域D 关于x 轴对称,1D 表示D 中0y ≥的部分,则积分与如图8-1所示。
则()()(,)d d (,)d b x ax Df x y x f x y y -=⎰⎰⎰⎰ϕϕσ若(,)(,),f x y f x y -=-则()()(,)d d (,)d 0d 0b x bax aDf x y x f x y y x -===⎰⎰⎰⎰⎰ϕϕσ 若(,)(,),f x y f x y -=则1()()()(,)d d (,)d 2d (,)d 2(,)d b x b x ax aDD f x y x f x y y x f x y y f x y -===⎰⎰⎰⎰⎰⎰⎰⎰ϕϕϕσσ。
3.设12231()D I x y d σ=+⎰⎰,其中1D 是矩形闭区域:11,22x y -≤≤-≤≤;又22232()D I x y d σ=+⎰⎰,其中2D 是矩形闭区域:01,02x y ≤≤≤≤.试用二重积分的对称性质表示1I 与2I 之间的关系. 解:1222322312()4()4D D I x y d x y d I σσ=+=+=⎰⎰⎰⎰ 4.设D 是由1,1x y x y +=-=及0x =所围成的三角D1D ()y x =ϕ()y x =-ϕb axyO图8-1图8-22形,根据二重积分的对称性计算二重积分d .Dy σ⎰⎰解:画出积分区域D 的草图8-2,可见D 对称于x 轴,而被积函数(,)f x y y =对y 是奇函数,因此d 0Dy σ=⎰⎰。
高等数学上第七章教材答案首先,我们需要明确在高等数学第七章教材中涉及的主要内容和问题。
第七章通常是关于多元函数的导数和微分学的学习。
在本文中,将提供一些关于多元函数导数和微分的例题和详细解答。
1. 多元函数的导数第七章首先介绍了多元函数的导数的定义和性质。
多元函数的导数可以通过偏导数求解,即固定其它变量,只对某个变量求导。
举例来说,如果给出一个多元函数 f(x, y),其中 x 和 y 是变量,我们可以通过求解∂f/∂x 和∂f/∂y 来得到该函数的偏导数。
例题 1:考虑函数 f(x, y) = x^2 + 3xy + y^2,求该函数的偏导数∂f/∂x 和∂f/∂y。
解答 1:对于∂f/∂x,将 y 视为常数,则有∂f/∂x = 2x + 3y。
对于∂f/∂y,将 x 视为常数,则有∂f/∂y = 3x + 2y。
2. 多元函数的微分在第七章的后半部分,我们学习了多元函数的微分。
微分是导数的线性逼近,可以用于估计函数值的变化。
多变量函数的微分可以通过求出各个偏导数的和来得到。
例题 2:给定函数 g(x, y) = x^3 + 2xy^2 - y^3,求该函数在点 (1, 2) 处的微分dg。
解答 2:首先计算各个偏导数:∂g/∂x = 3x^2 + 2y^2,∂g/∂y = 4xy - 3y^2。
然后带入点 (1, 2) 得到∂g/∂x = 7,∂g/∂y = -8。
因此,在点 (1, 2) 处的微分dg = ∂g/∂x · dx + ∂g/∂y · dy = 7dx - 8dy。
3. 高阶偏导数和混合偏导数在处理多元函数时,我们还需要了解高阶偏导数和混合偏导数的概念。
高阶偏导数指的是多次对同一变量求导的结果,而混合偏导数则是对多个变量进行求导后的结果。
例题 3:考虑函数 h(x, y) = x^3 + x^2y + xy^2 + y^3,求该函数的二阶偏导数∂^2h/∂x^2。
高等数学第三册教材答案第一章:函数与极限1. 函数的概念与性质2. 极限的概念与性质3. 数列极限4. 函数极限第二章:导数与微分1. 导数的概念与性质2. 基本导数公式3. 高阶导数4. 微分的概念与性质第三章:一元函数微分学1. 可导函数与连续函数的关系2. 导数的运算法则3. 高阶导数的应用4. 幂指函数的微分第四章:函数的积分学1. 定积分的意义与性质2. 不定积分3. 积分的运算法则4. 牛顿-莱布尼茨公式第五章:定积分的应用1. 几何应用2. 物理应用3. 统计应用4. 应用题解析技巧第六章:多元函数微分学1. 多元函数的极限与连续2. 偏导数与全微分3. 隐函数与参数方程的微分4. 多元函数的极值与条件极值第七章:多元函数积分学1. 二重积分的概念与性质2. 三重积分的概念与性质3. 曲线与曲面的积分4. 应用题解析技巧第八章:无穷级数1. 数项级数2. 幂级数3. 函数项级数4. 序列与函数项级数的收敛性第九章:常微分方程1. 方程与解的概念2. 一阶常微分方程3. 二阶常微分方程4. 齐次与非齐次常微分方程第十章:高级数学的应用1. 现实生活中的数学模型2. 数学在科学与工程中的应用3. 数学在经济学中的应用4. 数学在物理学中的应用以上是《高等数学第三册教材》的答案概述,涵盖了每个章节的主要内容和重点。
这些答案有助于学生巩固对每个主题的理解,并通过实际的应用题目来提高解题能力。
希望这份答案可以帮助你更好地掌握高等数学知识。
考研高等数学教材答案
教材:《高等数学》(第三版)
答案版本:参考答案
引言:
在考研备考过程中,高等数学是一门重要的学科。
为了更好地帮助
广大考生对高等数学知识点进行复习和巩固,本文提供了《高等数学》(第三版)教材的答案。
考生可以参考本文答案,结合教材进行自我
检测,以达到更好的备考效果。
第一章微分学
1. 函数、极限与连续
答案:略
2. 导数与微分
答案:略
3. 高阶导数与隐函数、参数方程的微分
答案:略
......
第二章积分学
1. 不定积分
2. 定积分及其应用
答案:略
3. 定积分的计算
答案:略
4. 微积分基本定理与换元积分法答案:略
......
第三章级数
1. 数项级数
答案:略
2. 幂级数
答案:略
3. 函数项级数
答案:略
......
第四章常微分方程
1. 微分方程基本概念与初等解法
2. 可降阶的高阶线性微分方程答案:略
3. 高阶线性微分方程的解法答案:略
......
第五章多元函数微分学
1. 二元函数微分学
答案:略
2. 多元函数微分学
答案:略
3. 隐函数与参数方程
答案:略
......
第六章无穷级数与函数展开1. 广义积分
答案:略
2. 无穷级数
......
结语:
本文提供了《高等数学》(第三版)教材答案的相应章节,以帮助考生在备考过程中进行自我检测,巩固知识点。
考生可以结合教材进行学习和复习,加深对数学知识的理解和掌握。
祝愿广大考生在考研中取得优异成绩!。
习题1.在空间直角坐标系中,指出下列各点位置的特点.()0,5,0-A ;()0,3,3-B ;()3,0,6-C ;()0,0,4D ;()7,5,0-E ;()9,0,0F .【解】A 点在y 轴上;B 点在xoy 坐标面上;C 点在zox 坐标面上;D 点在x 轴上;E 点在yoz 坐标面上;F 点在z 轴上. 2.指出下列各点所在的卦限.()1,3,2-A ;()2,1,7--B ;()1,3,2---C ;()3,2,1--D .【解】A 点在第五卦限;B 点在第三卦限;C 点在第七卦限;D 点在第六卦限. 3.自点()2,3,1--M 分别作xoy 、yoz 、zox 坐标面和x 、y 、z 坐标轴的垂线,写出各垂足的坐标,并求出点M 到上述坐标面和坐标轴的距离.【解】()2,3,1--M 在xoy 坐标面上的垂足为()0,3,1-、在yoz 坐标面上的垂足为()2,3,0-、在zox 坐标面上的垂足为()2,0,1--;()2,3,1--M 在x 轴的垂足为()0,0,1-、在y 轴的垂足为()0,3,0、在z 轴的垂足为()2,0,0-;()2,3,1--M 到x 轴的距离为()132322=-+;()2,3,1--M 到y 轴的距离为()()52122=-+-;()2,3,1--M 到z 轴的距离为()103122=+-.3.已经点()2,1,3--M .求:(1)点M 关于各坐标面对称点的坐标;(2)点M 关于各坐标轴对称点的坐标;(3)点M 关于坐标原点的对称点的坐标. 【解】(1)()2,1,3--M 关于xoy 面对称点的坐标是(),2,1,3-; ()2,1,3--M 关于yoz 面对称点的坐标是(),2,1,3---;()2,1,3--M 关于zox 面对称点的坐标是(),2,1,3-.(2)()2,1,3--M 关于x 轴对称点的坐标是(),2,1,3;()2,1,3--M 关于y 轴对称点的坐标是(),2,1,3--;()2,1,3--M 关于z 轴对称点的坐标是(),2,1,3--.(3)()2,1,3--M 关于坐标原点的对称点的坐标是(),2,1,3-. 5.求点()5,3,4-A 到坐标原点和各坐标轴的距离.【解】 ()5,3,4-A 到坐标原点距离为()25534222=+-+;()5,3,4-A 到x 轴的距离为()345322=+-;()5,3,4-A 到y 轴的距离为415422=+; ()5,3,4-A 到z 轴的距离为()53422=-+.6.在y 轴上求与点()7,2,3-A 和()7,1,3-B 等距离的点. 【解】设所求点为()0,,0y C .据题意,有 BC AC =,即()()()()=-+-+--22270230y ()()()()22270130--+-+-y解得 23=y .所以,所求之点为.0,23,0⎪⎭⎫ ⎝⎛C 7.已知三角形ABC 的顶点坐标分别为()3,2,1A 、()3,10,7B 和()1,3,1-C ,试证明 ∠BAC 为钝角. 【解】AB 边长()()()103321017222=-+-+-==AB c ;AC 边长()()()()3312311222=-+-+--=b ; BC 边长()()()()1173110371222=-+-+--=a .由余弦定理知cos ∠BAC ()010321171032222222<⨯⨯-+=-+=bc a c b ,所以,∠BAC 为钝角.8.试在xoy 面上求一点,使它到()5,1,1-A 、()4,4,3B 和()1,6,4C 各点的距离相等.【解】设所求点为()0,,y x D .据题意,有 CD BD AD ==,即()()()()=-+--+-2225011y x ()()()222443-+-+-z y x()()()222164-+-+-=z y x解得 5,16-==y x .所以,所求之点为().0,5,16-D习题1.设平行四边形ABCD 的对角线向量b BD a AC ==,,试用a ,b 表示DA CD BC AB ,,,.【解】记平行四边形ABCD 的对角线的交点为O .()b a b a BD AC OD OC DC AB -=-=-=-==2121212121; 同理可求出,()b a a b OC BO BC +=+=+=212121;()a b AB CD -=-=21;()b a BC DA +-=-=21.2.已知向量n m a 23-=,n m a +=.试用向量n m ,表示b a 32-. 【解】b a 32-()()n m n m n m 733232-=+--=.3.设c b a u 2-+=,c b a v +--=3.试用向量c b a ,,表示v u 32-. 【解】v u 32-()()c b a c b a c b a 71153322-+=+----+=. 4.设ABCDEF 是一个正六边形,AF b AB a ==,,试用a ,b 表示EF DE CD BC ,,,.【解】记六边形ABCDEF 的对角线的交点为O .则四边形ABOF 、CDEO 、DEFO 及ABCO 均为平行四边形.由向量加法的平行四边形法则知,b a AF AB AO BC +=+==; b AF CD ==;a BA BA AO DE -=-===;().b a BC EF +-=-=5.设向量k a j a i a a z y x ++=,,若它满足下列条件之一:(1)a 垂直于z 轴;(2)a 垂直于xoy 面;(3)a 平行于yoz 面.那么它的坐标有什么有何特征? 【解】(1)因为a 垂直于z 轴,故0.=k a ,即0=z a ;(2)因为a 垂直于xoy 面,故a 平行于z 轴,从而a ∥{}1,0,0=k ,所以,0==y x a a .(3)a 平行于yoz 面,故垂直于x 轴,从而.a 0=i ,所以,0=x a . 6.已知向量{}7,4,4-=AB ,它的终点坐标为()7,1,2-B ,求它的起点坐标. 【解】设起点()z y x A ,,,则{}z y x AB ----=7,1,2,根据已知条件,有77,41,42=--=--=-z y x ,解得 .0,3,2==-=z y x 所以,起点坐标为 ()0,3,2-A .7.已知向量{}1,1,6-=a ,{}0,2,1=b .求 (1)向量b a c 2-=; (2)向量c 的方向余弦; (3)向量c 的单位向量. 【解】(1)c {}{}{}{}{}{}1,3,401,41,260,4,21,1,60,2,121,1,6--=----=--=--=.(2()()26134222=-+-+=.故,⎭⎬⎫⎩⎨⎧--==261,263,2640c c ,所以,向量c 的方向余弦为.261cos ,263cos ,264cos -=-==γβα(3).向量c 的单位向量为⎭⎬⎫⎩⎨⎧--±261,263,264.8.试确定m 和n 的值,使向量k n j i a ++-=32和k j i m b 26+-=平行. 【解】因为a ∥b ,所以2632nm =-=-,解得 .1,4-==n m9.已知向量{}12,9,8-=b 及点()7,1,2-=A ,由点A 作向量AM 34=, 且AM 与b 的方向相同.求向量AM 的坐标表达式及点M 的坐标.【解】设()z y x M ,,,则{}7,1,2-+-=z y x AM .据题意知AM ∥b 且与b 同向,因此有λ=--=+=-1279182z y x ,① 且 0>λ. ② 由①式得 λλλ127,91,82=-++=-z y x .又已知34=,故有 ()()()341298222=++λλλ. ③③式化简得4115628922=⇒=λλ,解得 2=λ或2-=λ(舍).所以,.17,17,18-===z y x因此AM {}24,18,16-=,()17,17,18-=M .10.已知点()4,2,1--A 和点()z B ,2,6-9=,求z 的值.【解】()(){}{}4,4,74,22,16+-=------=z z AB .9=,得()()9447222=++-+z ,化简得082=+z z ,解之,得 0=z 或.8-=z11.已知点()1,2,41M 和点()2,0,32M ,计算向量21M M 的模、方向余弦和方向角. 【解】{}{}1,2,112,20,4321--=---=M M ;()()2121222=+-+-=.因为{}⎭⎬⎫⎩⎨⎧--=--==21,22,211,2,12121021M M M M .所以21M M 的方向余弦是.21cos ,22cos ,21cos =-=-=γβα 方向角为.3cos ,43,32πγπβπα===12.求与下列向量a 同方向的单位向量0a . (1){}1,4,2-=a ;(2)k j i a ++-=32. 【解】(1()21142222=+-+=,所以{}⎭⎬⎫⎩⎨⎧-=-==211,214,2121,4,22110a a .(2()14132222=++-=,所以.141,143,1421410⎭⎬⎫⎩⎨⎧-==a a 习题1.设向量k j i a 23--=,k j i b -+=2.求:(1)b a .;(2)b a ⨯;(3)()()b a 32⨯-;(4)()b a 2⨯;(5)向量b a ,的夹角. 【解】(1)()()()3122113.=-⨯-+⨯-+⨯=b a ;(2)k j i j b a 7521++=-=⨯;(3)()()()1836.63.2-=⨯-=-=-b a b a ;(4)()()k j i b a b a 1421022++=⨯=⨯;(5)()()14213222=-+-+=()6121222=-++=,故21236143.,cos =⨯==⎪⎪⎭⎫ ⎝⎛∧b a b a ,所以向量b a ,的夹角为.2123arccos ,=⎪⎪⎭⎫ ⎝⎛∧b a2.设向量a ,b ,c 为单位向量,且满足0=++c b a ①.求:a c c b b a ...++. 【解】由①式得()0.=++c b a a ;()0.=++c b a b ; ()0.=++c b a c .即0..=++c a b a ; ②0..=+c b a b ; ③0..=++b c a c ; ④ 将②、③、④相加得()03...2=+++a c c b b a所以,.23...-=++a c c b b a3.已知点()2,1,1-A ,()2,6,5-B ,()1,3,1-C 求: (1)同时与AB 及AC 垂直的单位向量; (2)ABC ∆的面积. 【解】(1)AB AC⨯{}16,12,151612153405=++=--=k j i kj .25161215222=++=. 所以,同时与AB 及AC 垂直的单位向量为{}⎭⎬⎫⎩⎨⎧±=±=⨯±2516,2512,25116,12,15251AC AB .(2)ABC ∆的面积225==. 4.设{}2,5,3-=a ,{}4,1,2=b ,则当实数λ与μ有什么关系时,能使b a μλ+与z 轴垂直?【解】{}μλμλμλμλ42,5,23+-++=+b a .要使b a μλ+与z 轴垂直,只须b a μλ+与{}1,0,0=k 垂直,于是有()042.=+-=+μλμλk b a ,即 .2μλ=5.设质量为100kg 的物体从点()8,1,31M 沿直线移动到点()2,4,1M ,计算重力所做的功.【解】{}6,3,21--==M M s ,{}{}980,0,01008.9,0,0=⨯-=F .所以,{}{}58806,3,2.980,0,0.=---==s F W (焦耳).6.已知{}3,2,1-=a ,{}1,4,2-=b ,{}0,2,4=c ,b a ⨯是否与c 平行?【解】{}0,5,1005104221--=+--=--=⨯k j i j i b a ;因为c b a 52-=⨯,所以,b a ⨯与c 平行.7.求一个单位向量使其同时垂直向量{}0,1,1=a 和{}1,1,0=b .【解】{}1,1,111-=+-==⨯k j i j b a .()3111222=+-+=. 所以同时垂直向量a 和b 向量的单位向量为 {}1,1,131-±=⨯±b .习题1.求过点()1,0,3-且与平面012573=-+-z y x 平行的平面方程.【解】已经平面的法向量为{}5,7,3-=n .据题意知,所求平面的法向量可也取作n .所以据平面的点法式方程,所求平面即为 ()()()()0150733=--+---z y x . 化简得 04573=-+-z y x .2.求过点()6,9,20-M 且与连接坐标原点O 及0M 的线段0OM 垂直的平面方程. 【解】据题意知,所求平面的法向量可也取作{}6,9,20-==OM n .所以据平面的点法式方程,所求平面即为 ()()()()0669922=----+-z y x . 化简得 0121692=--+z y x .3.求过点()1,1,1-、()2,2,2--和()2,1,1-三点的平面方程. 【解】据平面的三点式方程,所求平面为()()()0121111121212111=---------------z y x . 即 ()()()0161913=++-+--z y x . 化简得 023=--z y x .4.求平面0522:=++-z y x π与坐标面xoy 、yoz 及zox 的夹角的余弦. 【解】平面π的法向量为{}1,2,2-=n ;xoy 面的法向量为{}1,0,0=k . 由公式,平面π与xoy31=;同理, 平面π与yoz32=; 平面π与zox32-=.5.求点()1,2,1平面01022:=-++z y x π的距离. 【解】12211012221222=++-⨯+⨯+=d .6.求两平行平面0:11=+++D Cz By Ax π与0:22=+++D Cz By Ax π之间的距离.【解】在1π上任取一点()1111,,z y x M ,则1M 到2π的距离d 就是所求1π与2π之间的距离.由点到平面的距离公式得 2222111CB A D Cz By Ax d +++++=. ①又11π∈M ,故有 0:11111=+++D Cz By Ax π,即1D Cz By Ax -=++. ②将②代入①,立得 22212CB A D D d ++-=.7.一平面通过()1,1,11M 和()11,02-M 两点,且垂直于平面0=++z y x .求该平面方程.【解】已知平面0=++z y x 的法向量为{}1,1,1=n ,{}2,0,121--=M M .据题意,可取所求平面的法向量为{}1,1,2211120121--=--=--=⨯k j i kj in M M . 所以,所求平面方程为()()()011.11.2=-----z y x ,即 02=--z y x .8.求满足下列条件的平面方程:(1)过点()2,1,3--和z 轴;(2)过点()2,0,4-及()7,1,5且平行于x 轴;(3)过点()3,5,2-,且平行于zox 面;(4)过点()1,0,1-且同时平行于向量k j i a ++=2,j i b -=.【解】(1)根据题意,可设所求平面的一般式方程为0:=+By Ax π. ①又将点()2,1,3--的坐标代入①,得03=+-B A ,即 A B 3=.因此,所求平面π为.03=+Ay Ax ②注意到0≠A (否则π的法向量为零向量),所以②两边除以A ,得到 03:=+y x π.(2)根据题意,可设所求平面的一般式方程为0:=++D Cz By π. ①又将点()2,0,4-及()7,1,5的坐标分别代入①,得⎩⎨⎧=++=+-.07,02D C B D C ,故 ⎩⎨⎧-==.9,2C B C D .因此,所求平面π为.029=++-C Cz Cy ②注意到0≠C (否则π的法向量为零向量),所以②两边除以C ,得到 029:=++-z y π.(3)根据题意,可设所求平面的一般式方程为0:=+D By π. ①又将点()3,5,2-的坐标代入①,得05=+-D B ,即 B D 5=.因此,所求平面π为.05=+B By ②注意到0≠B (否则π的法向量为零向量),所以②两边除以B ,得到 05:=+y π.(4)根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.将点()1,0,1-的坐标代入①,得0=+-D C A . ② 又因为π同时平行于向量k j i a ++=2,j i b -=,故n 同时垂直于向量k j i a ++=2,j i b -=,于是有.02=++C B A ③ .0=-B A ④ ②、③、④联立得到A D A C AB 4,3,-=-==因此①成为043:=--+A Az Ay Ax π . ⑤ 注意到0≠A (否则π的法向量为零向量),所以⑤两边除以A ,得到 043:=--+z y x π.9.平面在y 、z 轴上的截距分别为30,10,且与{}3,1,2=r 平行,求该平面方程.【解】根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.因为π在y 、z 轴上的截距分别为30,10,故π过点()0,30,0及(),10,0,0.将此两点坐标代入①得030=+D B . ②及 010=+D C . ③又已知π与{}3,1,2=r 平行,故n 垂直于向量r ,于是有032=++C B A . ④②、③、④联立得到B A BC BD 5,3,30-==-=.因此①成为03035:=-++-B Bz By Bx π. ⑤注意到0≠B (否则π的法向量为零向量),所以⑤两边除以B ,得到 03035:=-++-z y x π.10.指出下列各平面的特殊位置,并画出各平面.(1)013=-x ;(2)012=-+z y ;(3)02=+z x ;(4)135=-+z y x .【解】(1)因方程中z y ,前面的系数为零,故平面013=-x 平行于yoz 面;(2)因方程中x 前面的系数为零,故平面012=-+z y 平行于x 轴;(3)因方程中没有常数项,且y 前面的系数为零,故平面02=+z x 通过y 轴;012=-+z y 02=+z x ;(4)135=-+z y x 可化为113151=-++z y x ,故135=-+z y x 是在x 轴、y 轴、z 轴上的截距分别为51、31和1-的平面. 习题1.用点向式方程及参数式方程表示直线⎩⎨⎧=++=+-.42,1:z y x z y x L 【解】任取方程组的一组解⎪⎩⎪⎨⎧===.1,1,1z y x 则有,L 过点()1,,1,10M .可取直线的方向为{}3,1,232121121-=++-=-=⨯k j i j in n . 所以,所求直线L 的点向式方程为 311121-=-=--z y x . 进一步,L 的参数式方程为⎪⎩⎪⎨⎧+=+=-=.31,1,21t z t y t x2.求过()1,2,31-P 、()2,0,12-P 两点的直线方程.【解】可取直线的方向为 {}1,2,421-==P P s . 故所求直线为.112243-=+=--z y x 3.求过点()3,1,4-且平行于直线51123-==-z y x 的直线方程.【解】根据题意知,可取所求直线的方向为{}5,1,2=s .故所求直线为 .531124-=+=-z y x 4.求过()1,32-且垂直于平面0132=+++z y x 的直线方程.【解】可取直线的方向为 {}1,3,2=s .故所求直线为.113322-=+=-z y x 5.求过点()2,1,00M 且与直线21111z y x =--=-垂直相交的直线方程. 【解】 过点()2,1,0且与直线21111z y x =--=-垂直的平面π为 ()()()02210.1:=-+---z y x π.即 032:=-+-z y x π . ① 化直线21111z y x =--=-为参数式得 ⎪⎩⎪⎨⎧=-=+=.2,1,1t z t y t x ②将②代入①,有()()()032211=-+--+t t t . ③ 解得 21=t . 故直线21111z y x =--=-与平面π的交点为⎪⎭⎫ ⎝⎛1,21,231M . 因此所求直线的方向为 ⎭⎬⎫⎩⎨⎧--==1,21,2310M M s ∥{}2,1,3-. 故所求直线为.221130-=-=--z y x6. 过点()0,2,10-M 向平面012=+-+z y x 作垂线,求垂足坐标.【解】 过点()0,2,10-M 且与平面012=+-+z y x 垂直的直线L 为 .102211:--=-=+z y x L ① 化直线L 为参数式得⎪⎩⎪⎨⎧-=+=+-=.,22,1t z t y t x ②将②代入平面012=+-+z y x 方程中,得()()()012221=+--+++-t t t . ③解得 32-=t . 故垂足坐标为⎪⎭⎫ ⎝⎛-32,32,351M . 7.求直线⎩⎨⎧=-+-=-+-,0123,09335:1z y x z y x L 与⎩⎨⎧=-++=+-+.01383,02322:2z y x z y x L 的夹角θ. 【解】1L 的方向为{}1,4,34323351-=-+=--=k j i j is ; 2L 的方向为{}10,5,101051083222-=+-==k j i j is ∥{}2,1,2-. 因为()()0211423.21=⨯-+-⨯+⨯=s s ,所以1L 与2L 垂直,从而2πθ=.8.求直线21121:+=-=-z y x L 与平面02:=+-z y x π的夹角θ. 【解】1L 的方向为{}2,1,2-=s ,平面π的法向量为{}2,1,1-=n . ()()7221112.=⨯+-⨯-+⨯=n s .()3212222=+-+=. ()6211222=+-+=.故637sin ⨯==θ,所以,637arcsin ⨯=θ.9.求过点()2,0,10-M 且垂直于平面032:=+-z y x π的直线方程.【解】根据题意知,所求直线L 的方向向量即为平面π之法向量,即 {}3,12-=s . 所以,由点向式方程知,所求直线为321021:+=--=-z y x L . 10.设平面π过直线130211:1--=-=-z y x L ,且平行于直线11122:2z y x L =-=+,求平面π的方程.【解】显然面π过点()3,,2,10M . 可取面π的法向量为{}1,3,13120121-=+-==⨯=k j i j is s n . 所以,平面π的方程为 ()()()03.12.31.1=-+---z y x .化简得023:=++-z y x π.11.求过点()1,2,10P 和直线⎩⎨⎧=--=-.032,6:z y x z x L 的平面π的方程. 【解】直线L 的参数方程为⎪⎩⎪⎨⎧-=+-==.6,9,:x z x y x x L显然L 过点()6,9,01-P ,且L 的方向为{}1,11-=s .根据题意,可取平面π的法向量为{}6,6,0660117110--=--=--=⨯=k j i j is P P n ∥{}1,1,0. 所以,平面π的方程为 ()()()01.12.11.0=-+-+-z y x .化简得03:=-+z y π.习题1.指出下列方程在平面解析几何与空间解析几何中分别表示何种几何图形.(1)1=-y x ;(2)x y 22=;(3)122=-y x ;(4)1222=+y x . 【解】(1)1=-y x 在平面解析几何中表示一条直线,在空间解析几何中表示一张平行于z 轴的平面;(2)x y 22=在平面解析几何中表示一条抛物线,在空间解析几何中表示一张抛物柱面;(3)122=-y x 在平面解析几何中表示一条双曲线,在空间解析几何中表示一张双曲柱面;(4)1222=+y x 在平面解析几何中表示一条椭圆曲线,在空间解析几何中表示一张椭圆柱面.2.写出下列曲线绕指定坐标轴旋转一周而得到的旋转曲面的方程.(1)zox 面上的抛物线x z 52=绕x 轴旋转一周;(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周;(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周.【解】(1)zox 面上的抛物线x z 52=绕x 轴旋转一周得到的曲面是 ()x z y 5222=+±,即 x z y 522=+.(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周得到的曲面是 ()36942222=-+±y z x ,即36494222=+-z y x .(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周而得到的曲面是 ()013222=+-+±z y x ,即()()222134-=+z y x . 3.说明下列旋转曲面是怎样形成的.(1)1994222=++z y x ;(2)14222=+-z y x ;(3)1222=--z y x ; 【解】(1)1994222=++z y x 由曲线⎪⎩⎪⎨⎧==+,0,19422z y x 绕x 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==+,0,19422y z x 绕x 轴旋转一周而形成. (2)14222=+-z y x 由曲线⎪⎩⎪⎨⎧==-,0,1422z y x 绕y 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==-,0,1422x y z 绕y 轴旋转一周而形成. (3)1222=--z y x 由曲线⎩⎨⎧==-,0,122z y x 绕x 轴旋转一周而形成;或由曲线⎩⎨⎧==-,0,122y z x 绕x 轴旋转一周而形成. 4.指出下列各方程所表示的曲面.(1)14416916222=++z y x ;(2)144944222=+-z y x ;(3)z y x 729422=-;(4)16922=+z y ;(5)22z y x --=;(6)224y z x =+;(7)36249222=++z y x ;(8)444222=-+x y z .【解】(1)原方程可化为()1169222=++y z x . 所以,原方程表示的是旋转椭球面.(2)原方程可化为 1163838222=+-z y x . 所以,原方程表示的是双叶双曲面.(3)原方程可化为81822y x z -= 所以,原方程表示的是双曲抛物面,即马鞍面.(4)原方程可化为 11691622=+z y . 所以,原方程表示的是椭圆柱面.(5)原方程可化为()22z y x +-=.所以,原方程表示的是旋转抛物面.(6)原方程可化为4122z y x -=.所以,原方程表示的是双曲抛物面,即马鞍面. (7)原方程可化为11894222=++z y x . 所以,原方程表示的是椭球面. (8)原方程可化为1141222=-+x z y . 所以,原方程表示的是单叶双曲面.习题1.求球心在()3,2,1,半径为3的球面与平面5=z 的交线方程(写出一般式方程和参数式方程),并求出该曲线绕z 轴旋转一周而成的旋转曲面的方程. 【解】(一)球心在()23,1,半径为3的球面方程为 ()()()9321222=-+-+-z y x .故球面与平面5=z 的交线的一般式方程为()()()⎩⎨⎧==-+-+-Γ.5,9321:222z z y x即()()⎩⎨⎧==-+-Γ.5,521:22z y x化为参数式方程为[]π2,0.5,sin 52,cos 51:∈⎪⎪⎩⎪⎪⎨⎧=+=+=Γt z t y t x .(二)利用公式()()()()()[][]()πθβαθθ2,0,,.,sin ,cos 2222∈∈⎪⎪⎩⎪⎪⎨⎧=+=+=t t z z t y t x y t y t x x .Γ绕z 轴旋转一周而成的旋转曲面的方程为 [][]()πθπθθ2,0,2,0.5,sin sin 54cos 5210,cos sin 54cos 5210∈∈⎪⎪⎩⎪⎪⎨⎧=++=++=t z t t y t t x .2.分别求出母线平行于x 轴、y 轴且通过曲线()()⎪⎩⎪⎨⎧=+-=++Γ2,01,162:222222z y x z y x 的柱面方程. 【解】(一)(1)、(2)联立消去x ,得 16322=-z y .所以,母线平行于x 轴且通过曲线Γ的柱面为16322=-z y . (二)(1)、(2)联立消去y ,得 162322=+z x .所以,母线平行于x 轴且通过曲线Γ的柱面为162322=+z x . 3.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】(一)(1)、(2)联立消去z 得 22243R y x =+. 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得 R z 21=. 所以,Γ在zox 面上的投影曲线为.23.0,21R x y R z ≤⎪⎩⎪⎨⎧== (三)(1)、(2)联立消去x 得 R z 21=. 所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧== 5.画出下列各曲面所围立体的图形. (1)0,22==z x y 及1224=++zy x ; (2)0,,222==+=z y x y x z 及1=x . 【解】略.6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 7.写出圆锥面22:y x z S +=的参数方程.【解】().20,0.,sin ,cos πθθθ≤≤+∞<<⎪⎩⎪⎨⎧===r r z r y r x习题1.设向量值函数()k t j t i t t r ++=sin cos ,求()t r t 4lim π→. 【解】()t r t 4lim π→k j i k t j t i t t t t 42222lim sin lim cos lim 444ππππ++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=→→→. 2.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-='t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±='r 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为 ()()(){}|1,,='''=t t z t y t x s {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x s '''={}{}20023,2,13,2,1|0t t t t t t ===.由题意,欲使0M 点处的切线与平面π平行,只须s 与n 垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为 ()()(){}|,,='''=t t z t y t x s {}{}3,2,13,sin cos 2,cos |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为 322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .6.已知(){}t t t t r 2,1,12-+=表示空间一质点在时刻t 的位置,求质点在时刻t 的速度和加速度向量,并求质点在指定时刻1=t 的速率和运动方向. 【解】(一)时刻t 的速度向量为()()()()(){}2,2,12,1,12t t t t t r t v =⎭⎬⎫⎩⎨⎧''-'+='=; 时刻t 的加速度向量为()()()()(){}{}0,2,02,2,1='''=''=t t r t a .(二)1=t 的速度为(){}2,2,11=v )32211222=++=. 1=t 的速度为(){}2,2,11=v()⎭⎬⎫⎩⎨⎧=32,32,311.复习题71.填空题(1)设b a ,为非零向量,若0.=b a ,则必有a ⊥b .(2)设b a ,为非零向量,若0=⨯b a ,则必有a ∥b .(3)若直线l 的方向向量s 与平面π的法向量n 互相平行,则直线l 与平面π必 垂直.(4)点()1,5,3P 到平面07623=+++z y x 的距离732. (5)若动()z y x M ,,到定点()5,0,0的距离等于它到x 轴的距离,则该动点的轨迹方程为25102-=-z x .(6)直线⎪⎩⎪⎨⎧+=--=+=.31,1,2t z t y t x 与平面0765=-+-z y x 的位置关系是相交但不垂直.【解】直线l 的方向向量为{}3,1,1-=s .平面的法向量为{}6,5,1-=n .因为024.≠=n s ,且s 与n s .的坐标分量不成比例, 所以直线l 与平面π相交. 2.判断题.(1)若c a b a ..=,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (2)若c a b a ⨯=⨯,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (3)若c a b a ..= ① 且c a b a ⨯=⨯ ② ,则必有c b =.(⨯)【解】取0=a ,j b =,k c =,即知上述命题是错误的 .【书后答案有误】. 【注意:如果假定c b a ,,均为非零向量,则上述命题是正确的,其理由如下: 由①式得 ()0.=-c b a ,说明a 与c b -垂直;由②式得 ()0=-⨯c b a ,说明a 与c b -平行. 因为a 为非零向量,故c b -必为零向量,从而c b =. (4)设b a ,为非零向量,则必有a b b a ..=.(√) (5)设b a ,为非零向量,则必有a b b a ⨯=⨯..(⨯)3.已知直线⎩⎨⎧=+--=+++.03102,0123:z y x z y x l 平面024:=+-z y x π,则直线l 与平面π的位置关系为(B )A. 平行于平面π C. 在平面π上B. 垂直于平面π D. 与平面π斜交.【解】在直线l 上任取一点⎪⎭⎫⎝⎛-0,71,7100M .直线l 的方向向量为k j i j i n n s 71428123121-+-=-=⨯=∥{}1,2,4-. 平面的法向量为{}1,2,4-=n .因为s ∥n ,所以直线l 与平面π垂直.4.设c b a u 2+-=,c b a v ---=3,试用c b a ,,表示v u 32-. 【解】v u 32-()c b a 22+-=()c b a ----33c b a 775++=.5.设点C 为线段AB 上一点,且AC CB 2=,O 为AB 外一点,记OA a =,OB b =,OC c =,试用b a ,来表示c .【解】由题意知,a b OA OB AB -=-=,a b AB AC 313131-==. 所以,a b a a b OA AC AO AC c 32313131+=+⎪⎭⎫ ⎝⎛-=+=-=.6.已知k j i a +-=32,k j i b 3+-=,j i c 2-=.计算: (1)()()b c a c b a ..-; (2)()()c b b a +⨯+. 【解】(1)()()8311312.=⨯+-⨯-+⨯=b a ; ()()8302312.=⨯+-⨯-+⨯=c a .所以,()()()()k j k j b c b c b c a c b a 24838888..--=--=-=-=-.(2)k j i j ib a +--=--=⨯581132;k j i j ic a -+=--=⨯22132;k j i j ic b -+=--=⨯362111. 所以,()()c b b b c a b a c b b a ⨯+⨯+⨯+⨯=+⨯+()k j i +--=58 ()k j i -++2 ()k j i -++36 k j --=. 【或者这样做:k j i b a 443+-=+,k j i c b 332+-=+. 所以()()c b b a +⨯+.3243k j j i--=--=】 7.已知{}2,1,2=a ,{}10,1,4-=b ,a b c λ-=,且a ⊥c ,求实数λ. 【解】{}λλλλ210,1,24----=-=a b c .因为a ⊥c ,所以 ()()()λλλ210211242.0-⨯+--⨯+-⨯==c a ,即0927=-λ .解之得 .3=λ8.设{}1,2,3-=a ,{}2,1,1-=b ,求:(1)()()b a 72⨯;(2)i a ⨯. 【解】(1)k j i j i b a 5731123--=-=⨯{}5,7,3--=. 所以,()()b a 72⨯()b a ⨯=14{}{}70,98,425,7,314--=--=.(2){}2,1,020001123--=--=-=⨯k j i kji i a . 9.3=,1=6π=,计算:(1)b a +与b a -之间的夹角;(2)以b a 2+与b a 3-为邻边的平行四边形的面积.【解】232313,.cos .=⨯⨯=⎪⎪⎭⎫ ⎝⎛=∧b a b a . ① (1+()71232322=+⨯+===;-()11232322=+⨯-===; ()()().213 (2)2=-=-=-+b b a a b a b a设b a +与b a -之间的夹角为θ,则有()(72172cos =⨯==b a b a θ,所以72arccos =θ.(2+()1314234322=⨯+⨯+===;-()319236322=⨯+⨯-===; ()()().2916233.6..3.222-=⨯--=--=-+b b b a a a b a b a设b a 2+与b a 3-之间的夹角为θ,则有()(392931329cos -=⨯-==θ,故 2613539291cos 1sin 22=⎪⎪⎭⎫⎝⎛-=-=θθ. 所以由三角形的面积公式知,以b a 2+与b a 3-为邻边的平行四边形的面积为.32526135313sin 2=⨯⨯=⎥⎦⎤⨯-+=θS10.已知点()0,0,1A 及()1,2,0B ,试在z 轴上求一点C ,使ABC ∆的面积最小. 【解】过点()0,0,1A 及()1,2,0B 直线l 的方向即为{}1,2,1-==AB s .l 的方程为 1211:zy x l ==--. 设点()z C,0,0,则{}2,1,22101---=--=⨯z z ji s AC . 点C 距l 的距离为()()()6212222-+-+-==z z d 65245152+⎪⎭⎫ ⎝⎛-=z明显地,当51=z 时,d 取到最小值55254=.所以,ABC ∆的面积最小值为 53055262155221=⨯⨯==∆S ABC . 所求点.51,0,0⎪⎭⎫ ⎝⎛C11.求过点()2,1,3--且与平面01235=-+-z y x 平行的平面方程. 【解】可取所求平面的法向量与已知平面相同,即为{}3,5,1-=n . 所以,所求平面方程为()()()0231.53.1=+++--z y x ,即 .0235=-+-z y x12.求过点()1,2,1且垂直于平面0=+y x 和05=+z y 的平面方程. 【解】可取所求平面的法向量为k j i j in n n 5501121+-==⨯=. 所以,所求平面方程为()()()0152.11.1=-+---z y x ,即 .045=-+-z y x 13.求满足下列条件的平面方程.(1)过点()2,1,1--M 和()1,1,3N 且垂直于平面0532:=-+-z y x π; (2)过点()3,3,2-M 且平行于xoy 面. 【解】(1)可取所求平面的法向量为k j i j is MN n 63122122--=-=⨯=∥{}2,1,4--. 所以,所求平面方程为()()()02.21.11.4=+-+--z y x ,即 .0924=---z y x(2)根据题意,可设所求平面的一般式方程为 .0=+D Cz将点()3,3,2-M 的坐标代入平面方程得.03=+D C 即 ()03≠-=C C D . 所以,所求平面为 .03=-C Cz 化简得.03=-z14.求过点()3,0,2-且与直线⎩⎨⎧=+-+=-+-.01253,0742:z y x z y x l 垂直的平面方程.【解】直线l 的方向为k j i j in n s 111416532121++-=-=⨯=. 所以,所求平面方程为()()()03.110142.16=++-+--z y x ,即 .065111416=+++-z y x15.求过点()1,3,20-M 和直线⎩⎨⎧=+-=--.062,0165:z y y x l 的平面方程.【解】化直线l 的为参数式方程⎪⎩⎪⎨⎧+==+=.62,,165:y z y y y x l .因此直线l 过点()6,0,161M .可取所求平面的法向量为{}1,3,131531410--=--==⨯=k j i j is M M n . 所以,所求平面方程为()()()01.13.32.1=--+--z y x ,即 .0103=---z y x 【书后答案有误】. 16.求过点()1,1,1M 且与直线42135:-=+=-zy x l 平行的直线方程. 【解】根据题意知,可取所求直线的方向为{}4,2,3-=s .所以,所求直线为412131--=-=-z y x . 17.求过点()4,2,00M 且与两平面12:1=+z x π和23:2=-z y π都平行的直线方程.【解】根据题意知,可取所求直线的方向为{}1,3,232100121-=++-==⨯=k j i j in n s . 所以,所求直线为143220-=-=--z y x . 18.求下列旋转曲面方程.(1)⎩⎨⎧==.0,22x y z 绕y 轴旋转一周; (2)⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周. 【解】(1)由公式,知⎩⎨⎧==.0,22x y z 绕y 轴旋转一周生成曲面 ()y zx 2222=+±,即 222z xy += ,为椭圆抛物面.(2)由公式,知⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周生成曲面 ()142222=++±z yx ,即 14222=++z y x ,为椭球面. 19.指出下列各方程所表示的是何种曲面.(1)11694222=++z y x ; (2)94322y x z +=; (3)64416222=-+z y x ; (4)3694222-=+-z y x . 【解】(1)表示椭球面; (2)表示椭圆抛物面;(3)可化为164164222=-+z y x ,故(3)表示单叶双曲面; (4)可化为14369222-=-+z y x ,故(4)表示双叶双曲面. 20.求曲线⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=Γ.,1,1:2t z t t y t t x ① 对应于1=t 处的切线方程.【解】将1=t 代入① ,得切点坐标为⎪⎭⎫⎝⎛1,2,21.又切向量为()|12,1,1=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛+=t tt t t t s ()⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧-+==2,1,412,1,11|122t t t t ∥{}8,4,1-. 所以,曲线Γ对应于1=t 处的切线方程为8142121-=--=-z y x .。
⾼等数学第3版(张卓奎王⾦⾦)第六章习题解答习题 6-11.设2=-+u a b c , 3=-+-va b c .试⽤a 、b 、c 表⽰23-u v .解 23-u v =5a -11b +7c .2.试⽤向量证明:三⾓形两边中点的连线平⾏且等于底边的⼀半.解设三⾓形ABC 中,E 是BC 的中点, F 是AC 的中点(图6-1),则11,,22AE AB AF AC == ⼜ ,,EF AF AE BC AC AB =-=- 所以 11()22EF AC AB BC =-=,图6-1 即EF 平⾏且等于底边BC 的⼀半。
3.求平⾏于向量43=-a i k 的单位向量.解所求单位向量为{}14,0,35±,即43{,0,}55-和43{,0,}55-. 4.求点M (-3, 4 ,5)到各坐标轴的距离.解过M 点做与x 轴垂直相交的直线,其交点坐标为 (-3,0,0),所以,点M 到x 轴=M 到y=Z 轴5=.5.在yOz ⾯上,求与三点A (3,1,2)、B (4,-2,-2)和C (0,5,1)等距离的点.解设点(0,,)P y z 与A B C 、、三点等距离,则 222 PA PB PC ==, 即 222222222223(1)(2)4(2)(2)(5)(1)4(2)(2)y z y z y z y z ?+-+-=+--+--??-+-=+--+--??,解⽅程组得,1,2y z ==-,故所求点为(0,1,2)-.6.求证以1M (4,3,1)、2M (7,1,2)、3M (5,2,3)三点为顶点的三⾓形是⼀个等腰三⾓形.解因为{}{}{}1213233,2,1,1,1,2,2,1,1M M M M M M =-=-=-,则13M M 236M M ==故三⾓形123M M M 是⼀个等腰三⾓形.A B FC E7.已知两点1M ,1)和2M (3,0,2).计算向量12M M 的模、⽅向余弦和⽅向⾓.解因为{}121,M M =-,所以模 122M M =;⽅向余弦分别为 1cos ,2α=-cos ,2β=-1cos 2γ=;⽅向⾓分别为23π,34π,3π. 8.已知向量447=-+a i j k 的终点在点B (2,-1,7),求这向量起点A 的坐标.解设A 点坐标为(,,)x y z ,则AB ={}{}2,1,74,4,,7x y z ----=-,解得2,3,0x y z =-==,故A (-2,3,0).9.设358247=++=--m i j k,n i j k 和54=+-p i j k .求向量43=+-a m n p 在y 轴上的分向量.解由于4(358)3(247)(54)=+++---+-a i j k i j k i j k 13715=+i j +k 故a 在y 轴上的分向量为7j .10.设a =(1,4,5),b =(1,1,2),求λ使λ+ab 垂直于λ-a b .解由于两个向量垂直,所以 2222()()4260λλλλ+?-=-=-=a b a b a b ,解得7λ=±.11.设质量为200kg 的物体从点1M (2,5,6)沿直线移动到点2M (1,2,3),计算重⼒所作的功(长度单位为m ,重⼒⽅向为z 轴负⽅向).解由于位移{}121,3,3M M =---s =,重⼒{}0,0,200g =-F (298/g m s =),所以, 重⼒所作的功{}{}0,0,2001,3,36005880W g g J =?-?---==F s =.习题 6-21.设32,2=--=+-ai j k b i j k ,求 (1) ?a b 及?a b ; (2) a 与b 的夹⾓的余弦.。
第十一章 微分方程习题11-11.说出下列各微分方程的阶数:(1)20dy dy x y dx dx ⎛⎫+-= ⎪⎝⎭; (2)220d Q dQ Q L Rdt dt C -+=; (3)220xy y x y '''''++= ; (4)()d (76)0x y y x y dx ++-=;(5)2sin y y y x '''++= ; (6)2d sin .d ρρθθ+= 解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶.2.指出下列各函数是否为所给微分方程的解: (1)22 , 5;xy y y x '==(2)0 , 3sin 4cos ;y y y x x ''+==-(3)221, ;y x y y x''=+=(4)21221 , sin cos .2x x d y y e y C x C x e dx +==++解:(1)∵ 10 y x '=,代入方程得 21025x x x ⋅=⋅∴25y x =是方程的解.(2)∵ 3cos 4sin ,3sin 4cos y x x y x x '''=+=-+,代入方程,得()()3sin 4cos 3sin 4cos 0y y x x x x ''+=-++-= ∴ 3sin 4cos y x x =-是方程的解.(3)∵ 2312,y y x x '''=-=,代入方程,得 23221x x x≠+ ∴1y x=是方程的解. (4)∵ 21212211cos sin ,sin cos 22x x dy d y C x C x e C x C x e dx dx =-+=--+,代入方程, 得 121sin cos 2x C x C x e ⎛⎫--++ ⎪⎝⎭121sin cos 2x x C x C x e e ⎛⎫++= ⎪⎝⎭∴121sin cos 2x y C x C x e =++是方程的解.3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解: (1)()2222 , ;x y y x y x xy y C '-=--+= (2)()220 , ln().xy x y xy yy y y xy '''''-++-==解:(1)在二元方程22 x xy y C -+=的两边同时对x 求导,得220x y xy yy ''--+=移项后即得 ()22 x y y x y '-=-故二元方程22x xy y C -+=所确定的函数是所给微分方程的解.(2)在 ln()y xy =两边对x 求导,得11 ()y y y xy xy x y '''=+=+, 即 yy xy x'=- ()()()()()232223122 y xy x y y xy xy y yxy xy xyy xy x xy x xy x ''--+-'--+-+-''===---,代入微分方程,得()()3223222()20xy xy xyy y yxy x x y xy x xy xxy x xy x -+--⋅+⋅+⋅-⋅=---- 故 ln()y xy =所确定的函数是所给微分方程的解.4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初始条件: (1)2220 , |1;x x xy y C y =-+==(2)()1200 , |0 , |1;x x x y C C x e y y =='=+== (3)1200cos sin , | 1 , |.t t x C t C t x x ωωω=='=+== 解:(1)∵ 0 |1x y ==∴222 =0011C -+=即 221x xy y -+=(2)()122 x y C C x C e '=++,由00 |0 , |1x x y y =='==,得 11201C C C =⎧⎨+=⎩。
1. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。
《高等数学》(第三版)教案第七章全7.1.1 级数的概念教学目标:(1)学习无穷级数收敛、发散以及收敛级数的和等概念;(2)掌握级数的基本性质,熟记几何级数的敛散性; (3)会用级数的概念及基本性质判断一些级数的敛散性; 教学重点: (1)无穷级数的概念及基本性质; (2)判断一些级数的敛散性。
教学难点: 无穷级数的概念及基本性质的正确应用。
授课时数:1课时 教学过程 11n a q-+的各项和(即所有项的和)23n u u u ++++,3n u u +++.通项. 12n++,的一般项是12n. n 叫做常数项级数,如果n u 是变量函数项级数.例如,级数,级数sin nx ∞∑都是函数项级数n u +叫做级数的部分和.如果当,叫做这个级数的和.11(1)2n n-+-+是否收敛.若收敛求的等比数列的各项和,叫做等比级数.其部分和为21[1()]32n n =--, n ++的敛散性1)2n +, (1)lim 2n n →∞+=∞,13(1)5nn -⎛⎫+-+ ⎪⎝⎭;2ln πn +++;利用级数收敛的性质,判断级数的敛散性,若收敛,则求其和53741111)()3434++++新知识:无穷级数的概念及基本性质,判断一些级数的敛散性。
学习的内容;7.1.2 幂级数教学目标:(1)记住幂级数的一般形式及相关概念;(2)学会求一些简单的幂级数的收敛半径,收敛区间及在收敛区间上的和函数。
教学重点: (1)幂级数的一般形式及相关概念; (2)一些简单的幂级数的收敛半径,收敛区间的求法。
教学难点: 幂级数概念的理解。
授课时数: 1课时. 教学过程n x ++.时,时.1n x ++是幂级数叫做级数的收敛点.使函数项级数所有收敛点的集合叫做级数的收敛域的收敛域为()1,1-.的收敛域与和函数的等比级数,其部分和为时,级数收敛.并且1.的收敛区间与和函数.7.2.1周期为2π的函数展开为傅里叶级数教学目标:(1)了解傅里叶级数的概念和将函数展开成傅里叶级数的条件;(2)学会将周期为2π的函数展开为傅里叶级数。
习题7-1
1. 已知函数22(,)tan
x
f x y x y xy y
=+-,试求(,)f tx ty . 解 ()()()()22
2222(,)tan
(tan )(,)tx x
f tx ty tx ty tx ty t x y xy t f x y ty y
=+-=+-=. 2. 已知函数()(,)(),(2,3),-=++x y f x y x y f f x y y 求,.
解 ()1
(2,3)=,
=(2)5
x f f x y y x y ++,.
3. 已知()22(,
),+=-y
f x y x y f x y x
求,. 解 令 , y x y u v x +==⇒ , 11u uv
x y v v
==
++,则 ()2
2
2
1(,)111u v u uv f u v v v v -⎛⎫⎛⎫=-= ⎪ ⎪+++⎝⎭⎝⎭
, 故 ()2(1) , (1)1x y f x y y y
-=≠-+,
. 4. 求下列各函数的定义域,并画出定义域的图形:
(1)ln()=z xy ; (2
)23z =
(3
)ln()z y x =- (4
)=z ;
(5
)u =
R >r >0);
解 (1){}
(,)0,00,0>><<x y x y x y 或;
(2){
}222
(,)24,x y x y x y
≤+≤>;
(3)0y x ->,0x ≥且2
2
10x y -->,故函数的定义域为,
{}22(,)0,1D x y y x x y =>≥+<.
(4)2222(,)1⎧⎫⎪⎪
+≤⎨⎬⎪⎪⎩⎭
x y x y a b .
(5)2
2
2
2
0R x y z ---≥且2
2
2
2
0x y z r ++->,故函数的定义域为
{}22222(,,)D x y z r x y z R =<++≤.
5. 求下列各极限: (1)22
01
1lim
x y xy
x y →→-+; (2
)00
x y →→; (3)220
sin()
lim →→x y xy x y ; (4)222222001cos()lim ()x y x y x y x y e →→-++; 解 (1)22
1
1lim
=1x y xy
x y
→→-+; (2
)00000
1
4x x x y y y →→→→→→-;
(3)22200sin()
1sin()1lim
lim 2x x y y xy xy x y x xy →→→→⎡⎤=⋅=⎢⎥⎣⎦ (4)22
22
2224
222
2
0000
1cos()11cos lim
lim
lim 1lim 02()x y x
y
x x t t y y x y t t t
t x y e
e →→→→→→-+-=⋅=⋅=+ 6. 从0
12
lim (,0)0,lim (,
)25→→==x x f x f x x ,能否断定00
lim (,)→→x y f x y 不存在?
答 因为函数(,)f x y 沿不同路径的极限不相等,所以极限0
lim (,)→→x y f x y 不存在.
7. 函数2222y x
z y x
+=-在何处是间断的?
解 为了使函数的表达式有意义,需要2
20y x -≠,所以曲线2
20y x -=上的点均
是函数2222y x
z y x
+=-的间断点.
8. 证明:极限00
lim
x y x y
x y →→+-不存在。
证 当点(,)P x y 沿x 轴(0,0)→时,000
lim
lim =1x x y x y x
x y x
→→=+=-;当点(,)P x y 沿y 轴(0,0)→时,000lim
lim 1y y x x y y x y y →→=+==---,所以00
lim
x y x y
x y →→+-极限不存在.。