数学模型作业
- 格式:doc
- 大小:155.00 KB
- 文档页数:5
题目在5.6节人口预测和控制模型中,总和出育率)(t β和生育模式),(t r h 是两种控制人口增长的手段。
试说明我国目前的人口政策,如提倡一对夫妇只生一个孩子、晚婚晚育,以及生育第二胎的一些规定,可以怎样通过这两种手段加以实施。
摘 要针对中国人口的实际特点,建立人口分布函数。
收集数据得到中国人口随年份变化的增长率,解决中国人口中短期和长期的人口预测与控制问题。
首先,将人口的预测问题转化为对出生率的预测,通过对数据的分析研究,发现影响人口增长的主要因素可归结为出生率及生育模式的变化,并依次建立不同参数随时间变化的递推数学模型从而讨论各个参数对人口增长的影响。
利用Gamma 函数拟合死亡率对年龄的分布,建立人口分布函数模型,由于概率分布是相对稳定的。
所以对人口预测而言其结果具有可控性,由此可以为我国的计划生育政策作出贡献。
关键词:人口控制;人口分布函数;生育模式一、问题重述在5.6节人口预测和控制模型中,总和出育率)(t β和生育模式),(t r h 是两种控制人口增长的手段。
试说明我国目前的人口政策,如提倡一对夫妇只生一个孩子、晚婚晚育,以及生育第二胎的一些规定,可以怎样通过这两种手段加以实施。
二、问题分析据了解,我国人口总数占世界人口总数的22%,居世界第一,虽然在二十世纪八十年代就已经开始控制人口,但人口增长的脚步依然没有停下,人口老年化问题也越来越严重,所以现在开始提倡一对夫妻只能生一个孩子、晚婚晚育以及定下了一些关于第二胎的政策。
所以,考虑用微分方程中生育率和生育模式来求解问题。
三、模型假设1.时刻t 年龄小于r 的人口2.在社会安定的局面下和不太长的时间里,死亡率大致与时间无关3.无重大天灾人祸,死亡率出生率大致与时间无关。
4.人口统计数据不存在大的误差。
四、符号说明1.人口分布函数记作),(t r F ;2.婴儿的出生率记为)(),0(t f t p =;3.时刻t 、年龄r 的人的死亡率记为),(t r μ;4.dr t r p t r ),(),(μ表示时刻t 年龄在[]dr r r +,内单位时间的死亡人数;5.)(0r p 是人口调查得到的已知函数;6.婴儿的出生率记为)(t f ;五、模型建立由问题假设我们可以得到各个年龄段的人口数,即人口分布函数为: ds t s p t r F r⎰=0),(),(由于在社会安定的局面下和不太长的时间里,死亡率大致与时间无关,于是可近似的假设)(),(r t r μμ=因为)(0r p 与)(r μ可由人口统计数据得到,所以),(t r μ可由)0,(r μ粗略估计,为了预测和控制人口的发展状况,我们需要关注和可以用作控制的就是婴儿的出生率)(t f ,因此我们主要通过讨论)(t f 来研究人口的研究与控制。
经典数学模型课程名称:经典数学模型院系:班级:姓名:学号:3 在5.2节经济增长模型中,为了适用于不同的对象可将产量函数()Q t 折算成现金,仍用()Q t 表示。
考虑到物价上升因素我们记物价上升指数为()p t (设(0)1p =),则产品的表面价值()y t 、实际价值()Q t 和物价指数()p t 之间满足()()()y t Q t p t =。
(1)导出()y t ,()Q t ,()p t 的相对增长率之间的关系,并作出解释。
(2)设雇佣工人数目为()L t ,每个工人工资()w t ,企业的利润简化为从产品的收入()y t 中扣除工人工资和固定成本。
利用道格拉斯生产函数讨论,企业应雇佣多少工人能使利润最大。
解:(1)由()()()y t Q t p t =得pp Q Q y y += 即产品的表面价值增长率等于实际价值增长率与价格指数增长率之和。
(2)设企业的固定成本为()c t ,则利润为()()()()()R t y t w t L t c t =--,又()()()y t Q t p t =, 1()()()01Q t cK t L t ααα-=<<则代入()R t 得表示为()w t 的函数得如下关系是1[()]()()()()()()J w t cK t L t p t w t L t c t αα-=--,由0J w ∂=∂得 α-=''1/1))()(()(t w t rap t w 经验证此时22001J w α∂<<<∂,所以此时取得极大值4 在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为/4a b =,初始兵力0x 与0y 相同。
(1)问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定?(2)若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负。
解:(1)乙方取胜时剩余兵力为02020123)(y a bx ay t y =-= 要确定乙方获胜时间1t 需求解方程00)0(,)0(,,y y x x bx y ay x==-=-= 可得 ()()[]2/)(0000ab t ab te b a y x e b a y x t x -++-=令0)(1=t x 且由4=b a 可得 b t 43ln 1=,(1t 与甲战斗有效系数b 成反比)(2)在这种情况下r ay x+-= 相轨线为202022bx ry ay k bx ry ay --==--,轨线上移ar 2 乙方取胜条件为0>k即22202042a r x a b a r y +>⎪⎭⎫ ⎝⎛- 12 建立耐用消费品市场销售量模型。
数学模型作业如何施救药物中毒问题的调查与分析⼈体服⽤⼀定药物后,⾎药浓度与⼈体的⾎液总量有关。
⾎液总量约为体重的7%到8%,即体重50~60kg 的成年⼈有4000ml 的⾎液。
孩⼦的体重约为成年⼈的⼀半,其⾎液约为2000ml 。
⾎液系统中的⾎药浓度与药量之间可以相互转换,⾎液系统的吸收率与胃肠道中药量呈正⽐,排除率与⾎液中药量呈正⽐。
⾎液系统对药物的吸收和排除率可以由半衰期决确定。
从说明书上可以看出,氨茶碱吸收的半衰期约为5h ,排除的半衰期为6h 。
临床施救⽅法⼀为⼝服活性炭,药物排除率为原来两倍。
⼀为⾎液透析,药物排出率增加到原来六倍。
模型的假设与建⽴记孩⼦胃肠道中的药量为x (t ),,⾎液系统中的药量为y (t ),成⼈胃肠道中的药量为。
时间t 以孩⼦和成⼈服药的时刻开始为起点,根据前⾯的调查分析,可以做出如下假设: 1胃肠道中的药物向⾎液系统中的转移率与药量x (t )成正⽐,⽐例系数为λ(>0);总剂量1100mg 的药物在t=0瞬间进⼊肠道。
2 ⾎液系统中的药物的排除率与药量y (t )成正⽐,⽐例系数为α>0);t=0时⾎液中⽆药物3 氨茶碱被吸收的半衰期为5h ,排除的半衰期为6h ;4 孩⼦的⾎液总量为2000ml由假设x dt dx λ-=÷1100)0(=x0)0(,=-=÷y y x dt dy αλ模型求解t e t x λ-=1100)(,由药物吸收半衰期5h 得01386=λt et x 1386.01100)(-=)(1100)(t t e e t y λαλ---=,由药物排除半衰期6h 得1155.0=α)(6600)(1386.01155.0t t e et y ---=结果分析作图孩⼦总⾎液量2000ml ,出现严重中毒和致命的⾎液中药量达到200mg 和400mg ,由图知约在两⼩时达到200mg ,五⼩时到400mg 。
数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
优化作业(1)1.(本题只写模型不求解)某工厂向用户提供发动机,按合同规定,其交货数量和日期是:第一季度末交40台,第二季度末交60台,第三季度末交80台。
工厂的最大生产能力为每季度100台,每季度的生产费用是22.050)(x x x f +=元,其中x 为该季度生产发动机的台数。
若工厂生产得多,多余的发动机可移到下季度向用户交货,这样,工厂就需要支付存储费用,每台发动机每季度的存储费用为4元。
问该厂每季度生产多少台发动机,才能既满足交货合同,又使工厂所花费的费用最少(假定第一季度开始时发动机无存货)?2.(本题只写模型不求解)某市为方便小学生上学,拟在新建的8个居民小区821,,,A A A 增设若干所小学,经过论证知备选校址有621,,,B B B ,它们能够覆盖的居民小区如下表所列,试建立一个数学模型,确定出最小个数的建校地址,使其能覆盖所有的居民小区。
备选校址B 1 B 2 B 3 B 4 B 5 B 6 覆盖小区 A 1,A 5,A 7 A 1,A 2,A 5,A 8 A 1,A 3,A 5 A 2,A 4,A 8 A 3,A 6 A 4,A 6,A 83.写出下面LINGO 程序所对应的完整数学模型。
SETS: HANG/1..3/:B; LIE/1..4/:X,C; XISHU(HANG,LIE):A;ENDSETSDATA:A= 1 2 3 12 5 1 23 1 6 -2;B=4 5 7;C=1 3 4 5;ENDDATAmin=@sum(LIE(I):C(I)*X(I));@FOR(HANG(I):@SUM(LIE(J):A(I,J)*X(J))>B(I));4.根据下面LINGO 程序的集合段和模型段写出其所对应的数学模型。
SETS: HANG/1..3/:A;LIE/1..4/:B;XISHU(HANG,LIE):C,X;ENDSETSmin=@sum(XISHU(I,J):C(I,J)*X(I,J));@FOR(HANG(I):@SUM(LIE(J):X(I,J))=A(I));@FOR(LIE(J):@SUM(HANG(I):X(I,J))=B(J));5.某校篮球队准备从十名预备队员中选择五名作为正式队员,队员的各种情况如下表:队员号码身高(厘米)技术分位置1 185 8.6 中锋2 186 9 中锋3 193 8.4 中锋4 190 9.5 中锋5 182 9.1 前锋6 184 9 前锋7 188 8.1 前锋8 186 7.8 后卫9 190 8.2 后卫10 192 9.2 后卫队员的挑选要满足下面条件:(1)至少补充一名前锋。
数学建模课作业范例范例题目:一家具公司签定了一项合同,合同要求在第一个月月底前,交付80把椅子,在第二个月月底前,交付120把椅子。
若每月生产x把椅子时,成本为50x+0.2x2(元);如第一个月生产的数量超过订货数,每把椅子库存一个月的费用是8元。
公司每月最多能生产200把椅子。
求完成以上合同的最佳生产安排。
家具公司最佳生产安排问题一问题的提出一家具公司签定了一项合同,合同要求在第一个月月底前,交付80把椅子,在第二个月月底前,交付120把椅子。
若每月生产x把椅子时,成本为50x+0.2x2(元);如第一个月生产的数量超过订货数,每把椅子库存一个月的费用是8元。
公司每月最多能生产200把椅子求成以上合同的最佳生产安排。
二假设与变量说明1.)模型假设1.椅子的成本和库存费没有变化2.该公司签定的合同并未发生变化3.该公司生产的椅子质量合格4.除了成本费和库存费并未产生其他额外的费用2)变量说明x1: 公司第一个月生产的椅子数x2: 公司第二个月生产的椅子数y1: 公司第一个月的成本费y2: 公司第二个月的成本费z: 库存费Y: 总的费用三模型分析和建立1. 模型分析:该家具公司需要每月制定一个最佳的椅子生产数(x1、x2),使该公司完成合同所需成本最小,而获得最大利润。
本模型的问题焦点就是确定最小成本,即使Y=y1+y2+z最小的数学问题。
2. 模型建立第一个月的生产成本:y1=50x1+0.2x12第二个月的生产成本:y2=50x2+0.2x22所需库存费: z=(x1-80)*8总成本: Y=y1+y2+z=(50x1+0.2x12)+(50x2+0.2x22)+(x1-80)*8其中:x1 +x2=200 80≤x1≤200综上所述,可建立如下数学模型:Min Y=(50x1+0.2x12)+(50x2+0.2x22)+(x1-80)*8 s.t 80≤x1≤200x 1 + x2=200四.求解用LINGO对模型直接求解,输入格式为:model:min=(50*x1+0.2*x1^2)+( 50*x2+0.2*x2^2)+8*(x1-80);x1>=80;x1<=200;x1+x2=200;end运行后结果为:Optimal solution found at step: 4Objective value: 14120.00Variable Value Reduced CostX1 90.00000 0.0000000X2 110.0000 0.0000000Row Slack or Surplus Dual Price1 14120.00 1.0000002 9.999998 0.2158310E-053 110.0000 0.00000004 0.0000000 -94.00000五.结果与分析由计算可知,当x1=90,x2=110时成本费最底,所以生产的最佳安排是第一月生产90把椅子,第二月生产110把椅子.。
数学模型作业二:水泥凝固放热的线性回归模型要求用四种方法求解。
某种水泥在凝固时放出的热量Y(卡/克)与水泥中下列四种化学成分有关:X1:3CaO:Al2O3的成分(%),X2:3CaO:SiO2的成分(%),X3:4CaO:Al2O3:Fel2O3的成分(%),X4:2CaO:SiO2的成分(%)。
解:分别应用前进法、后退法、逐步回归法和最优子集四种方法。
(1)前进法SAS程序运行结果如下:Forward Selection: Step 1Variable X4 Entered: R-Square = 0.6745 and C(p) = 138.7308Analysis of VarianceSum of MeanSource DF Squares Square F Value Pr > FModel 1 1831.89616 1831.89616 22.80 0.0006Error 11 883.86692 80.35154Corrected Total 12 2715.76308Parameter StandardVariable Estimate Error Type II SS F Value Pr > FIntercept 117.56793 5.26221 40108 499.16 <.0001X4 -0.73816 0.15460 1831.89616 22.80 0.0006Bounds on condition number: 1, 1Forward Selection: Step 2Variable X1 Entered: R-Square = 0.9725 and C(p) = 5.4959Analysis of VarianceSum of MeanSource DF Squares Square F Value Pr > F Model 2 2641.00096 1320.50048 176.63 <.0001 Error 10 74.76211 7.47621Corrected Total 12 2715.76308Parameter StandardVariable Estimate Error Type II SS F Value Pr > FIntercept 103.09738 2.12398 17615 2356.10 <.0001X1 1.43996 0.13842 809.10480 108.22 <.0001X4 -0.61395 0.04864 1190.92464 159.30 <.0001Bounds on condition number: 1.0641, 4.2564Forward Selection: Step 3Variable X2 Entered: R-Square = 0.9823 and C(p) = 3.0182Analysis of VarianceSum of MeanSource DF Squares Square F Value Pr > F Model 3 2667.79035 889.26345 166.83 <.0001 Error 9 47.97273 5.33030Corrected Total 12 2715.76308Parameter StandardVariable Estimate Error Type II SS F Value Pr > FIntercept 71.64831 14.14239 136.81003 25.67 0.0007X1 1.45194 0.11700 820.90740 154.01 <.0001X2 0.41611 0.18561 26.78938 5.03 0.0517X4 -0.23654 0.17329 9.93175 1.86 0.2054Bounds on condition number: 18.94, 116.36No other variable met the 0.5000 significance level for entry into the model.Summary of Forward SelectionVariable Number Partial ModelStep Entered Vars In R-Square R-Square C(p) F Value Pr > F1 X4 1 0.6745 0.6745 138.731 22.80 0.00062 X1 2 0.2979 0.9725 5.4959 108.22 <.00013 X2 3 0.0099 0.9823 3.0182 5.03 0.0517在前进法中,模型中变量从无到有依次选一变量进入模型,并根据该变量在模型中的Ⅱ型离差平和(SS2)计算F统计量及P值。
《数学模型》作业解答第二章(1)(2008年9月16日)1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者;(2). §1中的Q值方法;(3).d’Hondt方法:将A、B、C各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A、B、C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p∑==31.1000i ip方法一(按比例分配),35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的ii n p中选较大者,可使对所有的,i iin p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型.解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++03032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数.16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数.16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为 [v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(210010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期.解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴glt =1π, )(21πϕπ=, 2/12/12mgkl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1g m l k g l t '''='ϕ 当无量纲量l l m m '='时, 就有 ll l g g l t t '=⋅'='. 《数学模型》作业解答 第三章1(2008年10月14日)1.在节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.⎩⎨⎧==---22/112/112/12/1ππk g m l g tl解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rTc T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q C TC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 10202022)()()(lim ξ又 )()(00T T r T r k -=-∴ T kr T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kT r k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为:)(221r k r c kc T -=*rc c ,T r k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,T r k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的.总费用函数()x c b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b kc b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t T T t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T T t t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β )(2)8322(22022bp a TT t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(m ax 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略改变后能节约多少费用解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答 第四章(2008年10月28日)925002+-=TdT dC1.某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克, B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为: max S=20x+30y. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =70以及x=0,y=0 直线l :20x+30y=c 在可行域内 平行移动.易知:当l过时,1l xS 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 m ax x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.2ll1x1l2x易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为: max S=3x +2y. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答 第五章1(2008年11月12日)1.对于节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s,然后减少并趋于零;)(t s 单调减少至.∞s (2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0 .01,1单调减少时当t i dtdis s ∴-σσ.0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dtdit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定. (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x ey x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即第五章2(2008年11月14日)6. 模仿节建立的二室模型来建立一室模型(只有中心室),在快速静3种给药解: 设给药速率为(),,0V t f()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vk k t C t k kt kt,10,100(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010t k e D k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te VkD k k e e k k V D k t C kt t k kt 3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在节香烟过滤嘴模型中, (1)设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别. 解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β ()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Qvl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫⎝⎛-=--vbl a v blee b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl44.235,84.29543≈≈ QQ4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定. (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x ey x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答 第六章(2008年11月20日)1.在节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与节的产量模型有何不同. 解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =.Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x F --= ,即0 dtdx.∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22Nx > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=, 易得 2*0N x = 此时 4rN h =但2*0N x =这个平衡点不稳定.这是与节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2N x >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln'=.其中r 和N 的意义与Logistic 模型相同. 设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xN rx ∴rENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F .∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rEENeh -=rEr Ee rEN Ne dE dh ---=,令.0=dEdh得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eN x =*0.3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;Ex()x f20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x .解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrxr N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dtdx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22Nx ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N xrx h -=, 易得 2*0N x =此时 4rN h =,但2*0N x =这个平衡点不稳定.要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N,但不能等于2N.《数学模型》第七章作业 (2008年12月4日)1.对于节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答 第七章(2008年12月4日)2. 对于节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽. 解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-= 则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件. 2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :,)(00 ααx x y y k k --=-----------------------(1) 0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2)从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3)上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1),)(001 ββy y x x k k -=-+ -------------------(2) 由(2)得)(0102y y x x k k -=-++β--------------------(3)(1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ ∴,2,1,2220012=+=++++k x x x x x k k k αβαβαβ,--------------(4)上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答 第八章(2008年12月9日)1. 证明节层次分析模型中定义的n 阶一致阵A 有下列性质:(1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例.从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换 B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()T nk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗找出几条完全路径,用适当方法排出5位选手的名次. 解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton圈为332541→→→→→.所以此竞赛图是双向连通的.32154→→→→13542→→→→42135→→→→ →→→41325→等都是完全路径.此竞赛图的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A令()T e 1,1,1,1,1=,各级得分向量为()()TAe S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==,()()()TAS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()TS 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次具体内容分别是什么答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子. ① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有 ()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为()1122--+=⋅+⋅n n n n npq q m npqm q m于是带走产品的平均数是 ()122-+-n n npq q m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n npq q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111m n n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈当1 n 时,并令'1'D E -=,则 226'mn E ≈④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答 第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数) 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r nnr r n r r f 7))(4(7)( 收益的期望值为G(n) = ∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值. G(0)=0;G(1)=4-×+7×+7×(+++)=;G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14=G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章1.原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.。
最优化问题建模
某农场种植某种作物,全部生产过程中至少需要氮肥32公斤、磷肥24公斤、钾肥42公斤。
市场上有甲、乙、丙、丁四种综合肥料可供选用。
已知这四种肥料每公斤的价格和每公斤所含氮、磷、钾成分的数量如表1所示。
问应该如何配
试建立该问题的数学模型。
现在从另一个方面提出如下问题:
某肥料公司,针对上述类型的农场的需要,计划生产氮、磷、钾三种单成分的化肥。
该公司要为这三种化肥确定单价,既要使获利最大,又要能与市场现有的甲、乙、丙、丁四种综合肥料相竞争,问应如何定价?
使建立该问题的数学模型。
一、图论(组合优化)和排列论实验解:设cij表示i年开始到j-1年结束购车的总消费,则有:C12=2.5+0.3-2.0=0.8,C13=2.5+0.3+0.5-1.6=1.7,C14=2.5+0.3+0.5+0.8-1.3=2 .8,C15=2.5+0.3+0.5+0.8+1.2-1.1=4.2,C23=2.6+0.3-2.0=0.9,C24=2.6+0.3+0. 5-1.6=1.8,C25=2.6+0.3+0.5+0.8-1.3=2.9,C34=2.8+0.3-2.0=1.1,C35=2.8+0.3 +0.5-1.6=2,C45=3.1+0.3-2.0=1.4;建模如下:sets:nodes/1..5/;arcs(nodes, nodes)|&1 #lt# &2: c, x;endsetsdata:c = 0.8 1.7 2.8 4.20.9 1.8 2.91.12.01.4;enddatan = @size(nodes);min = @sum(arcs: c * x);@for(nodes(i)| i #ne# 1 #and# i #ne# n:@sum(arcs(i,j): x(i,j)) = @sum(arcs(j,i): x(j,i)));@sum(arcs(i,j)| i #eq# 1 : x(i,j)) = 1;LINGO运行如下:Global optimal solution found.Objective value: 3.700000Total solver iterations: 0Variable Value Reduced CostX( 1, 2) 1.000000 0.000000X( 2, 5) 1.000000 0.000000由计算结果分析可得,其最短路径为1->2->5,最小花费为3.7万元。
即:该单位应该在第一年购买新设备,年末卖掉设备;第二年初更换新设备,一直用到第四年年末,再卖出。
如何施救药物中毒
问题的调查与分析
人体服用一定药物后,血药浓度与人体的血液总量有关。
血液总量约为体重的7%到8%,即体重50~60kg 的成年人有4000ml 的血液。
孩子的体重约为成年人的一半,其血液约为2000ml 。
血液系统中的血药浓度与药量之间可以相互转换,血液系统的吸收率与胃肠道中药量呈正比,排除率与血液中药量呈正比。
血液系统对药物的吸收和排除率可以由半衰期决确定。
从说明书上可以看出,氨茶碱吸收的半衰期约为5h ,排除的半衰期为6h 。
临床施救方法一为口服活性炭,药物排除率为原来两倍。
一为血液透析,药物排出率增加到原来六倍。
模型的假设与建立
记孩子胃肠道中的药量为x (t ),,血液系统中的 药量为y (t ),成人胃肠道中的药量为。
时间t 以孩子和成人服药的时刻开始为起点,根据前面的调查分析,可以做出如下假设: 1胃肠道中的药物向血液系统中的转移率与药量x (t )成正比,比例系数为 λ(>0);总剂量1100mg 的药物在t=0瞬间进入肠道。
2 血液系统中的药物的排除率与药量y (t )成正比,比例系数为α>0);t=0时血液中无药物
3 氨茶碱被吸收的半衰期为5h ,排除的半衰期为6h ;
4 孩子的血液总量为2000ml
由假设
x dt dx λ-=÷1100)0(=x
0)0(,=-=÷y y x dt dy αλ
模型求解
t e t x λ-=1100)(,由药物吸收半衰期5h 得01386=λ
t e
t x 1386.01100)(-=
)(1100)(t t e e t y λαλ---=,由药物排除半衰期6h 得1155.0=α
)(6600)(1386.01155.0t t e e
t y ---=
结果分析 作图
孩子总血液量2000ml ,出现严重中毒和致命的血液中药量达到200mg 和400mg ,由图知约在两小时达到200mg ,五小时到400mg 。
所以到医院时已经严重中毒,到医院三小时后致命。
精确计算得到医院时药量为236.5mg ,到四百毫克时t=4.87h 。
达最大值药量时间约为8小时。
施救方案
采用活性炭,药物排出率为2α=0.2310
由前面可知y (2)=236.5,新模型中血液中药量为z (t )
5.236)2(,1100,2,/==≥-=-z e x t z x dt dz t
λαλ
2,16091650
)(2310.01386.0≥-=--t e e t z t t 作图
可看出z(t)达最大值时间约为t=5h,精确值t=5.26h,z(t)=318.4mg,远低于y(t)最大值和致命水平。
用这种方法仍有一段上升。
如果要使施救后立即下降,则在z(t)在t=2时达最大值,λ
z
x
dt
dzα
-
2
=t
,0
/=
=
算出想x(2)=833.7,由z(2)和λ值推出ɑ=0.4885.
.
7在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象.
(1)分析商品价格c 与商品重量w 的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w 成正比,有的与表面积成正比,还有与w 无关的因素.
(2)给出单位重量价格c 与w 的关系,画出它的简图,说明w 越大c 越小,但是随着w 的增加c 减小的程度变小.解释实际意义是什么?
问题分析
成本分为生产成本,包装成本和其他成本,生产成本主要与重量w 成正比,包装成本主要与表面积s 成正比,其他成本为定值。
单位重量商品价格为商品总价格除以重量。
模型假设建立
商品重量为w
把牙膏盒看做正方体
包装面积s 与w 2/3呈正比
商品成本为c
单位重量商品价格为C
生产成本c1,包装成本c2,其他成本c3
a ,
b ,
c 为大于零常数
c1=c1+c2+c3 c1=as c2=bw s=c w 2/3
模型求解
133/1/--++==w c a c w b w c C
结果解释
对C 求导,2334
'31----=w c acw C <0,随着w 增加,C 不断减小,但是减小量也在不断减小,w 很大时,C 导数趋近于零,C 不再减小.不能认为包装越大就越便宜。