历年国考考试行测数量关系有趣的题目整理.doc
- 格式:doc
- 大小:74.00 KB
- 文档页数:2
行测数量关系2013年国考行测真题及答案:数量关系61、某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门。
假设行政部门分得的毕业生人数比其他部门都多,问行政部分得的毕业生人数至少为多少名?A.10B.11C.12D.13参考答案:B本题解析:每个部门分9人还剩2人,则把这两人给行政部门则行。
62、阳光下,电线杆的影子投射在墙面及地面上,其中墙面部分的高度为1米,地面部分的长度为7米。
甲某身高1.8米,同一时刻在地面形成的影子长0.9米。
则该电线杆的高度为:A.12米B.14米C.15米D.16米参考答案:C本题解析:几何问题。
由题意,真实长度与影子长度为2:1,墙上的影子长度投影到地上才是真实的影子长度,即影子总长为7×2=14米,墙上的影子是电线杆的实际高度,电线杆高度为15米。
63、甲与乙进行打靶比赛,各打两发子弹,中靶数量多的人获胜。
甲每发子弹中靶的概率是60%,而乙每发子弹中靶的概率是30%。
则比赛中乙战胜甲的可能性:A.小于5%B.在5%~12%之之间C.在10%~15%之间D.大于15%参考答案:C本题解析:概率问题。
分类思想:(全概率公式)乙战胜甲的概率=乙中2×(甲中0+甲中1)+乙中1×(甲中0)=0.3×0.3×(0.4×0.4+2×0.6×0.4)+2×0.3×0.7×0.4×0.4=12.48%。
64、某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之与等于甲型产量的4倍,甲型产量与乙型产量的2部之与等于丙型产量7倍。
则甲、乙、丙三型产量之比为:A.5∶4∶3B.4∶3∶2C.4∶2∶1D.3∶2∶1参考答案:D本题解析:数字特性思想,由3乙+6丙=4甲,得甲应为3的倍数。
观察选项只有D项满足。
整除是解题的一个方法。
65、某种汉堡包每个成本4.5元,售价10.5元,当天卖不完的汉堡包即不再出售。
国家公务员行测数量关系(数学运算)历年真题试卷汇编1(题后含答案及解析)全部题型 4. 数量关系数量关系数学运算在这部分试题中,每道试题呈现一道算术式或是表述数字关系的一段文字,要求你迅速、准确地计算出答案。
1.一个四位数“口口口口”分别能被15、12和10整除,且被这三个数整除时所得的三个商的和为1365,问四位数“口口口口”中四个数字的和是多少?A.17B.16C.15D.14正确答案:C解析:以题末“数字之和”为突破口,联想到“能被3或9整除的数”的判定方法。
这个四位数能被15整除,15能被3整除,则这个数一定能被3整除,它的各位数字之和能被3整除,选项中只有15能被3整除,直接锁定答案C。
2.设有三个自然数,分别是一位数、两位数和三位数,这三个数的乘积为2004,则三数之和是多少?A.100B.180C.179D.178正确答案:B解析:将2004进行质因数分解,2004=2×2×3×167。
由于乘数中有一个是两位数,所以只能是2×2×3=12,则一位数和三位数就分别是1和167,即2004=1×12×167。
1+12+167=180,选B。
3.有两种中药分别重25千克和15千克.将这两种中药分别平均分成若干份,并且两种药每份的重量也相等,那么请问至少分成多少份?A.3B.5C.8D.19正确答案:C解析:依题意,每一份的重量应既是25的约数,也是15的约数。
要想分成的份数尽可能地少,每一份的重量应尽可能地大。
即每一份的重量应是25和15的最大公约数,是5。
总份数是(25+15)÷5=8。
4.甲、乙、丙、丁四个人去图书馆借书,甲每隔5天去一次,乙每隔11天去一次,丙每隔17天去一次,丁每隔29天去一次。
如果5月18日他们四个人在图书馆相遇,问下一次四个人在图书馆相遇是几月几号?A.10月18日B.10月14日C.11月18日D.11月14日正确答案:D解析:每隔5、11、17、29天去一次,即每(5+1)、(11+1)、(17+1)、(29+1)天去一次,再次相遇经过的天数为6、12、18、30的最小公倍数。
《⾏政职业能⼒测验》中数量关系部分,有⼀类⽐较典型的题——抽屉问题。
对许多公考学⽣来说,这个题型有⼀定的难度,因为很难通过算式的⽅式来将其量化。
我们知道,公务员考试是测试⼀个⼈作为公务员应该具备的最基础的交流、沟通、判断、推理和计算能⼒。
同样,数量关系测试的也不全是个⼈的运算能⼒,它更倾向于考察考⽣的理解和推理能⼒。
抽屉问题就更为显著地贯彻了这⼀命题思路。
我们先来看三个例⼦:(1)3个苹果放到2个抽屉⾥,那么⼀定有1个抽屉⾥⾄少有2个苹果。
(2)5块⼿帕分给4个⼩朋友,那么⼀定有1个⼩朋友⾄少拿了2块⼿帕。
(3)6只鸽⼦飞进5个鸽笼,那么⼀定有1个鸽笼⾄少飞进2只鸽⼦。
我们⽤列表法来证明例题(1):放法抽屉 ①种 ②种 ③种 ④种 第1个抽屉 3个 2个 1个 0个 第2个抽屉 0个 1个 2个 3个 从上表可以看出,将3个苹果放在2个抽屉⾥,共有4种不同的放法。
第①、②两种放法使得在第1个抽屉⾥,⾄少有2个苹果;第③、④两种放法使得在第2个抽屉⾥,⾄少有2个苹果。
即:可以肯定地说,3个苹果放到2个抽屉⾥,⼀定有1个抽屉⾥⾄少有2个苹果。
由上可以得出:题号 物体 数量 抽屉数 结果 (1) 苹果 3个 放⼊2个抽屉 有⼀个抽屉⾄少有2个苹果 (2) ⼿帕 5块 分给4个⼈ 有⼀⼈⾄少拿了2块⼿帕 (3) 鸽⼦ 6只 飞进5个笼⼦ 有⼀个笼⼦⾄少飞进2只鸽 上⾯三个例⼦的共同特点是:物体个数⽐抽屉个数多⼀个,那么有⼀个抽屉⾄少有2个这样的物体。
从⽽得出:抽屉原理1:把多于n个的物体放到n个抽屉⾥,则⾄少有⼀个抽屉⾥有2个或2个以上的物体。
再看下⾯的两个例⼦:(4)把30个苹果放到6个抽屉中,问:是否存在这样⼀种放法,使每个抽屉中的苹果数都⼩于等于5?(5)把30个以上的苹果放到6个抽屉中,问:是否存在这样⼀种放法,使每个抽屉中的苹果数都⼩于等于5?解答:(4)存在这样的放法。
即:每个抽屉中都放5个苹果;(5)不存在这样的放法。
行政职业能力测验真题第一部分数量关系1.D[解析]本数列的前项减去后项是一个等比数列,即8-6=2,6-2=4,2-(-6)=8,下一个数是-6-16=-22,故D项正确。
2.C[解析]将原数列变形为2,9,28,65,根号内的数字2=13+1,9=23+1,28=33+1,65=43+1,故下一项根号内为53+1=126,所以正确答案为126,故C项正确。
3.C[解析]原数列可以变形为-14,-38,-516,分子是公差为-2的等差数列,分母是公比为2的等比数列,故C项12符合题意。
4.A[解析]本数列的规律是12-1=0,22+2=6,32-3=6,42+4=20,52-5=20,62+6=42,故A项正确。
5.A[解析]原数列:做一次差:做二次差:做二次差后得出一个公差为6的等差数列,则x=62;()=68+62=130,故A项正确。
二、数学应用6.A[解析]设2003年至2007年,卫生技术人员平均增长率为x,则得出(468.0-37.4)×(1+x)4=468.0,(1+x)4≈1+4x,解得x≈2.17%,则平均增长率小于2.17%,故A项正确。
7.C[解析]设目前女职工人数为x,则男职工的人数为30x。
如果女职工的人数增加5人,则女职工人数为x+5,男职工的人数为50+30x,根据题意可得x+550+30x=125,解得x=15,C项正确。
8.B[解析]设当前的月利率是x。
根据等额本金法计算,小李每个月应还银行贷款为15000020×12=625(元),已知小李上个还款期已归还5万元本金,则小李已归还的月数为50000625=80,则本月为第81个月。
剩下本金为100000元,100000x+625=1300,解得x=6.75‰,故B项正确。
9.C[解析]根据题意,人民币日元为14.001~14.040,澳元人民币为4.352~4.467,则澳元日元为14.001×4.352~14.040×4.467,14.001×4.352≈60.93,14.04×4.467≈62.72,故C项正确。
2024国考数量题目
2024国考数量关系题目难度较大,部分题目如下:
1. 甲、乙两人从环形跑道的A、B两点同时出发,分别以顺时针、逆时针方向匀速跑步,甲跑15秒后与乙相遇,又跑了20秒后到达B点,再跑了45秒后回到A点。
此时乙还要跑多久才能再次与甲相遇?
2. 一条直线上有若干点,共有2024个点,其中任意三点均不在一条直线上,那么这些点中任取两点所连的线段有多少条?
3. 一共有100只鸭子,其中有30只是公的,70只是母的。
如果5只公鸭
子在一起站一排,那么需要多少排?
如需更多题目,建议查阅相关论坛获取。
国考行测数量关系考前指导:青蛙跳井问题一、标准青蛙跳井问题1、模型:现有一口高10米的井,有一只青蛙坐落于井底,青蛙每次跳的高度为5米,由于井壁比较光滑,青蛙每跳5米下滑3米,这只青蛙几次能跳出此井?(1)分析青蛙跳井问题:我们明显发现,青蛙在运动过程中一直是上跳下滑,具有周期性、循环性,在每一个周期之中,青蛙都会先向上跳跃5米,再向下滑动3米,所以在完整的一个循环周期内,青蛙实际向上跳跃运动了2米。
(2)我们可以想到,青蛙在跳出井口的一瞬间一定是在向上运动的过程,而不是先跳出到空中再回落到井口。
所以我们要首先将向上运动过程的5米距离预留出来,此处5米就称作预留量。
(3)剩余的预留高度五米需要几个周期才能达到呢?我们可以用5÷2=2.5个周期达到,向上取整为3个周期。
(4)在3个周期之后,这只青蛙到达了6米的高度。
再跳一次,就可以跳出井口了。
通过上述分析,我们知道青蛙跳井问题有两个关键特征:2、关键特征:(1)周期性;(2)周期内工作效率有正有负。
经过上面的学习,我们可以通过练习一道变形题目来加以巩固。
例:单杠上挂着一条4米长的爬绳,小赵每次向上爬1米又滑下半米,问小赵几次才能爬上单杠?(1)一周期中,小赵先先向上1米,再下滑0.5米。
所以一个完整的周期小赵会向上运动0.5米。
(2)小赵上单杠一定是在向上运动过程,所以预留峰值一米长度。
(3)剩余三米,需要留个完整周期达到。
(4)最后一米再爬一次,故共七次到达单杠。
二、青蛙跳井与工程问题结合----有负效率的交替合作这类工程问题当中,由于存在了负效率,就类似于先向上爬又下滑的青蛙跳井问题。
我们用一道经典模型题目来进行了解:一水池有甲和乙两根进水管,丙一根排水管。
空池时,单开甲水管,5小时可将水池注满水;单开乙水管,6小时可将水池注满水;满池水时单开丙管,4小时可排空水池。
如果按甲、乙、丙......的顺序轮流各开1小时,要将水池注满水需要多少小时?(1)此题目所求为乘除关系,且对应量未知,可以先设特殊值从而简化运算。
2024国考公务员考试【行测】数量关系及资料分析专项提升全真模拟试题国考公务员考试行测包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。
[行测题]一、数量关系练习题(一)1.一个旧书商所卖的旧书中,简装书的售价是成本的3倍,精装书的售价是成本的4倍。
昨天,这个书商一共卖了120本书,每本书的成本都是1元钱。
如果他卖这些书所得的净利润(销售收入减去成本)为300元,那么昨天他所卖出的书中有多少本是精装本?()A. 40B. 60C. 75D. 902.某班级在一次考试中,参加语文考试的有52人,参加数学考试的有49人,参加英语考试的有58人,三种考试都参加的共15人,只参加其中两种的共21人, 三科都不参加的共4人,该班级一共有()人。
A. 110B. 111C. 112D. 1133.甲从B地出发,同时乙从A地出发与甲同向而行追甲,结果在距离B地9千米的地方追上。
如果乙把速度提高一倍而甲的速度不变,或者是乙提前40分钟出发, 那么乙都将在距离B地2千米处追上甲。
则A、B两地相距()千米。
A.3. 6B.4.2C.4.5D.3.54.乘火车从甲城到乙城,1998年初需要19. 5小时,1998年火车第一次提速30%,第1页/总15页B项,2008纺织业平均工资增长率为17%,与全国平均工资增长17. 2%基本持平, 所以2007年纺织业平均工资占全国平均水平的与2008年基本持平,B正确;C项,2008年中部地区城镇单位在岗职工的增长率排在四大区域倒数第二位,不是末位,C错误;D项,由资料第二段第一句可知,全国31个省(区、市)中只有9个高于全国平均水平,所以D正确。
综上所述,选择C。
练习题(二)根据以下资料,回答「5题。
2014年一季度,A省货物运输增长较快,全省各种运输方式共完成货运量89294 万吨,比上年同期增长15. 4祝完成货物周转量2444. 60亿吨公里,增长17. 7%。
公务员行测数量关系题汇总公务员考试中,行政职业能力测验(简称行测)的数量关系部分一直是许多考生的难点。
这一部分主要考查考生对数学知识的理解和运用能力,包括数学运算和数字推理等题型。
下面为大家汇总一些常见的数量关系题。
一、工程问题工程问题是数量关系中的常见题型,通常涉及工作总量、工作效率和工作时间之间的关系。
例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。
若两人合作,需要多少天完成?解题思路:首先,设工作总量为 1(也可以设为其他常数,如 30,只要便于计算即可)。
甲的工作效率为 1/10,乙的工作效率为 1/15。
两人合作的工作效率为 1/10 + 1/15 = 1/6。
那么两人合作完成这项工程所需的时间为 1÷(1/6) = 6 天。
二、行程问题行程问题也是经常出现的题型,包括相遇问题、追及问题等。
比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,2 小时后两人相遇,A、B 两地相距多少千米?解题方法:根据路程=速度×时间,甲行驶的路程为 5×2 = 10 千米,乙行驶的路程为 3×2 = 6 千米,A、B 两地的距离就是两人行驶路程之和,即 10 + 6 = 16 千米。
再如:甲在乙后面,甲的速度为 8 千米/小时,乙的速度为 6 千米/小时,两人同时出发,甲多久能追上乙?思路:先计算两人的速度差 8 6 = 2 千米/小时,然后根据追及时间=路程差÷速度差。
假设开始时两人相距 s 千米,那么追及时间为 s÷2小时。
三、利润问题在商业活动中,利润问题是不可避免的。
例如:某商品进价为 100 元,按 20%的利润率定价,售价是多少?解答:定价=进价×(1 +利润率),即 100×(1 + 20%)= 120 元。
又如:某商品按定价出售,可获利 960 元,如果按定价的 80%出售,则亏损 832 元。
公务员考试一、数字推理1.0.9,0.99,0.999,( )A .0.9999B .1C .9.9D .0.092.1,2,2,4,3,6,4,8,( )A .4B .10C .6D .53.1,0.5,0.25,0.125,( )A .0.75B .0.725C .0.0625D .0.054.135,246,7911,81012,( )A .141618B .131517C .131715D .1012146.01,10,11,100,101,110,( ),1000A .001B .011C .111D .10017.2,3,5,9,17,33,( )A .65B .35C .39D .418.0,-1,3,-7,( ),-31,63,-127A .9B .-15C .15D .-99.2,3,5,7,11,13,( ),19,…A .15B .16C 17D .1810.1909,2918,3927,( ),5945,6954A .4963B .4936C .4972D .593611.59,40,48,( ),37,18A .29B .32C .44D .4312.165,172,183,198,( )A .216B .217C .228D .21813.1226,2349,45815,( ),16173251A .671221B .891627C .15163032D .67121414.1,,9188,4847,9998 ( ) A .4746 B .8978C .2120D .2115.1,4,1,5,9,( ),6A .3B .2C .1D .816.8,6,7,5,6,4,( )A .3B .4C .5D .617.98, 128 ,162 ,200,( )A .242B .236C .230D .21218.1 11 21 1211 111221 ( )A .112112B .222112C .312211D .321122二、数学运算1.一个凸多边形内角和是1080度,这个多边形的边数是()A.5 B.6 C.7 D.82.3个人按照1:3:5的比例分一堆苹果,第一个人分到了7kg,则这堆苹果总共()kg A.21 B.35 C.56 D.633.如果2006年2月1日是星期三,那么2006年3月1日星期()A.2 B.3 C.4 D.54.有一个菱形花坛,周长20米,现在边上种植菊花,要求每株菊花间距0.5米,并且每个角上必须种1株,那么共需要()株菊花A.40 B.38 C.36 D.345.移动公司动感地带在周一至周五晚上11点到早上9点,以及周六,日全天,实行市内话费少收0.10元/分钟的优惠,问一周内共有()元的优惠A.9 B.8.8 C.8.6 D.8.46.列车半小时行驶120公里,那么2小时5分钟可行驶()公里A.510 B.505 C.500 D.4907.配制50g含盐量是3.6g的盐水8kg,需要水()gA.7424 B.576 C.8000 D.77128.从1,2,3,4,5,9中任取不同的两个数字,分别作为对数的真数和底数,能得到()个不同的对数值A.16 B.17 C.18 D.209.一个正四面体玩具,各个面上分别标有1,2,3,4四个数字,现在把它抛向桌面,则能看到的数之积是6的概率是()A.25% B.30% C.50% D.75%10.一个正四面体玩具,各个面上分别标有1,2,3,4四个数字,现在把它抛向桌面,则能看到的数之积不小于7的概率是()A.25% B.45% C.50% D.75%11.篮球规则中得分有3分,2分,1分,若在一次比赛中,队员A一人得了13分,那么他的得分组合共()种12.某人在雅虎上申请了一个邮箱,邮箱密码是由0至9中任意4个数字组成,他任意输入4个数字,输入正确密码的概率是()A.103-B.104-C.105-D.106-13.一辆公交车上有6位乘客,其中任何2人都不在同一个车站下车,汽车共停靠8站,试求出这4位乘客不同的下车情况有()种A.A 26B.A28C.A68D.A4614.一个圆周上有5个红点,7个白点,要求任两个红点不得相邻.那么共有()种排列方法A.C 57B.A57C.A27D.C27/A2215.汽车从甲地开往乙地,走了全程的2/5之后,离中点还有2.5公里。
1、(2009年江苏省公务员录用考试行测真题(A类))A.8B.9C.13D.16解:“三角形”中,左下角数字为底数,顶角数字为幂,构成的数值减去右下角数字之差,即构成中间数。
即:,,,,故选C。
2、若正整数x.y满足x+2y=l,则1/x+1/y的最小值为A.3+B.7C.12D.解:根据不等式公式:所以,选A;3、(2007.国考)小明和小强参加同一次考试,如果小明答对的题目占题目总数的3/4,小强答对了27道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有:A.3道B.4道C.5道D.6道解法一:代入排除法设一共有x道题,都没答对的有y道,则有3/4·x+27-2/3·x+y=x,化简有11x=12·(27+y)由于x和y都是整数,(27+y)必是11的倍数,将选项代入,只有D项符合。
解法二:数的整除性质:根据“小明答对的题目占题目总数的3/4”可知,题目总数能被4整除;根据“两人都答对的题目占题目总数的2/3”可知,题目总数能被3整除。
所以题目总数能被3×4=12整除。
由于两人都答对的题目一定不超过27道,故题目总数应在(27,27÷2/3)范围内。
所以题目总数为36(能被12整除).故两人都没有答对的题目有36-(36×3/4+27-36×2/3)=6道。
因此,选D。
3、(2007福建春季)已知x2+5x+2=0,则的值为:A.21B.23C.25D.29解:,由,可得,故。
因此,选A4、当第29届奥运会于北京时间2008年8月8日20时正式开幕时,全世界和北京同一天的国家占:A.全部B. C.以上 D.以下解:15个经度相差1个小时,北京属于东8区,当北京在20时的时候,有20个区的地区在0时之后(即同一天),也就是有度的地区在0-20时,另外有20~24时的地区,刚好是4个区即度,,即整个地球,所以选A????????5、从甲地到乙地的公路,只有上坡路和下坡路,没有平路,一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米。
历年国考考试行测数量关系有趣的题目整
理
在国考中,数量关系是行测考试中必考的模块之一。
广大考生对历年考试数量关系题研究会发现,这一模块所考查的知识点、题目数量、难度系数与往年相比并没有发生太大变化。
很多考生谈到数量关系,就觉得难于上青天,其实考题中也会出现一两道有趣的题目,让考生们紧绷的神经稍微放轻松。
下面我们来看一下数量关系出现的逗比的题目。
【例】木匠加工2张桌子和4张凳子共需要10小时,加工4张桌子和8张椅子需要22个小时。
问如果他加工桌子、凳子各10张,共需要多少个小时?
A. 47.5
B. 50
C. 52.5
D. 55
【答案】C
【解析】方法:配系数法。
假设每张桌子需x小时,每张凳子需y小时,每张椅子需z小时,可得不定方程组:式①2x+4y=10;式②4x+8z=22。
通过配系数式②2+式②=8x+8y+8z=42,所以10x+10y+10z=52.5,答案选C。
本题逗主要是逗在所有的未知数都是等额出现,因此广大考生在备考过程中也要学会这种方法,其实在数量关系这一部分,运用的解题方法如果能恰到好处,不仅可以帮我们快速找到方法,而且还能节约大量时间。