波动光学一答案
- 格式:doc
- 大小:402.00 KB
- 文档页数:6
第一章 波动光学通论 作业1、已知波函数为:⎪⎭⎫ ⎝⎛⨯-⨯=-t x t x E 157105.11022cos 10),(π,试确定其速率、波长和频率。
2、有一张0=t 时波的照片,表示其波形的数学表达式为⎪⎭⎫⎝⎛=25sin 5)0,(x x E π。
如果这列波沿负x 方向以2m/s 速率运动,试写出s t 4=时的扰动的表达式。
3、一列正弦波当0=t 时在0=x 处具有最大值,问其初位相为多少?4、确定平面波:⎪⎭⎫⎝⎛-++=t z ky k x kA t z y x E ω14314214sin ),,,(的传播方向。
5、在空间的任一给定点,正弦波的相位随时间的变化率为s rad /101214⨯π,而在任一给定时刻,相位随距离x 的变化是m rad /1046⨯π。
若初位相是3π,振幅是10且波沿正x 方向前进,写出波函数的表达式。
它的速率是多少?6、两个振动面相同且沿正x 方向传播的单色波可表示为:)](sin[1x x k t a E ∆+-=ω,]sin[2kx t a E -=ω,试证明合成波的表达式可写为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+-⎪⎭⎫ ⎝⎛∆=2sin 2cos 2x x k t x k a E ω。
7、已知光驻波的电场为t kzcoa a t z E x ωsin 2),(=,试导出磁场),(t z B 的表达式,并汇出该驻波的示意图。
8、有一束沿z 方向传播的椭圆偏振光可以表示为)4cos()cos(),(00πωω--+-=kz t A y kz t A x t z E试求出偏椭圆的取向和它的长半轴与短半轴的大小。
9、一束自然光在30o 角下入射到空气—玻璃界面,玻璃的折射率n=,试求出反射光的偏振度。
10、过一理想偏振片观察部分偏振光,当偏振片从最大光强方位转过300时,光强变为原来的5/8,求 (1)此部分偏振光中线偏振光与自然光强度之比; (2)入射光的偏振度;(3)旋转偏振片时最小透射光强与最大透射光强之比; (4)当偏振片从最大光强方位转过300时的透射光强与最大光强之比.11、一个线偏振光束其E 场的垂直于入射面,此光束在空气中以45o 照射到空气玻璃分界面上。
第18单元 波动光学(一)学号 姓名 专业、班级 课程班序号一 选择题[ A ]1. 如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质折射率分别为1n 和3n ,已知321n n n <<。
若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 22n e (B) 2e n 2λ-21(C) 22n e λ- (D) 22n e 22n λ-[ A ]2. 双缝干涉的实验中,两缝间距为d ,双缝与屏幕之间的距离为D (D >>d ),单色光波长为λ,屏幕上相邻的明条纹之间的距离为 (A)dD λ (B) D d λ (C) d D 2λ (D) D d2λ[ B ]3. 如图,1S 、2S 是两个相干光源,它们到P 点的距离分别为 1r 和2r 。
路径1S P 垂直穿过一块厚度为1t 、折射率为1n 的介质板,路径P S 2垂直穿过厚度为2t 、折射率为2n 的另一块介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+(B) ])1([])1([111222t n r t n r -+--+ (C) )()(111222t n r t n r ---(D) 1122t n t n -[ C ]4. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且321n n n ><, 1λ 为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为(A) 1122λπn e n (B) πλπ+1212n en (C) πλπ+1124n e n (D) 1124λπn en 。
[ B ]5. 如图,用单色光垂直照射在观察牛顿环的装置上。
当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移 (B) 向中心收缩 (C) 向外扩张 (D) 静止不动(E) 向左平移[ D ]6. 在迈克尔逊干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长?,则薄膜的厚度是 (A) 2λ (B) n 2λ (C) nλ(D) )1(2-n λ二 填空题1λe1n 2n 3单色光O.λe1n 2n 3①②S 1 S 21r 2r 1n 2n 1t 2tP1. 如图所示,两缝 1s 和 2s 之间的距离为d ,媒质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为21sin r r d θ--。
波动光学试题及答案1. 光波的波长为600nm,其频率是多少?答案:根据光速公式c = λν,其中c为光速(约为3×10^8m/s),λ为波长(600×10^-9 m),可得ν = c/λ = (3×10^8m/s) / (600×10^-9 m) = 5×10^14 Hz。
2. 一束光在折射率为1.5的介质中传播,其在真空中的速度是多少?答案:在折射率为1.5的介质中,光的速度v = c/n,其中c为真空中的光速(3×10^8 m/s),n为折射率。
因此,v = (3×10^8 m/s) / 1.5 = 2×10^8 m/s。
3. 光的偏振现象说明了什么?答案:光的偏振现象说明光是一种横波,即光波的振动方向与传播方向垂直。
4. 何为布儒斯特角?答案:布儒斯特角是指当光从一种介质(如空气)入射到另一种介质(如玻璃)时,反射光完全偏振时的入射角。
5. 干涉现象产生的条件是什么?答案:干涉现象产生的条件是两束光波的频率相同、相位差恒定且具有相同的振动方向。
6. 描述杨氏双缝干涉实验的基本原理。
答案:杨氏双缝干涉实验的基本原理是利用两个相干光源(如激光)通过两个相邻的狭缝产生两束相干光波,这两束光波在屏幕上相互叠加,形成明暗相间的干涉条纹。
7. 光的衍射现象说明了什么?答案:光的衍射现象说明光在遇到障碍物或通过狭缝时,其传播方向会发生改变,形成明暗相间的衍射图样。
8. 单缝衍射的中央亮条纹宽度与哪些因素有关?答案:单缝衍射的中央亮条纹宽度与光的波长、缝宽以及观察距离有关。
9. 光的色散现象是如何产生的?答案:光的色散现象是由于不同波长的光在介质中传播速度不同,导致折射率不同,从而在介质界面处发生不同程度的折射。
10. 描述光的全反射现象。
答案:光的全反射现象是指当光从光密介质(折射率较大)向光疏介质(折射率较小)传播时,如果入射角大于临界角,则光线不会折射,而是全部反射回光密介质中。
s 一.选择题[ B]1. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝. (B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.参考解答:根据条纹间距公式,即可判断。
Dx ndλ∆=[B]2. 在双缝干涉实验中,入射光的波长为 ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 ,则屏上原来的明纹处 (A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹参考解答:光程差变化了2.5 ,原光程差为半波长的偶数倍 形成明纹 ,先光程差为半波长的奇数倍,故变为暗条纹。
[A]3. 如图所示,波长为 的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4 n 2 e / . (B) 2 n 2 e / .(C) (4 n 2 e / . (D) (2 n 2 e / .参考解答:此题中无半波损失,故相位差为:。
22222e 4/n n e ππϕπλλλ∆=⨯⨯=光程差=[B]4. 一束波长为 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 (A) . (B) / (4n ).(C) . (D) / (2n ).参考解答:反射光要干涉加强,其光程差应为半波长的偶数倍,故薄膜的最小厚度应满足如下关系式:(要考虑半波损失),由此解得h 212nh λλ+=⋅ n 1λ。
/(4)h n λ= [C]5. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹 (A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变.参考解答:条纹间距,此题中变大,故条纹变密。
第一章 波动光学通论 作业1、已知波函数为:⎪⎭⎫ ⎝⎛⨯-⨯=-t x t x E 157105.11022cos 10),(π,试确定其速率、波长和频率。
2、有一张0=t 时波的照片,表示其波形的数学表达式为⎪⎭⎫⎝⎛=25sin 5)0,(x x E π。
如果这列波沿负x 方向以2m/s 速率运动,试写出s t 4=时的扰动的表达式。
3、一列正弦波当0=t 时在0=x 处具有最大值,问其初位相为多少?4、确定平面波:⎪⎭⎫⎝⎛-++=t z ky k x kA t z y x E ω14314214sin ),,,(的传播方向。
5、在空间的任一给定点,正弦波的相位随时间的变化率为s rad /101214⨯π,而在任一给定时刻,相位随距离x 的变化是m rad /1046⨯π。
若初位相是3π,振幅是10且波沿正x 方向前进,写出波函数的表达式。
它的速率是多少?6、两个振动面相同且沿正x 方向传播的单色波可表示为:)](sin[1x x k t a E ∆+-=ω,]sin[2kx t a E -=ω,试证明合成波的表达式可写为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+-⎪⎭⎫ ⎝⎛∆=2sin 2cos 2x x k t x k a E ω。
7、已知光驻波的电场为t kzcoa a t z E x ωsin 2),(=,试导出磁场),(t z B 的表达式,并汇出该驻波的示意图。
8、有一束沿z 方向传播的椭圆偏振光可以表示为)4cos()cos(),(00πωω--+-=kz t A y kz t A x t z E试求出偏椭圆的取向和它的长半轴与短半轴的大小。
9、一束自然光在30o 角下入射到空气—玻璃界面,玻璃的折射率n=1.54,试求出反射光的偏振度。
10、过一理想偏振片观察部分偏振光,当偏振片从最大光强方位转过300时,光强变为原来的5/8,求 (1)此部分偏振光中线偏振光与自然光强度之比; (2)入射光的偏振度;(3)旋转偏振片时最小透射光强与最大透射光强之比; (4)当偏振片从最大光强方位转过300时的透射光强与最大光强之比.11、一个线偏振光束其E 场的垂直于入射面,此光束在空气中以45o 照射到空气玻璃分界面上。
第11章 波动光学一. 基本要求1. 解获得相干光的方法。
掌握光程的概念以及光程差与相位差的关系。
2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。
3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。
4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 理解自然光和偏振光及偏振光的获得方法和检验方法。
6. 理解马吕斯定律和布儒斯特定律。
二. 内容提要1. 相干光及其获得方法 能产生干涉的光称为相干光。
产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。
获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。
2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。
若光波先后通过几种介质,其总光程为各分段光程之和。
若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。
来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆ 其中λ为光在真空中的波长。
3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。
其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,(ΛΛλλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。
波动光学(1)波动光学试题1一、选择题:1、在双缝干涉实验中,若单色光源S到两缝S1、S2距离相等,则观察屏上中央明条纹位于图中O处.现将光源S向下移动到示意图中的S'位置,则(A)中央明条纹也向下移动,且条纹间距不变.(B)中央明条纹向上移动,且条纹间距不变.(C)中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.[]2、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A)向下平移,且间距不变.(B)向上平移,且间距不变.(C)不移动,但间距改变.(D)向上平移,且间距改变.[]3、在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为D (D>>d).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d.(B)λd / D.(C) dD /λ.(D)λD /d.[]4把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D (D>>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A)λD / (nd) (B) nλD/d.(C)λd / (nD).(D)λD / (2nd).[]5、一束波长为λ的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A)λ/ 4.(B)λ / (4n).(C)λ/ 2.(D)λ / (2n).[]6、在牛顿环实验装置中,曲率半径为R的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k=.(B) r k=.(C) r k=.(D) r k=.[]7、在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n-1 ) d.(B) 2nd.(C) 2 ( n-1 ) d+λ / 2.(D) nd.(E) ( n-1 ) d.[]8、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A)λ / 2.(B)λ / (2n).(C)λ / n.(D) .[]9、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2个.(B) 4个.(C) 6个.(D) 8个.[]10、一束波长为λ的平行单色光垂直入射到一单缝AB上,装置如图.在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则的长度为(A)λ/ 2.(B)λ.(C) 3λ/ 2.(D) 2λ.[]二、填空题1、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___________;若使单色光波长减小,则干涉条纹间距_________________.2、把双缝干涉实验装置放在折射率为n的媒质中,双缝到观察屏的距离为D,两缝之间的距离为d (d<<D),入射光在真空中的波长为λ,则屏上干涉条纹中相邻明纹的间距是_______________________.3、在双缝干涉实验中,双缝间距为d,双缝到屏的距离为D (D>>d),测得中央零级明纹与第五级明之间的距离为x,则入射光的波长为_________________.4、在双缝干涉实验中,若两缝的间距为所用光波波长的N倍,观察屏到双缝的距离为D,则屏上相邻明纹的间距为_______________.5、用λ=600 nm的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为_______________________μm.(1 nm=10-9 m)6、在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad,在波长λ=700 nm的单色光垂直照射下,测得两相邻干涉明条纹间距l=0.25 cm,由此可知此透明材料的折射率n=______________________.(1 nm=10-9 m)7、用波长为λ的单色光垂直照射折射率为n2的劈形膜(如图)图中各部分折射率的关系是n1<n2<n3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e=____________________.8、用波长为λ的单色光垂直照射如图所示的、折射率为n2的劈形膜(n1>n2,n3>n2),观察反射光干涉.从劈形膜顶开始,第2条明条纹对应的膜厚度e=___________________.9、用波长为λ的单色光垂直照射折射率为n的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l,则劈尖角θ=_______________.10、用波长为λ的单色光垂直照射如图示的劈形膜(n1>n2>n3),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度e=___________________________.三、计算题:(每题10分)1、在双缝干涉实验中,所用单色光的波长为600 nm,双缝间距为1.2 mm双缝与屏相距500 mm,求相邻干涉明条纹的间距.2、在双缝干涉实验中,双缝与屏间的距离D=1.2 m,双缝间距d=0.45mm,若测得屏上干涉条纹相邻明条纹间距为1.5 mm,求光源发出的单色光的波长λ.3、用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l= 1.56 cm的A处是从棱边算起的第四条暗条纹中心.(1)求此空气劈形膜的劈尖角θ;(2)改用600 nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹还是暗条纹?(3)在第(2)问的情形从棱边到A处的范围内共有几条明纹?几条暗纹?4、一束自然光以起偏角i0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56,求:(1)该液体的折射率.(2)折射角.5、三个偏振片P-1、P-2、P-3顺序叠在一起,P-1、P-3的偏振化方向保持相互垂直,P-1与P-2的偏振化方向的夹角为α,P-2可以入射光线为轴转动.今以强度为I0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1)求穿过三个偏振片后的透射光强度I与α角的函数关系式;(2)试定性画出在P-2转动一周的过程中透射光强I随α角变化的函数曲线.大学物理------波动光学1参考答案一、选择题1-5BBDAB 6-10 BADBB二、填空题1.变小,变小;2. ;3. ;4. ;5.;6. ;7. ;8. ;9. ;10. ;三、计算题1、解:相邻明条纹间距为,代入a=1.2 mm,λ=6.0×10-4mm,D=500 mm可得∆x=0.25 mm。
波动光学一、选择题:1、B2、B3、A4、C5、D6、B7、C8、B9、D10 、B11、 B12 、B13、B14、C15、 B16、B二、填空题1、1:2,2,暗2、劈尖棱,小3、1.44、子波,子波的相干叠加5、3,明,4,暗6、37、0.36mm8、1,39、2047.8nm ,38.2°10、511、10.8°12、光强不变,光强变化但不为零,出现光强为零13、30°,314、三、计算题1.解:设云母的厚度为l 。
有云母时,光程差为l n Dxd )1(--=δ x =0处的光程差为l n )1(-=δx =0处为第k =7级明纹时λδk l n =-=)1()(1064.6158.1105507169m n k l --⨯=-⨯⨯=-=λ2. 解:θλsin 2n l =5391088.3100.552.12103.5892sin ---⨯=⨯⨯⨯⨯==nl λθ,8''=θ3.解:中央明纹宽度:)(1046.51010.0100.5465.022233900m a D Dtg x ---⨯=⨯⨯⨯===λθ∆∆ 第二级明纹宽度:)(1073.23m a DDtg x -⨯===λθ∆∆4.解: 22sin 2)12(sin 2211λθλθk a k a =+= 472121221==+λλk k 21724k k =+即:2,321==k k5.解:2)122(2)12(sin 2)132(2)12(sin λλθλλθ+⨯=+='+⨯='+'=k a k a nm 6.4286007575=⨯=='λλ6.解:(1)λθk b a =+sin )(m k b a k 691062.01060002sin --⨯=⨯⨯==+θλ (2)λθk a '=sinλθk b a =+sin )(m k k b a a 66105.114106--⨯=⨯⨯='+= (3)λθk b a =+sin )(全部级数为。
一. 选择题[ B ]1、 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法就是(A) 使屏靠近双缝.(B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.参考解答:根据条纹间距公式Dx ndλ∆=,即可判断。
[ B ]2、 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2、5 λ,则屏上原来的明纹处 (A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定就是明纹,还就是暗纹参考解答:光程差变化了2、5λ,原光程差为半波长的偶数倍(形成明纹),先光程差为半波长的奇数倍,故变为暗条纹。
[ A ]3、 如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π.参考解答:此题中无半波损失,故相位差为:22222e 4/n n e ππϕπλλλ∆=⨯⨯=光程差。
[ B ]4、 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ).参考解答:反射光要干涉加强,其光程差应为半波长的偶数倍,故薄膜的最小厚度h 应满足如下关系式:212nh λλ+=⋅(要考虑半波损失),由此解得/(4)h n λ=。
[ C ]5、 若把牛顿环装置(都就是用折射率为1、52的玻璃制成的)由空气搬入折射率为1、33的水中,则干涉条纹n 13λ(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变.参考解答:条纹间距2h nλ∆=,此题中n 变大,故条纹变密。
[ D ]6、 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中瞧到干涉条纹,则在接触点P 处形成的圆斑为(A) 全明.(B) 全暗. (C) 右半部明,左半部暗. (D) 右半部暗,左半部明.参考解答:接触点P 的左边两反射光的光程差为2left nh δ=,接触点P 的右边两反射光的光程差为22right nh λδ=+。
在P 点处,有0h =,所以0left δ=,2right λδ=。
故P 点的左半部为明,右半部为暗。
[ A ]7、 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了 (A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d .参考解答:光程差的改变量为:2122(1)n d d n d ⋅-⋅=-(其中:“1”为空气的折射率)。
二、 填空题1、 波长为λ的单色光垂直照射如图所示的透明薄膜.膜厚度为e ,两束反射光的光程差δ =2、6e .参考解答:两反射光的光程差为:2222 2.6n e n e e ⋅==。
2、 用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为 1、2 μm.(1 nm=10-9 m)图中数字为各处的折射参考解答:相邻两个暗环对应的高度差为:2nλ,而此题中央为暗斑,故第4个暗环对应的空气膜厚度:4 1.22h m nλμ=⨯=(此题中1n =)。
3、 一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm .若整个装置放在水中,干涉条纹的间距将为______3/4=0、75_______mm .(设水的折射率为4/3)在空气中有一劈形透明膜,其劈尖角θ=1、0×10-4rad,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm,由此可知此透明材料的折射率n = 7/5=1、4 .(1 nm=10-9 m) 参考解答:①空气中条纹间距为:D x d λ∆=;水中条纹间距为:D x ndλ'∆=。
所以34x x mm n ∆'∆==。
②由/(2)sin h n l l λθ∆==∆∆得:72sin 5n l λθ==∆(可取近似:sin θθ≈)。
4、 如图所示,平凸透镜的顶端与平板玻璃接触,用单色光垂直入射,定性地画出透射光干涉所形成的牛顿环(标明明环与暗环).参考解答:画图注意两要点:①中心为暗斑;②越外,环越密。
5、 图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.瞧到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为e = 3λ/2 .参考解答:相邻暗条纹对应的高度差为:22nλλ=(空气劈尖的折射率为“1”)。
劈尖的顶角对应暗条纹(劈尖高度为“0”,其光程差为λ/2), A 点对应第3条暗纹(从顶角开始数,不计顶角的暗条纹),故A 点对应的空气膜厚度为:33/22e λλ=⨯=。
图b图a6、 如图所示,假设有两个同相的相干点光源S 1与S 2,发出波长为λ的光.A 就是它们连线的中垂线上的一点.若在S 1与A 之间插入厚度为e 、折射率为n 的薄玻璃片,则两光源发出的光在A 点的相位差∆φ= 2π(n-1)e/λ .若已知λ=500 nm,n =1、5,A 点恰为第四级明纹中心,则e = 4000 nm.(1 nm =10-9m) 参考解答:①相位差:22(1)n e ππφλλ∆=⨯=-⨯光程差。
②明纹应满足:光程差k δλ=(其中k 为整数),即有(1)n e k δλ=-=,所以厚度1k e n λ=-。
此题中4k =,故可计算出84000e nm λ==。
三. 计算题1、 在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D =2 m.求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6、6×10-5 m 、折射率为n =1、58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)参考解答:(1)742220 5.51020.11210D s x m d λ--⨯⨯⨯∆=∆===⨯ (2)加玻璃片后,零级明纹所对应的光程差为:(1)0n e δδ'=-±=(δ为该明纹所在位置处,在不加玻璃片时的光程差)。
故不加玻璃片时,此处的光程差为:(1)n e δ=-。
57(1)0.58 6.61069.65.510n e k δλλ---⨯⨯===≈⨯。
即,移到原来的第70级明纹处。
2、 在双缝干涉实验中,单色光源S 0到两缝S 1与S 2的距离分别为l 1与l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求: (1) 零级明纹到屏幕中央O 点的距离. (2) 相邻明条纹间的距离. 参考解答:(1)如图所示,设P 点为零级明纹中心,则有:21dOPr r D-≈。
零级明纹的光程差应满足:2211()()0l r l r δ=+-+=,即:21123r r l l λ-=-=。
所以21()/3/OP D r r d D d λ≈-=,即为所求。
(2)屏幕上任意一点,距离O 的距离为x ,则该点的光程差为:3dx Dδλ=-,故相邻明条纹的距离为:1(1)k k k k Dx x x d d Dλλλ++-∆=-==。
3、 折射率为1、60的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ=600 nm 的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满n =1、40的液体时的相邻明纹间距比劈形膜内就是空气时的间距缩小∆l =0.5 mm,那么劈尖角θ 应就是多少? 参考解答:空气:/2sin l λθ∆=; 液体:4/(2)510sin n l l λθ-'∆==∆-⨯。
由以上可解得:44o sin ()/(510) 1.7110(0.0098)22rad nλλθθ--≈=-⨯=⨯或。
4、 在牛顿环装置的平凸透镜与平玻璃板之间充满折射率n =1、33的透明液体(设平凸透镜与平玻璃板的折射率都大于1、33).凸透镜的曲率半径为 300 cm,波长λ=650 nm(1nm=109m)的平行单色光垂直照射到牛顿环装置上,凸透镜顶部刚好与平玻璃板接触.求: (1) 从中心向外数第十个明环所在处的液体厚度e 10.(2) 第十个明环的半径r 10. 参考解答:(1)任意位置的光程差为:22nh λδ+=,所以中心为暗斑(0h =)。
而任意相邻暗环(或明环)所在位置对应的高度差为2nλ,第10个明环所在位置离开中心暗斑的间距为9、5个相邻暗环间隔,故所对应的高度(液体厚度)为:6109.5 2.32102e m nλ-=⨯=⨯。
(2)310 3.7310r m -==⨯。
5、 在折射率n =1、50的玻璃上,镀上n '=1、35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=600 nm 的光波干涉相消,对λ2=700 nm 的光波干涉相长.且在600 nm 到700 nm 之间没有别的波长就是最大限度相消或相长的情形.求所镀介质膜的厚度.(1 nm = 10-9 m)参考解答:两反射光的光程差为:2n h δ'=(h 为薄膜的厚度)。
由题意知:对λ1,12(21)/2n h k δλ'==+,为λ1/2的奇数倍(k 为整数)对λ2,2222/2n h k k δλλ'===,为λ2/2的偶数倍(k 值同上式)由以上两式,代入数值,解得:3k =。
故:介质膜的厚度为:727.78102k h m n λ-=≈⨯'。
【选做题】1、 如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙e 0.现用波长为λ的单色光垂直照射,已知平凸透镜的曲率半径为R ,求反射光形成的牛顿环的各暗环半径. 参考解答:任意位置的光程差为:0222e h λδ=++。
暗环所在的位置应满足:(21)2k λδ=+,由此可得:022k e h λ-=。
暗环的半径r 应满足:()2222r R R h Rh =--≈。