原子物理学第三章习题解答复习过程
- 格式:doc
- 大小:176.50 KB
- 文档页数:3
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mvctgb bZeZea qpepe ==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg bK oqape p ---´´===´´´´´´米式中212K Mv a =是a 粒子的功能。
1.2已知散射角为q 的a 粒子与散射核的最短距离为222121()(1)4sinm Ze r Mvqpe =+,试问上题a 粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min 22121()(1)4sinZe r Mvqpe =+1929619479(1.6010)1910(1)7.6810 1.6010sin 75o --´´´=´´´+´´´143.0210-=´米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180o。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min 124p ZeMv K r pe ==,故有:2min 04pZe r K pe =19291361979(1.6010)910 1.141010 1.6010---´´=´´=´´´米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-´米。
1.7能量为3.5兆电子伏特的细a 粒子束射到单位面积上质量为22/1005.1米公斤-´的银箔上,a 粒解:设靶厚度为't 。
目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。
第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。
1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。
难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。
2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。
3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。
第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。
第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。
第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。
第三章习题解答3-1 电子的能量分别为10eV 10eV、、100eV 和1000eV 时,试计算其相应的德布罗意波长。
长。
解:根据公式22kh hc p mc E l ==代入相关数据10eV 10eV、、100eV 100eV、、1 000eV 得6124020.51110keV nmE l=×´´因此有:(1)当1 1.26610,0.3910K E eV nm eV l ===时 (2)当1 1.266100,0.123100K E eV nm eV l ===时 (3)当1 1.2661000,0.0391000K E eV nm eVl ===时3-23-2 设光子和电子的波长均为0.4nm 0.4nm,试问(,试问(,试问(11)光子的动量与电子的动量之比是多少?(比是多少?(22)光子的动能与电子的动能之比是多少?)光子的动能与电子的动能之比是多少?解:由题意知由题意知光子的动量光子的动量h p l= , 光子的能量cE h h n l==电子的动量电子的动量 h p l= , 电子的能量2e E m c = \(1) 121pp =(2) 126212400.0610.40.40.40.51110e e E h hc eV nm E m c m c eV nm ×====´´×3-33-3 若一个电子的动能等于它的静止能量,若一个电子的动能等于它的静止能量,试求:试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?)其相应的德布罗意波长是多少?解:(1)相对论给出运动物体的动能为:)相对论给出运动物体的动能为:20()k E m m c =-,而现在题设条件给出20k E m c =故有故有2200()m c m m c \=-由此推得000222211m m m m vc b===--22330.86644v v c c c\=Þ== (2)03hp m cl ==20 1.240.001433 5.11hcnm nm m c l \===´3-43-4 把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量。
第三章习题解答3-1 电子的能量分别为10eV 、100eV 和1 000eV 时,试计算其相应的德布罗意波长。
解:根据公式hp λ==10eV 、100eV 、1 000eV得1240eV λ=⋅因此有:(1)当110,0.39K E eV nm λ===时 (2)当1100,0.123K E eV nm λ===时 (3)当11000,0.039K E eV nm λ===时3-2设光子和电子的波长均为0.4nm ,试问(1)光子的动量与电子的动量之比是多少?(2)光子的动能与电子的动能之比是多少?解:由题意知Q 光子的动量h p λ= , 光子的能量cE h hνλ==电子的动量 h p λ= , 电子的能量2e E m c =∴(1)121p p = (2)126212400.0610.40.40.40.51110e e E h hc eV nm E m c m c eV nm⋅====⨯⨯⋅ 3-3若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?解:(1)相对论给出运动物体的动能为:20()k E m m c =-,而现在题设条件给出20k E m c =故有2200()m c m m c ∴=-由此推得02m m ===2230.8664v v c c ∴=⇒==(2)0hp c λ==Q0.0014nm λ∴===3-4把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量。
若晶体的两相邻布喇格面间距为0.18,一级布喇格掠射角(入射束与布喇格面之间的夹角)为30度,试求这些热中子的能量。
解:根据布喇格晶体散射公式: 2sin 20.18sin300.18d nm λθ==⨯⨯=o 而热中子的能量较低,其德布罗意波长可用下式表示:h p λ==()222220.02522k hc h E eV m mc λλ=== 3-5电子显微镜中所用加速电压一般都很高,电子被加速后的速度很大,因而必须考虑相对论修正。
第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----∙∙⨯=⨯==秒米千克λhp 能量为:λ/hc hv E==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meV h 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm h c m eV eVm h -⨯-=-=λ 由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得: ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。
第三章习题解答
3-1 电子的能量分别为10eV 、100eV 和1 000eV 时,试计算其相应的德布罗意波
长。
解:
根据公式h
p λ==10eV 、100eV 、1 000eV
得1240eV λ=⋅因此有:(1
)当110,0.39K E eV nm λ===时 (2
)当1100,0.123K E eV nm λ===时 (3
)当11000,0.039K E eV nm λ===时
3-2
设光子和电子的波长均为0.4nm ,试问(1)光子的动量与电子的动量之比是多少?(2)光子的动能与电子的动能之比是多少?
解:由题意知
Q 光子的动量h p λ
= , 光子的能量c
E h h
νλ
==
电子的动量 h p λ
= , 电子的能量2e E m c =
∴(1)
1
2
1p p = (2)
126212400.0610.40.40.40.51110e e E h hc eV nm E m c m c eV nm
⋅====⨯⨯⋅ 3-3
若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?
解:(1)相对论给出运动物体的动能为:
20()k E m m c =-,而现在题设条件给出20k E m c =故有 2200()m c m m c ∴=-
由此推得02m m ==
=
223
0.8664
v v c c ∴=⇒==
(2)
0h
p c λ
=
=Q
0.0014nm λ∴=
==
3-4
把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量。
若晶体的两相邻布喇格面间距为0.18,一级布喇格掠射角(入射束与布喇格面之间的夹角)为30度,试求这些热中子的能量。
解:根据布喇格晶体散射公式: 2sin 20.18sin300.18d nm λθ==⨯⨯=o 而热中子的能量较低,
其德布罗意波长可用下式表示:h p λ=
=
()2
2
222
0.02522k hc h E eV m mc λλ==
= 3-5
电子显微镜中所用加速电压一般都很高,电子被加速后的速度很大,因而必须考虑相对论修正。
试证明:电子的的德布罗意波长与加速电压的关系应为:
λ=
式中 6(10.97810)r V V v -=+⨯,称为相对论修正电压,其中电子加速电压
V 的单位是伏特。
证明:
2
22
24
0E p c m c p =+⇒==Q
)p ⇒==
h p λ=
===证毕
3-6(1)试证明:
式中0E 和E 分别是粒子的静止能量和运动粒子的总能量。
(2)当电子的动能为何值时,它的德布罗意波长等于它的康普顿波长(康普顿波长 C h
mc
λ= ,m 为粒子静止质量,其意义在第六章中讨论)。
证明:
(1)由康普顿波长c h mc
λ=
,德布罗意波长h p λ=c p
mc λλ∴=
而已经考虑相对论效应22224E p c m c =+
=
=2pc p
mc mc
== 左式=右式,即得证
(2
1=
由上等式可知222224202k E E p c m c E pc mc =⇒=⇒==
3-7一原子的激发态发射波长为600nm 的光谱线,测得波长的精度为
710λ
λ
-∆=,试问该原子态的寿命为多少?
解:
辐射光子的能量为hc
E λ
=
,对上式两边取微分,可得2
hc
E λλ
∆=
∆
由上式即可得波长的相对变化量()1E
hc
λ
λλ
∆∆=
而()22E τ
∆=
h
,将(2)式代入(1)式得
()34c λ
λ
λ
πτ
∆=
由(3)式即可求出原子态的寿命4c λ
τλ
πλ
=
∆,将已知数据代入得
9210τ-=⨯。