人教新课标版数学高二-人教A版数学必修5【作业】2 余弦定理
- 格式:doc
- 大小:47.00 KB
- 文档页数:6
1.1.2余弦定理基础巩固一、选择题1.在△ABC 中,b =5,c =53,A =30°,则a 等于( ) A .5 B .4 C .3 D .10[答案] A[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴a 2=52+(53)2-2×5×53×cos30°, ∴a 2=25,∴a =5.2.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .π3B .π6C .2π3D .π3或2π3[答案] C[解析] ∵a 2=b 2+c 2+bc ,∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2-c 2-bc 2bc =-12,又∵0<A <π,∴A =2π3.3.(2014·全国新课标Ⅱ理,4)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5B . 5C .2D .1[答案] B[解析] 本题考查余弦定理及三角形的面积公式. ∵S △ABC =12ac sin B =12×2×1×sin B =12,∴sin B =22, ∴B =π4或3π4.当B =π4时,经计算△ABC 为等腰直角三角形,不符合题意,舍去.当B =3π4时,由余弦定理,得b 2=a 2+c 2-2ac cos B ,解得b =5,故选B .4.(2014·江西理,4)在△ABC 中,内角A 、B 、C 所对应的边分别为a 、b 、c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B .932C .332D .3 3[答案] C[解析] 本题考查正弦、余弦定理及三角形的面积公式.由题设条件得a 2+b 2-c 2=2ab -6,由余弦定理得a 2+b 2-c 2=ab , ∴ab =6,∴S △ABC =12ab sin π3=12×6×32=332.选C .5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 满足b 2=ac ,且c =2a , 则cos B =( ) A .14 B .34 C .24D .23[答案] B[解析] 由b 2=ac ,又c =2a ,由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+4a 2-a ×2a 2a ·2a =34.6.(2015·广东文,5)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若a =2,c =23, cos A =32,且b <c ,则b =( ) A .3 B .2 2 C .2 D . 3[答案] C[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴4=b 2+12-6b ,即b 2-6b +8=0, ∴b =2或b =4. 又∵b <c ,∴b =2.二、填空题7.以4、5、6为边长的三角形一定是________三角形.(填:锐角、直角、钝角) [答案] 锐角[解析] 由题意可知长为6的边所对的内角最大,设这个最大角为α,则cos α=16+25-362×4×5=18>0,因此0°<α<90°. 8.若2、3、x 为三边组成一个锐角三角形,则x 的取值范围为________. [答案] (5,13)[解析] 长为3的边所对的角为锐角时,x 2+4-9>0,∴x >5, 长为x 的边所对的角为锐角时,4+9-x 2>0,∴x <13, ∴5<x <13.三、解答题9.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b .[解析] 解法一:在△ABC 中,由A +C =2B ,A +B +C =180°,知B =60°.a +c =8,ac =15,则a 、c 是方程x 2-8x +15=0的两根.解得a =5,c =3或a =3,c =5. 由余弦定理,得b 2=a 2+c 2-2ac cos B =9+25-2×3×5×12=19.∴b =19.解法二:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知sin C =12,a =23,b =2,求边c .[解析] ∵sin C =12,且0<C <π,∴C 为π6或5π6.当C =π6时,cos C =32,此时,c 2=a 2+b 2-2ab cos C =4,即c =2. 当C =5π6时,cos C =-32,此时,c 2=a 2+b 2-2ab cos C =28,即c =27.能力提升一、选择题1.在△ABC 中,AB =3,BC =13,AC =4,则AC 边上的高为( ) A .322B .332C .32D .3 3[答案] B[解析] 由余弦定理,可得cos A =AC 2+AB 2-BC 22AC ·AB =42+32-1322×3×4=12,所以sin A =32. 则AC 边上的高h =AB sin A =3×32=332,故选B . 2.在△ABC 中,∠B =60°,b 2=ac ,则这个三角形是( ) A .不等边三角形 B .等边三角形 C .等腰三角形 D .直角三角形[答案] B[解析] 由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,则(a -c )2=0,∴a =c ,又∠B =60°, ∴△ABC 为等边三角形.3.在△ABC 中,三边长AB =7,BC =5,AC =6,则AB →·BC →等于( ) A .19 B .-14 C .-18 D .-19[答案] D[解析] 在△ABC 中AB =7,BC =5,AC =6, 则cos B =49+25-362×5×7=1935.又AB →·BC →=|AB →|·|BC →|cos(π-B ) =-|AB →|·|BC →|cos B =-7×5×1935=-19.4.△ABC 的三内角A 、B 、C 所对边的长分别为a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则C 的大小为( ) A .π6B .π3C .π2D .2π3[答案] B[解析] ∵p =(a +c ,b ),q =(b -a ,c -a ),p ∥q , ∴(a +c )(c -a )-b (b -a )=0, 即a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,∵0<C <π,∴C =π3.二、填空题5.(2015·重庆文,13)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________. [答案] 4[解析] ∵3sin A =2sin B , ∴3a =2b ,又∵a =2,∴b =3. 由余弦定理,得c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×(-14)=16,∴c =4.6.如图,在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,则AD →·BC →=________.[答案] -83[解析] 由余弦定理,得BC 2=22+12-2×2×1×(-12)=7,∴BC =7,∴cos B =4+7-12×2×7=5714.∴AD →·BC →=(AB →+BD →)·BC →=AB →·BC →+BD →·BC → =-2×7×5714+73×7×1=-83.三、解答题7.已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积. [解析] 如图,连结AC .∵B +D =180°,∴sin B =sin D .S 四边形ABCD =S △ABC +S △ACD =12AB ·BC ·sin B +12AD ·DC ·sin D =14sin B .由余弦定理,得AB 2+BC 2-2AB ·BC ·cos B =AD 2+DC 2-2AD ·DC ·cos D , 即40-24cos B =32-32cos D .又cos B =-cos D , ∴56cos B =8,cos B =17.∵0°<B <180°,∴sin B =1-cos 2B =437. ∴S 四边形ABCD =14sin B =8 3.8.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a +c =6,b =2,cos B =79.(1)求a 、c 的值; (2)求sin(A -B )的值.[解析] (1)由余弦定理,得b 2=a 2+c 2-2ac cos B 得,b 2=(a +c )2-2ac (1+cos B ),又已知a +c =6,b =2,cos B =79,∴ac =9.由a +c =6,ac =9,解得a =3,c =3. (2)在△ABC 中,∵cos B =79,∴sin B =1-cos 2B =429. 由正弦定理,得sin A =a sin Bb =223,∵a =c ,∴A 为锐角,∴cos A =1-sin 2A =13.∴sin(A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.9.在△ABC 中,角A 、B 、C 所对边分别为a 、b 、c 且a =3,C =60°,△ABC 的面积为332,求边长b 和c .[解析] ∵S △ABC =12ab sin C ,∴332=12×3b ×sin60°=12×3b ×32, ∴b =2.由余弦定理,得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×cos60° =9+4-2×3×2×12=7,∴c =7.。
课题:1.1.2余弦定理
高二数学教·学案
【学习目标】
1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
2.利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题
【学习重点】余弦定理的发现和证明过程及其基本应用;
【学习难点】勾股定理在余弦定理的发现和证明过程中的作用。
【授课类型】新授课
【教具】课件、电子白板
高二数学教·学案
课后反思:。
1.1.2 余弦定理双基达标 限时20分钟1.在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ).A.39B .8 3C .10 2D .7 3解析 c 2=a 2+b 2-2ab cos C =92+(23)2-2×9×23cos 150°=147=(73)2,∴c =7 3. 答案 D2.在△ABC 中,若a =7,b =43,c =13,则△ABC 的最小角为( ).A.π3B.π6C.π4D.π12解析 ∵c <b <a ,∴最小角为角C .∴cos C =a 2+b 2-c 22ab =49+48-132×7×43=32.∴C =π6,故选B.答案 B3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC( ).A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形解析 ∵c 2-a 2-b 22ab>0,∴c 2-a 2-b 2>0.∴a 2+b 2<c 2.∴△ABC 为钝角三角形.故选C. 答案 C4.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. 解析 ∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120°=a 2+c 2+ac . ∴原式为0. 答案 05.在△ABC 中,若(a -c )(a +c )=b (b +c ),则A =________. 解析 ∵(a -c )(a +c )=b (b +c ), ∴a 2-c 2=b 2+bc ,即b 2+c 2-a 2=-bc .∴cos A =b 2+c 2-a 22bc =-12.∵0°<A <180°,∴A =120°. 答案 120°6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =14,a =4,b +c =6,且b <c ,求b ,c 的值.解 由余弦定理a 2=b 2+c 2-2bc cos A , ∴16=(b +c )2-2bc -12bc∴bc =8,又∵b +c =6,b <c ,解方程组⎩⎪⎨⎪⎧b +c =6,bc =8,得b =2,c =4或b =4,c =2(舍). ∴b =2,c =4.综合提高 限时25分钟7.在△ABC 中,B =60°,b 2=ac ,则三角形一定是( ).A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形 解析 由余弦定理b 2=a 2+c 2-ac , ∴a 2+c 2-2ac =0,∴(a -c )2=0,∴a =c . ∵B =60°,∴A =C =60°. 故△ABC 为等边三角形. 答案 B8.在△ABC 中,AB =5,AC =3,BC =7,则AB →·A C →等于 ( ).A.152 B .-152 C.1532D .15 解析 ∵cos A =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴AB →·AC →=|AB →|·|AC →|·cos∠BAC =5×3×⎝ ⎛⎭⎪⎫-12=-152,故选B. 答案 B9.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是________. 解析 ∵c 2=a 2+b 2-2ab ·cos C =1+4-4cos C =5-4cos C .又∵0<C <π2,∴cos C ∈(0,1).∴c 2∈(1,5).∴c ∈(1,5). 答案 (1,5)10.已知等腰△ABC 的底边BC =2,腰AB =4,则腰上的中线长为________.解析 ∵cos A =b 2+c 2-a 22bc =42+42-222×4×4=78.设其中一腰中线长为x ,则x 满足:x 2=42+22-2×4×2cos A =20-16×78=6.∴x = 6.答案611.已知a ,b ,c 分别是△ABC 中角A ,B ,C 的对边,且a 2+c 2-b 2=ac . (1)求角B 的大小;(2)若c =3a ,求tan A 的值.解 (1)由余弦定理,得cos B =a 2+c 2-b 22ac =12.∵0<B <π,∴B =π3.(2)法一 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a .由余弦定理,得cos A =b 2+c 2-a 22bc =5714.∵0<A <π,∴sin A =1-cos 2A =2114. ∴tan A =sin A cos A =35.法二 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a . 由正弦定理,得sin B =7sin A . ∵B =π3,∴sin A =2114.又∵b =7a >a ,则B >A , ∴cos A =1-sin 2A =5714.∴tan A =sin A cos A =35.12.(创新拓展)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sinB +(2c +b )sinC .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 解 (1)由已知,根据正弦定理得 2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理a 2=b 2+c 2-2bc cos A , 故cos A =-12.又A ∈(0,π),∴A =2π3.(2)由(1)中a 2=b 2+c 2+bc 及正弦定理,可得 sin 2A =sin 2B +sin 2C +sin B sin C , 即⎝⎛⎭⎪⎫322=sin 2B +sin 2C +sin B sin C , 又sin B +sin C =1,得sin B =sin C =12,又0<B ,C <π3,∴B =C ,∴△ABC 为等腰的钝角三角形.。
课时作业2 余弦定理
时间:45分钟 分值:100分
一、选择题(每小题6分,共计36分)
1.在△ABC 中,a =4,b =4,C =30°,则c 2等于( ) A .32-16 3 B .32+16 3 C .16
D .48
解析:由余弦定理得c 2=a 2+b 2-2ab cos C =42+42-2× 4×4×3
2=32-16 3.
答案:A
2.在△ABC 中,a 2-c 2+b 2=-3ab ,则角C =( ) A .60° B .45°或135° C .150°
D .30°
解析:cos C =a 2+b 2-c 22ab =-3ab 2ab =-32. ∵0°<C <180°,∴C =150°. 答案:C
3.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( )
A.π3
B.π6
C.π4
D.π12
解析:∵c <b <a ,
∴最小角为角C .
∴cos C =a 2+b 2-c 22ab =49+48-132×7×43=3
2.
∴C =π
6,故选B. 答案:B
4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 满足b 2=ac ,且c =2a ,则cos B =( )
A.14
B.34
C.24
D.23
解析:因为b 2=ac 且c =2a ,由余弦定理:cos B =a 2+c 2-b 2
2ac =a 2+c 2-ac 2ac =a 2+4a 2-2a 24a 2
=3
4,故选B. 答案:B
5.在△ABC 中,AB =5,AC =3,BC =7,则AB →·AC →等于( ) A.152 B .-152 C.1532
D .15
解析:∵cos A =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-1
2, ∴AB →·AC →=|AB →|·|AC →|·cos A =5×3×(-12)=-15
2,故选B.
答案:B
6.△ABC 中,下列结论:①a 2>b 2+c 2,则△ABC 为钝角三角形;②a 2=b 2+c 2+bc ,则A 为60°;③a 2+b 2>c 2,则△ABC 为锐角三角形;④若A :B :C =1:2:3,则a :b :c =1:2:3,其中正确的个数为( )
A .1个
B .2个
C .3个
D .4个
解析:①∵cos A =b 2+c 2-a 2
2bc <0, ∴A 为钝角,正确; ②∵cos A =b 2+c 2-a 22bc =-1
2, ∴A =120°,错误; ③∵cos C =a 2+b 2-c 2
2ab >0,
∴C 为锐角,但A 或B 不一定为锐角,错误; ④∵A =30°,B =60°,C =90°, ∴a :b :c =1:3:2,错误.故选A. 答案:A
二、填空题(每小题8分,共计24分)
7.在△ABC 中,a 2
+b 2
<c 2
,且sin C =3
2,则C =________.
解析:由余弦定理cos C =a 2+b 2-c 2
2ab <0,知C 是钝角. ∴由sin C =3
2得C =120°.
答案:120°
8.已知等腰三角形的底边长为6,一腰长为12,则顶角的余弦值为________.
解析:设顶角为A ,则cos A =b 2+c 2-a 22bc =122+122-622×12×12=78.
答案:78
9.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是________.
解析:∵c 2=a 2+b 2-2ab ·cos C =1+4-4cos C =5-4cos C , 又∵0<C <π2,
∴cos C ∈(0,1).∴c 2∈(1,5). ∴c ∈(1,5). 答案:(1,5) 三、解答题(共计40分)
10.(10分)在△ABC 中,C =2A ,a +c =10,cos A =3
4,求b . 解:由正弦定理得 c a =sin C sin A =sin2A
sin A =2cos A , ∴c a =3
2.又a +c =10,∴a =4,c =6. 由余弦定理a 2=b 2+c 2-2bc cos A ,
得b 2+2012b =3
4,∴b =4或b =5. 当b =4时,∵a =4,∴A =B . 又C =2A ,且A +B +C =π,
∴A =π4,与已知cos A =3
4矛盾,不合题意,舍去. 当b =5时,满足题意,∴b =5.
11.(15分)(2012·浙江卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .
(1)求角B 的大小;
(2)若b =3,sin C =2sin A ,求a ,c 的值.
解: (1)由b sin A =3a cos B 及正弦定理a sin A =b
sin B ,得 sin B =3cos B .
所以tan B =3,所以B =π
3.
(2)由sin C =2sin A 及a sin A =c
sin C ,得c =2a .
由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac . 所以a =3,c =2 3.
12.(15分)在△ABC 中,a +b =10,而cos C 的值是方程2x 2-3x -2=0的一个根,求三角形周长的最小值.
解:设三角形的另一边是c ,
方程2x 2
-3x -2=0的根是x =-1
2或x =2.
∵-1<cos C<1,∴cos C=-1
2.
由余弦定理得c2=a2+b2-2ab cos C
=a2+b2-2ab(-1
2)
=(a+b)2-ab=100-ab=100-a·(10-a)
=100+a2-10a
=75+(a-5)2.
要使三角形的周长最小,只要c最小,
当a=5时,c2最小,∴c最小,c的最小值是75=53,∴三角形周长的最小值是10+5 3.。