任务六 土石坝的渗流监测
- 格式:pptx
- 大小:3.66 MB
- 文档页数:28
目录第六章渗流监测 (133)第一节监测内容与布置 (133)一、内容 (133)二、监测布置 (133)第二节渗流(压)及其地下水位监测 (134)一、测压管及电测水位计 (134)二、渗压计 (136)第三节渗流量监测 (139)一、观测方法及设施 (139)二、安装埋设 (140)三、观测与计算 (141)第六章渗流监测第一节监测内容与布置一、内容主要为大坝在上、下游水位差作用下产生的渗流场的监测(包括渗压、扬压力、绕坝渗流及渗漏量);地下洞室渗漏及外水压力监测;边坡工程、渗流及其地下水位监测。
有关饱和粘性土的孔隙水压力监测见第四章。
坝体、坝基渗流(压)观测主要是了解土石坝体和坝基渗透压力;混凝土坝的接缝渗漏和坝基扬压力,通常采用渗压计和测压管观测。
绕坝渗流观测,通常布置在大坝的两岸坝肩及部分山体,以及深入到两岸山体的防渗齿墙或灌浆帷幕前、后等关键部位,以掌握地下水动态,评价其防渗效果。
地下水位的观测,对评价近坝区滑坡体(岸坡)稳定性十分重要,一般采用测压管观测。
地下洞室围岩的渗流状况及其外水压力是隧洞稳定重要因素,一般采用渗压计观测。
二、监测布置(一)坝体、坝基坝基渗流渗压监测一般根据建筑物的类型、规模、坝基地质条件和渗流控制的工程措施等进行设计布置,通常纵向监测断面1~2个,1级、2级坝横向断面至少三个。
对混凝土坝而言,纵向断面宜布置在第一道防渗线上,每个坝段至少布设一个点。
横向断面宜选择在最高坝段、地形或地质条件复杂地段,并尽量与变形、应力应变观测断面相结合。
横断面间距一般为50m~100m,如坝体较长、坝体结构和地质条件大体相同,则可以加大横断面间距。
横断面测点一般不少于3个。
另外,在混凝土坝水平施工缝、土石坝防渗体内及防渗墙幕后,通常根据需要,设置渗流监测。
(二)绕坝渗流绕坝渗流监测主要设置在两岸坝端及部分山体等部分,测点的布置主要根据地形、枢纽布置、渗流控制及绕坝渗流区特性而定。
对土石坝渗流安全监测仪器的几点认识土石坝作为一种常见的储水构筑物,在人们的生产生活中扮演着至关重要的角色。
但与此同时,土石坝的安全也备受关注,因为任何一个环节出现问题,都可能导致水库垮塌,造成巨大的人员伤亡和财产损失。
而土石坝的渗流安全监测仪器则可以为土石坝的安全运营提供重要的帮助。
下面,笔者将对土石坝渗流安全监测仪器进行几点认识。
一、仪器的基本原理土石坝渗流安全监测仪器主要是利用多种技术手段,如电学、声学、光学、热学等,对土石坝体内的地下水、渗透水和浸润水等液态水体进行监测和分析。
通过对渗流变化的观测和分析,着重监测土石坝内部的渗流状态和渗透强度,以发现渗流安全隐患,保证土石坝的安全运营。
二、监测仪器的种类市场上常见的土石坝渗流安全监测仪器主要有以下几种:1.土体渗流监测仪:这是一种大型、复杂的设备,需要通过电学、声学等多种技术手段,对土体内部的渗流状态进行分析。
2.压力式渗流计:广泛应用于工程勘察、地下水测量、壤中渗流监测等领域。
3.电子压力计:主要是利用端子式测力传感器和独立放大器,实现对渗透强度的测量和准确分析。
4.渗透仪器:它主要是利用大型的模拟装置,模拟地下水与渗透水之间的渗透情况,从而分析土石坝体内的渗透强度和渗流状态。
5.声纳仪:通过对土石坝体内水流的声波传播速度进行探测和分析,以提供关于渗流状态的精确信息。
三、仪器的使用方法使用土石坝渗流安全监测仪器需要注意以下几点:1.在安装渗流监测仪器时,需要选好监测点,并对渗流观测点进行标记和调整。
2.在使用渗透仪器、压力式渗流计等仪器时,需要对渗透性进行合理的估算。
3.在日常照片处理时,需要根据设备的标准操作手册进行操作。
特别是在安装、调试和测试仪器时,要格外小心,以免造成设备故障和测量误差。
四、仪器的优点和局限性土石坝渗流安全监测仪器具有以下优点:1. 精度高、可靠性强,可以发现渗流安全隐患,提高土石坝的安全运行水平。
2. 操作便捷,方便日常监测和维护。
水库土石坝坝后出现渗漏处理措施下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言水库土石坝是人类利用自然资源修建的一种重要水利工程,但由于多种因素的影响,水库土石坝在使用过程中可能出现渗漏问题。
土石坝安全监测技术规范土石坝是一种常见的水利工程设施,用于调节水流、防洪和蓄水等功能。
土石坝的安全监测是确保其正常运行和避免安全事故的重要手段。
以下是土石坝安全监测的技术规范。
1.监测目标土石坝安全监测的目标是全面掌握土石坝的变形、渗流、应力和地表沉降等变化情况,及时发现异常并采取措施进行处理。
监测的目标主要包括土石坝的稳定性、渗流情况、变形变化、水位变化、地震动情况等。
2.监测手段土石坝的安全监测主要借助于现代化的监测仪器和设备。
包括但不限于位移仪、沉降仪、倾斜仪、压力计、渗透计、水位计、地震仪等。
这些仪器设备应当具备准确度高、稳定性好、数据传输方便等特点。
3.监测频率土石坝安全监测应根据具体情况确定监测频率。
一般情况下,应每月对土石坝进行一次全面监测,检测各种参数的变化情况。
在特殊情况下,如大雨、地震等自然灾害发生时,应及时增加监测频率,以确保及时发现异常并采取措施。
4.数据处理与分析监测所得的数据应及时汇总、存档和分析。
数据处理应采用适当的软件进行,以实现数据的可视化和直观分析。
对于连续监测数据,可以采用自动化处理系统进行数据实时传输和处理,提高监测效率。
5.报警机制土石坝监测系统应设有报警机制,一旦出现超过预设范围的异常情况,系统应能够及时报警并通知相关人员。
报警方式可以采取声光报警、短信通知等形式,以便及时采取紧急措施,防止事故发生。
6.监测结果评价监测数据分析后,应进行监测结果评价。
评价结果应包括对土石坝稳定性、渗流性能、变形情况等的综合评价。
评价结果可以采用定性和定量相结合的方法,以准确反映土石坝的安全状态。
7.监测报告土石坝安全监测结果应及时编制监测报告,并报送相关部门。
监测报告中应包括监测结果、异常情况、处理措施和建议等内容。
监测报告的编制应严格按照相关要求进行,确保其准确、完整和可靠。
8.定期检修土石坝应定期进行检修和维护,以保证其正常运行和安全稳定。
检修内容包括坝体巡视、渗流井及降水记录、坝体排水系统清理等。
关于土石坝渗流监测相关问题的探讨摘要:土石坝渗流监测,应以“渗流缓变区”和“渗流急变区”作为选择测压管还是渗压计的依据,测压管适用于“渗流缓变区”的监测,渗压计适用于“渗流急变区”监测,这是大坝监测方式选择的原则性依据。
重视测压管埋设制作的细节,确保渗流项目监测布置的规范性和有效性,加强大坝监测分析管理软件的符规性审查,是保证系统正常运行的重要条件。
提高大坝监测专业技术人员水平,是水库管理单位能力建设的一项重要内容,必须予以充分重视。
关键词:土石坝;渗流监测;相关问题安全监测技术具备基本原则以及检测项目,在实际操作过程中,对水库大坝工程安全运行具有重要影响。
我国现阶段土石坝工程的安全运行已经离不开安全监测系统的发展,所以相关管理人员要对其有所重视。
1渗流监测目的及内容大坝在上下游水位差作用下,会产生渗流场,渗流场是通过人工或仪器手段观测大坝坝体或局部的渗流场变化情况,以掌握大坝在水压力、扬压力及温度等环境量的作用下的渗流规律,了解大坝在施工和运行期间是否稳定和安全,以便采取正确的运行方式或必要的处理和加固措施,保证工程安全;同时,将观测成果与设计成果进行对比,以检验理论计算结果,提高设计水平。
土石坝渗流观测内容主要包括坝体渗流压力、坝基渗流压力、绕坝渗流压力、渗流量等。
2安全监测技术1)安全监测技术的原则。
土石坝渗流安全监测技术是整个工程安全系统的重要组成部分,在较大程度上有利于促进安全监测系统的施工进程,且对安装调试具有重要影响。
土石坝渗流安全监测技术对工程的运行效果具有决定作用,所以在土石坝渗流安全监测技术的过程中具有四项基本原则:①土石坝渗流安全监测技术在设计的过程中,首先设计人员要对工程实际环境有着基本了解;其次,将实际环境所形成的条件作为基础;最后,对周围的环境条件做适当了解,将地质条件与环境条件共同作为土石坝渗流安全监测技术设计的参考对象;②土石坝渗流安全监测技术在设计的过程中,最主要目的是对土石坝工程的渗透安全性进行有效控制。
土石坝渗流热监测技术研究土石坝渗流热监测技术研究随着社会经济和城市化进程的不断推进,水资源的需求与日俱增。
而水利工程建设是保障水资源有效利用的主要手段之一。
而土石坝是目前最常见的水利工程。
为了保障水利工程的安全运行,实时监测土石坝的渗流状况就显得尤为重要。
同时,水利工程的渗流,受水文气象等多因素影响,其运行状态也是多变的,因此需要采取一种科学高效的监测技术手段,以保证水利工程的可靠性和安全性。
土石坝渗流热监测技术是一种基于渗透理论及热传导理论的监测技术方法。
其采用数学模拟与物理探测相结合的方式,对土石坝渗流情况进行采集、分析和处理。
通过此方式可以获得较为详细的水土情形分析和渗透性分析的数据。
土石坝渗流热监测技术的原理是利用热水注入法及非稳态温度场分析的方法,对土壤渗流情况进行监测。
该技术通过给土壤坝的局部位置输入纯净的温水,并利用通过土壤坝内部的传热规律来研究得到土壤坝内的温度场分布和流场分布,推算出存在于土石坝内部的渗流位置及渗流速度。
土石坝渗流热监测技术的优势是可以同时监测多点的渗流情况,精度较高,监测数据准确性较好,所需的人力、财力、材料等方面也比较少。
同时该技术掌握了高性能的数据分析处理技术,可以套用与水文数据分析领域,计算分析相关参数的变化情况,了解土石坝的水流变化。
此外,该技术还能够监测土石坝的结构的稳定性,能够提供有力的数据分析支持,能够实现实时监测,及时预警,有效提高了水利工程的安全性。
土石坝渗流热监测技术的研究要点:一、温度数据采集:温度数据采集是土石坝渗流热监测技术的基本环节之一。
通过温度数据的采集可以记录下土壤初始的温度状态,也可以记录下渗流变化的过程,有力地支持了渗流变化的监测。
二、纯净水注入方法:纯净水注入是用于激发渗流效应及数据分析的方法之一。
渗流效应包括土石坝内部渗透性及水流情况的变化情况,纯净水注入激发渗流效应的目的就是为了检测出土石坝内部的流场分布情况。
三、数据分析及处理:数据分析及处理是土石坝渗流热监测技术的核心,其分析方法及处理工具的选择会直接影响到该技术的稳定性及水平。
土石坝渗流安全监测技术及工程应用摘要:土石坝监测是对土石坝的安全性和稳定性进行实时监测和评估的过程。
它是保障土石坝工程安全的重要环节,能够及时发现和预警潜在的安全隐患,采取相应的措施进行修复和加固,从而避免土石坝发生灾害事故。
针对某电站上库坝在初蓄期的渗流性态进行分析,以总结初蓄期渗流规律。
通过在坝体不同位置布置不同监测仪器对大坝进行监测,以相互验证监测结果的准确性。
渗流监测资料显示该面板坝渗流量小于设计允许渗漏量。
部分部位坝基渗压水位较高基本与库水位同升同降,坝基可能存在裂隙与库内水位相关。
关键词:土石坝;渗流;安全监测技术引言:水库为抽水蓄能电站建设中的关键构成部分,土石坝不但能对土地黏性进行充分利用,也可利用石料的坚固性,且土石坝建筑建设时间短,有良好的结构性能,且成本较低,所以,被广泛的进行着应用。
然而,实际应用中,图时报也在持续受损,所以,想要保证坝堤安全,十分有必要使用一定的安全监测方式。
工程区域内有这十分严重的渗漏问题,这会在一定程度上对结构安全、施工安全、水库的正常运行等形成严重影响。
1土石坝的安全监测技术系统现状土石坝安全监测的过程中最需要进行着重监测的两个物理量就是渗流和变形。
在最早期的时候,对渗流数值的测量是采用量杯和秒表的配合在监测点上直接进行读取。
后来的进一步发展,则开始采用电力测量仪器进行监测,主要有两个方式,第一种就是在排水口处进行单孔测量,这种方法类似于抽样监测,精度不高,应用范围较窄。
第二种就是让水流汇集到量水堰之后,再进行监测。
这种方式是经常采用的方式。
随着90年之后,自动化监测的进一步发展,目前广泛应用的渗透测量仪器主要分为振弦、电感、电阻、差阻等四类。
至于对土石坝变形方面的监测在早期的时候主要采用的水准仪和经纬仪,通过肉眼的观测进行安全监测,同样的误差较大,随着时代的发展已经被淘汰了。
从90年之后,大多数都采用全站仪、电子水准仪等来实现监测的半自动化或者是全自动化。
土石坝安全监测概述土石坝安全监测是指利用各种监测手段对土石坝进行定期、长期、动态的、系统的、全面的监测,获取土石坝的稳定性、变形特征和工况状态等信息,为土石坝的安全评价、预警预测、安全管理提供科学依据。
土石坝安全监测是土石坝的“智慧守护者”,对土石坝的安全保障起着至关重要的作用。
土石坝的监测对象包括坝基、坝身、坝顶、坝体渗流、库岸、附属建筑物等,监测内容涵盖了重力坝和填筑坝的各个方面,如水位、温度、流量、压力等。
根据监测手段的不同,土石坝安全监测可以分为以下几类。
1.土石坝形变监测:这是土石坝安全监测的核心内容之一、通过设置位移测量仪器、水平和垂直位移观测点、倾斜仪等,实时监测土石坝的坐标变化、倾斜变形等,分析土石坝的稳定性,提前发现变形异常,及时采取措施保证坝体的安全稳定。
2.土石坝渗流监测:坝体的渗流是土石坝工程中的重要问题。
通过设置渗流压力观测点、渗压管等,监测土石坝的渗流压力、渗流速度等参数,了解渗流情况,及时采取隔离措施,防止渗流对土石坝的不良影响。
3.库岸监测:库岸的变形、滑坡、沉降等问题都会直接影响土石坝的安全。
通过设置库岸位移观测点、摄影测量仪、全站仪等,监测库岸的变形情况,判断变形趋势,评估库岸的稳定性,预测潜在的滑坡和沉降风险。
4.水位监测:水位是评价坝体安全的重要指标之一、通过设置水位观测点、液位计等,监测土石坝所在河流的水位,及时掌握水位变化情况,预测洪水来袭的风险,采取相应的防洪措施。
5.环境监测:土石坝所处的环境条件也会对坝体的安全产生影响。
通过设置环境监测点,测量土石坝周围的气候、风速、降水量、温度等参数,及时了解环境变化,判断对坝体的可能影响。
土石坝的安全监测是一个全过程、全要素、全方位的过程,需要借助现代化的监测设备和技术手段,如全站仪、GNSS定位系统、红外测温仪、遥感技术、信息系统等,进行数据采集与处理,实现监测数据的自动化、数字化和信息化。
监测数据可以及时上传到监测中心,实现远程监控和数据分析,为土石坝的安全管理和运行维护提供科学依据。
(1.浙江省水利水电河口海岸研究设计院,浙江杭州 310020)在土石坝坝体和坝基适当部位,有计划地设置一些测压管或渗压计,以及在其下游适当部位设置观测渗流量的量水堰,并进行观测,可及时了解水库在运行过程中坝体的浸润线位置和渗流区各点渗透压力的大小,以及通过坝体和坝基渗流量的变化情况,这对大坝的渗流和稳定分析都具有很大的实际意义。
对土石坝各部位的测压管水位和渗流量,选用合理的分析模型进行及时的分析是监测土石坝运行安全的重要内容。
本文从渗流的支配方程入手,建立了土石坝中有压、无压渗流及其渗流量观测资料的分析模型。
经过实际应用表明,它可较好地解决实际工程问题。
1 土石坝渗流的支配方程忽略地下水流动方程中的惯性项,土石坝渗流的支配方程[1,2]为(1)渗流场为均质各向同性时,式(1)变为或(2)式中:k x、k y、k z分别为x、y、z方向上的渗透系数,h为水头,Φ=-kh为渗流速度势。
对稳定渗流而言,它的解实际上可归结为在满足某特定边界条件下,求解上述方程式。
对无压渗流问题,由于浸润面事先为未知边界,故在求解过程中,先假定浸润面边界,然后需通过反复试算,才可以对问题进行求解。
根据АравинВ.И.和НумеровС.Н.的推导结果[1],对具有自由面的缓变渗流,当坐标轴位于不透水层面时,其不稳定渗流的方程形式为:。
在稳定渗流时,则渗流方程的形式为:。
以上式中:H为水深函数;n e为有效孔隙率;t为时间。
在这种情况下,浸润线位置即是方程中的一个变量,故它无需作为边界条件来考虑。
由于这时地下水流水深函数H的平方项亦满足拉普拉斯方程,故只需以H2为基本变量,就可求解有压渗流一样的方法解决无压渗流问题。
因此人们常将上述方程应用于无压渗流问题中。
2 坝基有压渗流观测资料分析根据上述渗流支配方程的基本特性,当渗流场固定时,各点的位势应不随时间而变。
位势可用下式表示:。
式中:h i为测压管水位,H1、H2分别为上下游水位。
土石坝渗流热监测技术研究内容摘要:摘要:文章对土石坝渗流热监测技术的基本原理、研究历史和现状进行了介绍,对土石坝的热学特性以及土石坝温度与渗流的关系等关键技术问题进行了讨论,从理论上证明利用分布式光纤量测得到的温度场,通过有限元数值计算可以得到渗流场的渗透系数,从而实现对渗流场的监测。
关键词:土石坝渗流热监测技术温度渗流耦合1渗流热监测技术的基本原理土石坝的土石体介质内非渗流区的温度场分布受单纯的热传导控制,在土石体表层10~15m范围内,温度场受流体(空气、水)的季节性温度变化控制,越靠近表面区域与流体温度越一致。
由于土体具有较低的热传导特性,土体导热率低,温度场分布较均匀,流体温度与土体内部的温度差别随深度而增加。
当土石体内存在大量水流动时,土石体热传导强度将随之发生改变,如渗透系数大于10-6m/s,土石体传导热传递将明显被流体运动所引起的对流热传递所超越。
即使很少的水体流动也会导致土石体温度与渗漏水温度相适应,由此引起温度场的变化。
将具有较高灵敏度的温度传感器埋设在土石坝的土石介质的挡(蓄)水建筑物的基础或内部的不同深度。
如测量点处或附近有渗流水通过(渗透流速一般必须大于10-6m/s),水流的运动和迁移,土中热量传递的强度发生改变,将打破该测量点处附近温度分布的均匀性及温度分布的一致性。
土体温度随渗水温度变化而变化。
在研究该处正常地温及参考水温后,就可独立地确定测量点处温度异常是否是由渗漏水活动引起的,这一变化可作为渗漏探测的指征,从而实现对土体内集中渗漏点的定位和监测。
2渗流热监测技术的研究历史和现状2.1利用点式热敏温度计测量温度进而监测渗流场早期渗流热监测技术主要是通过在水工建筑物或其基础内埋设大量热敏温度计来进行温度测量的。
美国加利福尼亚Occidental大学地质系的JosephH.Birman等人从开始研究利用这一技术勘探地下水,JosephH.Birman将这一技术用于水坝的漏水探查中,并申请了专利。