概率论与数理统计练习册题目
- 格式:doc
- 大小:4.42 MB
- 文档页数:92
第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
练习题1、设随机变量)6.0,10(b ~X ,则22[()][(X)]D XE = ; 2、若随机变量X 的分布未知,但2,EX DX μσ==,则X 落在区间(2,2)μσμσ-+内的概率必不小于_________3、设ˆˆ(,......)12X X X n θθ=是未知参数θ的一个估计量,满足条件_________ 则称ˆθθ是的无偏估计。
4. 设X,Y 为随机变量,且D (X +Y )=7, D(X)=4, D(Y)=1,则相关系数XY ρ= 5. 设随机变量12,,,n X X X 相互独立,且(1,2,,)=i X i n 都服从区间[0,1]上的均匀分布,则当n 充分大时,∑==ni i nn X Y 11近似服从(写出具体分布与参数)6.设(,)X Y 服从区域222:G x y R +≤上的均匀分布,其概率密度为:222(,)0Cx y R f x y ⎧+≤=⎨⎩其它,则C=( );(A) 2R π ; (B)21R π; (C) R π2; (D) R π21。
7.设,......12X X X n 为相互独立的随机变量,且2(,())E X D X i iμσ==(1,2......i n =),11nX X i i n ∑==,则DX =( ) (A)2nσ(B)2n σ (C)nσ(D)22n σ8.设一次试验中事件A 不发生的概率为p,独立重复n 次试验,A 发生了X 次则正确的是:( )(A) ()()21p p X E -= ; (B)()E X np = ;(C)(1)DX np p =- ; (D) 2DX p p =-。
9.设随机变量X 和Y 不相关,则下列结论中正确的是( )A . X 与Y 独立; B. ()D X Y DX DY -=+; C .()D X Y DX DY -=-; D. ()D XY DXDY =. 10. 任何一个连续型随机变量的概率密度)(x ϕ一定满足( )。
概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为 A 321A A A ++ B 323121A A A A A A ++ C 321321321A A A A A A A A A ++ D 321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为 A365 B 364 C 363 D 362 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则A )(1)(B P A P -= B )()()(B P A P AB P =C 1)(=+B A PD 1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-000)(2x x ce x f x ,则=EXA 21B1 C2 D 415.下列各函数中可以作为某随机变量的分布函数的是A +∞<<∞-+=x x x F ,11)(21 B ⎪⎩⎪⎨⎧≤>+=001)(2x x x x x FC +∞<<∞-=-x e x F x ,)(3D +∞<<∞-+=x x x F ,arctan 2143)(4π6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为A )2(2y f X -B )2(y f X -C )2(21y f X -- D )2(21y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=h A 81 B 83 C 41 D 318.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY EA3 B6 C10 D129.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是A X 与Y 相互独立B X 与Y 不相关C 0),cov(=Y XD DY DX Y X D +=+)(答案:1. B2. A 6. D 7. D 8. C 9. A1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为 C A 321A A A ++ B 323121A A A A A A ++C 321321321A A A A A A A A A ++D 321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为 AA 2242B 2412C C C 24!2AD !4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 D A )()|(A P B A P = B )()()(B P A P AB P = C )()()|(B P A P B A P = D 0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX AA 32B1 C 38 D316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A B A0 B1 C2 D36.已知随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为 DA )3(3y f X -B )3(y f X -C )3(31y f X --D )3(31y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=e B A 81 B 41 C 83 D 318.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D CA-14 B13 C40 D419.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是 D A X 与Y 相互独立 B EY EX Y X E +=+)( C DY DX DXY ⋅= D EY EX EXY ⋅= 一、填空题1.设A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(若A 与B 互不相容,则)(B P = ;)2(若A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球不放回.已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a .4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=2,120,0,0)(2x x ax x x F则常数=a ,}31{<<X P = . 5.设随机变量X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .7.设随机变量X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .8.设X ,Y 是两个随机变量,2)(=X E ,20)(2=X E ,3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.02. 313. 414.41,435.5.46. 1,57. 0.52 8. 211.设A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 .3.设随机变量X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .6.设随机变量21,X X 相互独立,其概率分布分别为则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从0,1上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72.3.314. 0.55. 3ln 216. 957. )5,1(2N8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.1求取到的是白球的概率;2若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.2411853163314131)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P114)()|()()()()|(241163312222=⨯===B P A B P A P B P B A P B A P三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,若三部机器均无故障,则该厂可获取利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元;若有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可获取的平均利润.设随机变量X 表示该厂一天所获的利润万元,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 万元四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解: 1 5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;2,,010,24),()(,,010,24),()(1010⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y y xydx dx y x f y f x x xydy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤≤-≤-=-=-=其它即,0311210,)1(83)21(23)21(21)(22y y y y y f y f X Y解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤≤-=≤-=⨯-==其它即,031121)(0,)21(2321)21(3|)(|))(()(22y y y h y y dy y dh y h f y f X Y注:21)(-==y y h x 为12+=x y 的反函数;二、设甲、乙、丙三人生产同种型号的零件,他们生产的零件数之比为5:3:2. 已知甲、乙、丙三人生产的零件的次品率分别为%2%,4%,3. 现从三人生产的零件中任取一个. )1(求该零件是次品的概率;)2(若已知该零件为次品,求它是由甲生产的概率.解:设事件321,,A A A 分别表示取到的零件由甲、乙、丙生产,事件B 表示取到的零件是次品.1 028.0%2105%4103%3102)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P ;2 143028.0%32.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P .三、设一袋中有6个球,分别编号1,2,3,4,5,6. 现从中任取2个球,用X 表示取到的两个球的最大编号. )1(求随机变量X 的概率分布;)2(求EX .解:X 可能取6,5,4,3,2,且6,5,4,3,2,1511}{26=-=-==k k C k k X P所以X 的概率分布表为3/115/45/115/215/165432P X且31415162=-⨯=∑=k k k EX .四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,020,10,),(y x x y x f .)1(求}1{≤+Y X P ;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解:1 31),(}1{1020101====≤+⎰⎰⎰⎰⎰≤+dx x xdy dx dxdy y x f Y X P x y x ; 2,,020,21),()(,,010,2),()(1020⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y xdx dx y x f y f x x xdy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 服从区间]3,0[上的均匀分布,求随机变量13-=X Y 的密度函数.解法一:由题意知⎩⎨⎧≤≤=其它,030,3/1)(x x f X . Y 的分布函数为)31(}31{}13{}{)(+=+≤=≤-=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤-≤+≤=+=其它即,0813310,91)31(31)(y y y f y f X Y 解法二:因为13-=x y 是30≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤-≤+=≤=⨯==其它即,081,331)(0,913131|)(|))(()(y y y h dy y dh y h f y f X Y 注:31)(+==y y h x 为13-=x y 的反函数; 三、已知一批产品中有90%是合格品,检查产品质量时,一个合格品被误判为次品的概率为,一个次品被误判为合格品的概率是.求:1任意抽查一个产品,它被判为合格品的概率; 2一个经检查被判为合格的产品确实是合格品的概率. 解:设=1A “确实为合格品”,=2A “确实为次品”, =B “判为合格品”1)|()()|()()(2211A B P A P A B P A P B P += 859.004.01.095.09.0=⨯+⨯=29953.0)()|()()|(111==B P A B P A P B A P四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<=-其他0),(yx e y x f y,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}1{<+Y X P . 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞-∞+∞-⎰⎰000000),()(x x ex x dy e dy y x f x f x x y X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰00000),()(0y y yey y dx e dx y x f y f y y y Y 2)()(),(y f x f y x f Y X ≠ ∴ X 与Y 不独立 315.0210121}1{----+-==<+⎰⎰e e dxdy e Y X P xxy四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<>=-其他10,02),(y x ye y x f x,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}{Y X P <. 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰0000002),()(10x x ex x dy ye dy y x f x f x x X⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰+∞-∞+∞-其他其他01020102),()(0y y y dx ye dx y x f y f x Y2)()(),(y f x f y x f Y X = ∴ X 与Y 独立 3142}{1101-==<--⎰⎰e dxdy ye Y X P x x一、单项选择题1. 对任何二事件A 和B,有=-)(B A P C .A. )()(B P A P -B. )()()(AB P B P A P +-C. )()(AB P A P -D. )()()(AB P B P A P -+ 2. 设A 、B 是两个随机事件,若当B 发生时A 必发生,则一定有 B . A. )()(A P AB P = B. )()(A P B A P =⋃ C. 1)/(=A B P D. )()/(A P B A P = 3. 甲、乙两人向同一目标独立地各射击一次,命中率分别为0.5,0.8,则目标被击中的概率为 C 甲乙至少有一个击中A. 0.7B. 0.8C. 0.9D.0.854. 设随机变量X 的概率分布为则a,b 可以是 D 归一性. A. 4161==,b a B. 125121==,b a C. 152121==,b a D.3141==,b a 5. 设函数0.5,()0,a x bf x ≤≤⎧=⎨⎩其它 是某连续型随机变量X 的概率密度,则区间],[b a 可以是 B 归一性.A. ]1,0[B. ]2,0[C. ]2,0[D. ]2,1[6. 设二维随机变量),(Y X 的分布律为则==}0{XY P D .A. 0.1B. 0.3C.D.7. 设随机变量X 服从二项分布),(p n B ,则有 D 期望和方差的性质.A. 12(-X E np 2)=B. 14)12(-=-np X EC. 1)1(4)12(--=-p np X DD. )1(4)12(p np X D -=- 8.已知随机变量(,)X B n p ,且 4.8, 1.92EX DX ==,则,n p 的值为 AA.8,0.6n p == B.6,0.8n p == C.16,0.3n p ==D.12,0.4n p == 9.设随机变量(1,4)XN ,则下式中不成立的是 BA. 1EX =B. 2DX =C. {1}0P X ==D.{1}0.5P X ≤=10. 设X 为随机变量,1,2=-=DX EX ,则)(2X E 的值为 A 方差的计算公式.A .5 B. 1- C. 1 D. 311. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且EX=0,则A 归一性和数学期望的定义.A. 6,4a b =-=B. 1,1a b =-=C. 6,1a b ==D.1,5a b ==12. 设随机变量X 服从参数为的指数分布,则下列各项中正确的是 A A. ()0.2,()0.04E X D X == B. ()5,()25E X D X == C. ()0.2,()4E X D X == D. ()2,()0.25E X D X == 13. 设(,)X Y 为二维连续型随机变量,则X 与Y 不相关的充分必要条件是 D .A. X 与Y 相互独立B.()()()E X Y E X E Y +=+C. ()()()E XY E X E Y =D. 221212(,)(,,,0)X Y N μμσσ 二、填空题1. 已知PA=,PA-B=,且A 与B 独立,则PB= .2. 设B A ,是两个事件,8.0)(,5.0)(=⋃=B A P A P ,当A, B 互不相容时,PB=;当A, B 相互独立时,PB=53 .3. 设在试验中事件A 发生的概率为p,现进行n 次重复独立试验,那么事件A 至少发生一次的概率为1(1)n p --.4. 一批产品共有8个正品和2个次品,不放回地抽取2次,则第2次才抽得次品的概率P =845. 5. 随机变量X 的分布函数Fx 是事件 PX )x ≤ 的概率.6. 若随机变量X ~ )0)(,(2>σσμN ,则X 的密度函数为 .7.设随机变量X 服从参数2=θ的指数分布,则X 的密度函数()f x = ; 分布函数Fx= .8. 已知随机变量X 只能取-1,0,1,三个值,其相应的概率依次为125236,,c c c,则c = 2 归一性 . 9. 设随机变量X 的概率密度函数为2,01()0,x x f x λ⎧<<=⎨⎩其它,则λ= 3归一性 .10. 设随机变量X ~2(2,)N σ,且{23}0.3P X <<=,则{1}P X <=.22232{23}{}11()(0)0.3,(0)0.5()=0.821211{1}{}=()=1()=0.2X P X P X P X P σσσσσσσσσ---<<=<<=Φ-Φ=Φ=∴Φ--<=<Φ--Φ又,,11. 设随机变量X ~N1,4,φ=,φ=,则P{|X |﹥2}= .{||>2}1{||2}1{22}2112111{}1{1.50.5}22221((0.5)( 1.5)0.9332),( 1.5)0.06680.69150.06680.31(1.5)=1-{||>2}=1((0.5)( 1.5))=751)3(P X P X P X X X P P P X ==-≤=--≤≤-----=-≤≤=--≤≤=-Φ-Φ-Φ-=-Φ∴-Φ-Φ--=-又 12. 设随机变量X ~ ),(211σμN ,Y ~ ),(222σμN ,且X 与Y 相互独立,则X+Y ~221212(,)N μμσσ++ 分布.13. 设随机变量X 的数学期望EX 和方差0DX >都存在,令DXEX X Y -=,则____0__=EY ;___1___=DY .14. 若X 服从区间0,2上的均匀分布,则2()E X =4/3 . 15. 若X ~(4,0.5)B ,则(23)D X -= 9 . 17. 设随机变量X 的概率密度23,01()0,x x f x ⎧<<=⎨⎩其它,()_____E X =,()_____D X =.18. 设随机变量X 与Y 相互独立,1,3DX DY ==,则(321)D X Y -+=(3)(2)9()4()D X D Y D X D Y +=+=21 .三、计算题1. 设随机变量X 与Y 独立,X ~(1,1)N ,Y ~)2,2(2N ,且0.2XY ρ=,求随机变量函数23Z X Y =-的数学期望与方差. 四、证明题1. 设随机变量X 服从标准正态分布,即X ~)1,0(N ,2X Y =,证明:Y 的密度函数为⎪⎩⎪⎨⎧≤>=-0,00,21)(2y y e yy f y Y π .五、综合题1.设二维随机变量X,Y 的联合密度为⎩⎨⎧<<<<=其它,010,10,6),(2y x xy y x f ,求:1关于X,Y 的边缘密度函数;2判断X,Y 是否独立;3求{}P X Y >.。
院(系) 班 姓名 学号第一章 概率论的基本概念 练习1.1 随机试验与随机事件一、填空题1.样本空间是 .2.样本空间中各个基本事件之间是 关系.3.对立事件____ 不相容事件;不相容事件 对立事件.(填一定是,不是,不一定是)4.对立事件A 与A 在每一次试验中 发生.5.设随机事件A 与B ,若AB =A B ,则A 与B 的关系为___________6.设A ,B 为任意两个随机事件,请把下列事件化为最简式: (1)(A B)(A B)(A B)(A B)=______; (2)ABAB AB A B AB=______-;二、写出以下随机试验的样本空间:1.从两名男乒乓球选手B A ,和三名女乒乓球选手,,C D E 中选拔一对选手参加男女混合双打,观察选择结果。
2.10件产品中有4件次品,其余全是正品,从这10件产品中连续抽取产品,每次一件,直到抽到次品为止,记录抽出的正品件数。
三、有三位学生参加高考,以i A 表示第i 人考取(1,2,3i =).试用i A 表示以下事实: 1.至少有一个考取;2.至多有两人考取;3.恰好有两人落榜。
四、投掷一枚硬币5次,问下列事件A 的逆事件A 是怎样的事件?1. A 表示至少出现3次正面;2. A 表示至多出现3次正面;3. A 表示至少出现3次反面。
五、袋中有十个球,分别编有1至10共十个号码,从其中任取一个球,设事件A 表示“取得的球的号码是偶数”, 事件B 表示“取得的球的号码是奇数”, 事件C 表示“取得的球的号码小于5”,则,,,,,C A C AC A C A B AB ⋃-⋃分别表示什么事件?六、在某系的学生中任选一名学生,令事件A 表示“被选出者是女生”;事件B 表示“被选出者是三年级学生”;事件C 表示“被选出者是会弹钢琴”。
(1)说出事件C AB 的含义;(2)什么时候有恒等式C C B A = ; (3) 什么时候有关系式B C ⊆正确; (4)什么时候有等式B A =成立。
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
第一章 概率论的基本概念 习题一 随机试验、随机事件 一、判断题1.()A B B A =⋃- ( )2.C B A C B A =⋃ ( )3.()φ=B A AB ( ) 4.若C B C A ⋃=⋃,则B A = ( ) 5.若B A ⊂,则AB A = ( ) 6.若A C AB ⊂=,φ,则φ=BC ( )7.袋中有1个白球,3个红球,今随机取出3个,则(1)事件“含有红球”为必然事件; ( ) (2)事件“不含白球”为不可能事件; ( ) (3)事件“含有白球”为随机事件; ( ) 8.互斥事件必为互逆事件 ( )二、填空题1. 一次掷两颗骰子,(1)若观察两颗骰子各自出现的点数搭配情况,这个随机试验的样本空间为 ; (2)若观察两颗骰子的点数之和,则这个随机试验的样本空间为 。
2.化简事件()()()=⋃⋃⋃B A B A B A 。
3.设A,B,C 为三事件,用A,B,C 交并补关系表示下列事件: (1)A 不发生,B 与C 都发生可表示为 ; (2)A 与B 都不发生,而C 发生可表示为 ;(3)A 发生,但B 与C 可能发生也可能不发生可表示为 ; (4)A,B,C 都发生或不发生可表示为 ; (5)A,B,C 中至少有一个发生可表示为 ; (6)A,B,C 中至多有一个发生可表示为 ; (7)A,B,C 中恰有一个发生可表示为 ; (8)A,B,C 中至少有两个发生可表示为 ; (9)A,B,C 中至多有两个发生可表示为 ; (10)A,B,C 中恰有两个发生可表示为 ; 三、选择题1.对飞机进行两次射击,每次射一弹,设A 表示“恰有一弹击中飞机”,B 表示“至少有一弹击中飞机”,C 表示“两弹都击中飞机”,D 表示“两弹都没击中飞机”,则下列说法中错误的是( )。
A 、A 与D 是互不相容的B 、A 与C 是相容的C 、B 与C 是相容的D 、B 与D 是相互对应的事件 2.下列关系中能导出“A 发生则B 与C 同时发生”的有( )A 、A ABC =;B 、AC B A =⋃⋃; C 、A BC ⊂ ;D 、C B A ⊂⊂四、写出下列随机试验的样本空间1.记录一个小班一次数学考试的平均分数(设以百分制记分);2.一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3.某人射击一个目标,若击中目标,射击就停止,记录射击的次数。
概率论与数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
3、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
5. 设随机变量X 的概率密度是:⎩⎨⎧<<=其他103)(2x x x f ,且{}784.0=≥αX P ,则α=0.6 。
6. 已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (Y )= 3/4 。
7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。
设Z =X -Y +3,则Z ~ N(2, 13) 。
8. 设A ,B 为随机事件,且P (A)=0.7,P (A -B)=0.3,则=⋃)(B A P 0.6 。
9. 设随机变量X ~ N (1, 4),已知Φ(0.5)=0.6915,Φ(1.5)=0.9332,则{}=<2X P 0.6247 。
10. 随机变量X 的概率密度函数1221)(-+-=x xe xf π,则E (X )= 1 。
11. 已知随机向量(X ,Y )的联合密度函数⎩⎨⎧≤≤≤≤=其他,010,20,),(y x xy y x f ,则E (X )= 4/3 。
12. 设A ,B 为随机事件,且P (A)=0.6, P (AB)= P (B A ), 则P (B )= 0.4 。
13. 设随机变量),(~2σμN X ,其密度函数644261)(+--=x x ex f π,则μ= 2 。
《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A )=0.5,P (B )=0.6,P (B |A )=0.8,则P (A +B )=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(−−X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ∼B (2,p ),Y ∼B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)}B 。
{(反,正),(正,反),(正,正),(反,反)}C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2。
设A,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A 。
P (AB )=P (A)P (B) B 。
P(A —B)=P (A )-P (B) C.)()(B A P B A P -= D.P(A+B)=P(A )+P(B )4。
设A ,B 为随机事件,则下列各式中不能恒成立的是( )。
A 。
P(A -B)=P(A)-P (AB ) B 。
P (AB )=P(B )P (A|B ),其中P (B)〉0C 。
P(A+B)=P(A)+P (B) D.P(A )+P(A )=1 5。
若φ≠AB ,则下列各式中错误的是( ).A .0)(≥AB P B 。
1)(≤AB PC 。
P(A+B)=P(A)+P (B )D 。
P (A-B)≤P(A) 6.若φ≠AB ,则( ).A. A ,B 为对立事件B.B A =C.φ=B A D 。
P(A-B )≤P (A ) 7。
若,B A ⊂则下面答案错误的是( )。
A. ()B P A P ≤)( B 。
()0A -B P ≥C.B 未发生A 可能发生 D 。
B 发生A 可能不发生 8。
下列关于概率的不等式,不正确的是( ). A. )}(),(min{)(B P A P AB P ≤ B 。
.1)(,<Ω≠A P A 则若 C 。
1212(){}n n P A A A P A A A ≤+++ D.∑==≤ni i ni i A P A P 11)(}{9.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( )。
《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
《概率论与数理统计》课后练习题册 习题一 随机事件及其概率和性质1.1 选择题(1)设A 、B 为任意两个事件,则下列关系式成立的是( )。
(A )A B B A =-⋃)( (B )A B B A ⊃-⋂)( (C )A B B A ⊂-⋂)( (D )A B B A =⋃-)((2)以A 表示“甲种产品畅销,乙种产品滞销”,则对立事件A 为( )。
(A )甲种产品滞销,乙种产品畅销 (B )甲、乙产品均畅销(C )甲种产品滞销 (D )甲产品滞销或乙产品畅销 1.2 指出下列关系中那些是正确的,那些是错误的,并说明理由。
(1)(A ∪B )- C = A ∪(B -C ); (2)(A ∪B )- A = B ;(3))(B A ⋃C =A B ∪B C ; (4)AB B A B A B A =⋃⋃;(5)=))((B A AB ∅; (6)若A B ⊂,则A B A =⋃。
1.3 试把C B A ⋃⋃表示成三个两两互不相容事件的和。
1.4 设}20|{≤≤=Ωx x ,}15.0|{≤<=x x A ,}5.125.0|{<≤=x x B ,请具体写出下列各事件:(1)B A ; (2)B A ⋃;(3)B A ; (4)AB 。
1.5 一个工人生产了四件产品,以i A 表示他生产的第i 件产品是正品(4,3,2,1=i ),试用)4,3,2,1(=i A i 表示下列事件:(1)没有一件产品是次品; (2)至少有一件产品是次品;(3)恰有一件产品是次品; (4)至少有两件产品不是次品。
1.6 设A 、B 、C 是三个事件,且41)()()(===C P B P A P ,81)(=AC P , 0)()(==BC P AB P ,求A 、B 、C 中至少有一个发生的概率。
1.7 设A 、B 是两事件,且P (A ) = 0.6,P (B ) =0.7。
问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?1.8 袋中有白球5只,黑球6只,依次从袋中不放回取出三只,求顺序为黑白黑的概率。
概率论与数理统计习题册(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第六章 样本及抽样分布一、选择题1. 设12,,,n X X X 是来自总体X 的简单随机样本,则12,,,n X X X 必然满足( )A.独立但分布不同;B.分布相同但不相互独立; C 独立同分布; D.不能确定2.下列关于“统计量”的描述中,不正确的是( ). A .统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3下列关于统计学“四大分布”的判断中,错误的是( ).A. 若12~(,),F F n n 则211~(,)F n n FB .若2~(),~(1,)T t n T F n 则C .若)1(~),1,0(~22x X N X 则D .在正态总体下2212()~(1)nii Xx n μσ=--∑4. 设2,i i X S 表示来自总体2(,)i i N μσ的容量为i n 的样本均值和样本方差)2,1(=i ,且两总体相互独立,则下列不正确的是( ).A. 2221122212~(1,1)SF n n S σσ--12(~(0,1)X X N C.)(~/11111n t n S X μ- D.2222222(1)~(1)n S x n σ--5. 设12,,,n X X X 是来自总体的样本,则211()1ni i X X n =--∑是( ).A.样本矩B. 二阶原点矩C. 二阶中心矩D.统计量 612,,,n X X X 是来自正态总体)1,0(N 的样本,2,S X 分别为样本均值与样本方差,则( ).A. )1,0(~N XB. ~(0,1)nX NC. 221~()ni i X x n =∑ D.~(1)Xt n S- 7. 给定一组样本观测值129,,,X X X 且得∑∑====91291,285,45i i i i X X 则样本方差2S 的观测值为 ( ).A. C.320D. 2658设X 服从)(n t 分布, a X P =>}|{|λ,则}{λ-<X P 为( ).A.a 21B. a 2C. a +21 D. a 211- 9设12,,,n x x x 是来自正态总体2(0,2)N 的简单随机样本,若298762543221)()()2(X X X X c X X X b X X a Y ++++++++=服从2x 分布,则c b a ,,的值分别为( ).A. 161,121,81B. 161,121,201C. 31,31,31D. 41,31,2110设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,设921,,,X X X 和921,,,Y Y Y 分别是来自两总体的简单随机样本,则统计量9iXU =∑服从分布是( ).A. )9(tB. )8(tC. )81,0(ND. )9,0(N二、填空题1.在数理统计中, 称为样本. 2.我们通常所说的样本称为简单随机样本,它具有的两个特点是 .3.设随机变量n X X X ,,,21 相互独立且服从相同的分布,2,σμ==DX EX ,令∑==ni i X n X 11,则EX =;.DX =4.),,,(1021X X X 是来自总体)3.0,0(~2N X 的一个样本,则=⎭⎬⎫⎩⎨⎧≥∑=101244.1i i X P .5.已知样本1621,,,X X X 取自正态分布总体)1,2(N ,X 为样本均值,已知5.0}{=≥λX P ,则=λ .10.6设总体),(~2σμN X ,X 是样本均值,2n S 是样本方差,n 为样本容量,则常用的随机变量22)1(σn S n -服从 分布.第七章 参数估计一、选择题1. 设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-ni i X X n 12)(1是( ).)(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计2 设X 在[0,a]上服从均匀分布,0>a 是未知参数,对于容量为n 的样本n X X ,,1 ,a 的最大似然估计为( )(A )},,,max{21n X X X (B )∑=ni i X n 11(C )},,,min{},,,max{2121n n X X X X X X - (D )∑=+ni i X n 111;3 设总体分布为),(2σμN ,2,σμ为未知参数,则2σ的最大似然估计量为( ).(A )∑=-n i i X X n 12)(1 (B )∑=--n i i X X n 12)(11 (C )∑=-n i i X n 12)(1μ (D )∑=--n i i X n 12)(11μ 4 设总体分布为),(2σμN ,μ已知,则2σ的最大似然估计量为( ).(A )2S (B )21S nn - (C )∑=-n i i X n 12)(1μ (D )∑=--n i i X n 12)(11μ 5 321,,X X X 设为来自总体X 的样本,下列关于)(X E 的无偏估计中,最有效的为( ).(A ))(2121X X + (B ))(31321X X X ++(C ))(41321X X X ++ (D ))313232321X X X -+6 设)2(,,,21≥n X X X n 是正态分布),(2σμN 的一个样本,若统计量∑-=+-1121)(n i i i X X K 为2σ的无偏估计,则K 的值应该为( )(A )n 21 (B )121-n (C )221-n (D )11-n 7. 设θ为总体X 的未知参数,21,θθ是统计量,()21,θθ为θ的置信度为)10(1<<-a a 的置信区间,则下式中不能恒成的是( ).A. a P -=<<1}{21θθθB. a P P =<+>}{}{12θθθθC. a P -≥<1}{2θθD. 2}{}{12aP P =<+>θθθθ 8 设),(~2σμN X 且2σ未知,若样本容量为n ,且分位数均指定为“上侧分位数”时,则μ的95%的置信区间为( )A. )(025.0u n X σ±B. ))1((05.0-±n t nS XC. ))((025.0n t nS X ±D. ))1((025.0-±n t nS X9 设22,),,(~σμσμN X 均未知,当样本容量为n 时,2σ的95%的置信区间为( )A. ))1()1(,)1()1((2025.022975.02----n x S n n x S nB. ))1()1(,)1()1((2975.022025.02----n x S n n x S nC. ))1()1(,)1()1((2975.022025.02----n t S n n t S n D. ))1((025.0-±n t nS X 二、填空题1. 点估计常用的两种方法是: 和 .2. 若X 是离散型随机变量,分布律是{}(;)P X x P x θ==,(θ是待估计参数),则似然函数是 ,X 是连续型随机变量,概率密度是(;)f x θ,则似然函数是 .3. 设总体X 的概率分布列为:X 0 1 2 3 P p 2 2 p (1-p ) p 2 1-2p其中p (2/10<<p ) 是未知参数. 利用总体X 的如下样本值: 1, 3, 0, 2, 3, 3, 1, 3则p 的矩估计值为__ ___,极大似然估计值为 . 4. 设总体X 的一个样本如下:,,,,则该样本的数学期望)(X E 和方差)(X D 的矩估计值分别_ ___.5. 设总体X 的密度函数为:⎩⎨⎧+=0)1()(λλx x f 其他10<<x ,设n X X ,,1 是X 的样本,则λ的矩估计量为 ,最大似然估计量为 .6. 假设总体),(~2σμN X ,且∑==ni i X n X 11,n X X X ,,,21 为总体X 的一个样本,则X 是 的无偏估计.7 设总体),(~2σμN X ,n X X X ,,,21 为总体X 的一个样本,则常数k= , 使∑=-ni i X X k 1为的无偏估计量.8 从一大批电子管中随机抽取100只,抽取的电子管的平均寿命为1000小时,样本均方差为40=S .设电子管寿命分布未知,以置信度为95.0,则整批电子管平均寿命μ的置信区间为(给定96.1,645.1025.005.0==Z Z ) .9设总体),(~2σμN X ,2,σμ为未知参数,则μ的置信度为1α-的置信区间为.10 某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,给定05.0=α则滚珠的平均直径的区间估计为 .)96.1,645.1(025.005.0==Z Z11. 某车间生产滚珠,从某天生产的产品中抽取6个,测得直径为:已知原来直径服从)06.0,(N μ,则该天生产的滚珠直径的置信区间为 ,(05.0=α,645.105.0=Z ,96.1025.0=Z ).12. 某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12个子样算得2.0=S ,则σ的置信区间为 (1.0=α,68.19)11(22=αχ,57.4)11(221=-αχ).第八章 假设检验一、选择题1. 关于检验的拒绝域W,置信水平α,及所谓的“小概率事件”,下列叙述错误的是( ). A. α的值即是对究竟多大概率才算“小”概率的量化描述 B .事件021|),,,{(H W X X X n ∈ 为真}即为一个小概率事件C .设W 是样本空间的某个子集,指的是事件120{(,,,)|}n X X X H 为真D .确定恰当的W 是任何检验的本质问题2. 设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,要采用检验估计量( ).A.nX /0σμ- B.nS X /0μ- C.nS X /μ- D.nX /σμ-3. 样本n X X X ,,,21 来自总体)12,(2μN ,检验100:0≤μH ,采用统计量( ). A.nX /12μ- B.nX /12100- C.1/100--n S X D.nS X /μ-4设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,此问题拒绝域形式为 .A.}C >B. }/100{C nS X <- C. }10/100{C S X >- D. }{C X >5.设n X X X ,,,21 为来自总体)3,(2μN 的样本,对于100:0=μH 检验的拒绝域可以形 如( ).A .}{C X >-μ B. {100}X C ->C. }C >D. {100}X C -<6、 样本来自正态总体),(2σμN ,μ未知,要检验100:20=σH ,则采用统计量为( ). A.22)1(σS n - B. 100)1(2S n - C. n X 100μ- D. 1002nS7、设总体分布为),(2σμN ,若μ已知,则要检验100:20≥σH ,应采用统计量( ).A.nS X /μ- B.22)1(σSn - C.100)(21∑=-ni iXμ D.100)(21∑=-ni iX X二、填空题1. 为了校正试用的普通天平, 把在该天平上称量为100克的10个试样在计量标准天平上进行称量,得如下结果:, , , 101,2,,假设在天平上称量的结果服从正态分布,为检验普通天平与标准天平有无显著差异,0H 为 .2.设样本2521,,,X X X 来自总体μμ),9,(N 未知.对于检验00:μμ=H ,01:μμ=H ,取拒绝域形如k X ≥-0μ,若取05.0=a ,则k 值为 .第六章 样本及抽样分布答案一、选择题1. ( C )2.(C ) 注:统计量是指不含有任何未知参数的样本的函数3.(D )对于答案D,由于~(0,1),1,2,,iX N i n μσ-=,且相互独立,根据2χ分布的定义有2212()~()nii Xx n μσ=-∑4.(C) 注:1~(1)X t n -才是正确的.5.(D)6C) 注:1~(0,)X N n~(1)t n -才是正确的{}{}12121211P X P X -≤=-≤-(({}2121121P X =-≤-=Φ- 7.(A) ()9922221192859257.591918iii i XX XX S ==--⨯-⨯====--∑∑ 8.(A) 9.(B) 解:由题意可知122~(0,20)X X N +,345~(0,12)X X X N ++,6789~(0,16)X X X X N +++,且相互独立,因此()()()()22212345678922~3201216X X X X X X X X X χ++++++++,即111,,201216a b c === 10(A)解:()99211~(0,9)9~0,1i i i i X N X N ==⇒∑∑,()92219~9i i Y χ=∑由t分布的定义有()9t 二、填空题1.与总体同分布,且相互独立的一组随机变量2.代表性和独立性3.μ,2nσ4.6.2(1)n χ-第七章 参数估计一、选择题 1.答案: D.[解] 因为)()(222X E X E -=σ,∑===n i i X n A X E 12221)(ˆ,∑===ni i X n A X E 111)(ˆ,所以,∑=-=-=n i i X X n X E X E 12222)(1)(ˆ)(ˆˆσ. 2.答案: A.[解]因为似然函数n i in X a a L )max (11)(≤=,当i i X a max =时,)(a L 最大, 所以,a 的最大似然估计为},,,max{21n X X X . 3 答案 A .[解]似然函数⎥⎦⎤⎢⎣⎡--=∏=2212)(21exp 21),(μσσπσμi ni x L , 由0ln ,0ln 2=∂∂=∂∂L L σμ,得22A =∧σ. 4. 答案 C.[解]在上面第5题中用μ取代X 即可.5答案 B.6.答案 C. 7答案 D. 8.答案 D. 9.答案 B.二、填空题:1. 矩估计和最大似然估计;2.∏iix p );(θ,∏iix f );(θ;.3 41, ; [解] (1) p 的矩估计值28/1681===∑=i i X X ,令X p X E =-=43)(,得p 的矩估计为 4/14/)3(ˆ=-=X p. (2)似然函数为4281)]3()[2()]1()[0()()(=======∏=X P X P X P X P x X P p L i i42)21()1(4p p p --=)21ln(4)1ln(2ln 64ln )(ln p p p p L -+-++=令 0218126])(ln [=----='pp p p L , 0314122=+-⇒p p 12/)137(±=⇒p . 由 2/10<<p ,故12/)137(+=p 舍去 所以p 的极大似然估计值为 .2828.012/)137(ˆ=-=p 4、 ,;[解] 由矩估计有:nXX E X X Eii∑==22)(ˆ,)(ˆ,又因为22)]([)()(X E X E X D -=,所以71.1575.165.17.175.17.1)(ˆ=++++==X X E且00138.0)(1)(ˆ12=-=∑=n i i X X n X D . 5、XX --=112ˆλ, ∑∑==+-=ni ini iXX n 11ln ln ˆλ;[解] (1)λ的矩估计为:210121)1()(21++=++=+⋅=+⎰λλλλλλλx dx x x X E 样本的一阶原点矩为:∑==ni i x n X 11所以有:XX X --=⇒=++112ˆ21λλλ (2)λ的最大似然估计为:λλλλλ)()1()1(),,(111∏∏==+=+=ni i nni i n X X X X L ;∏=++=ni i X n L 1ln )1ln(ln λλ0ln 1ln 1=++=∑=ni i X nd L d λλ 得:∑∑==+-=ni ini iXX n 11ln ln ˆλ.6、μ;[解]μμ===∑=nn X E n X E n i i 1)(1)(.7、)1(2-n n π;[解]注意到n X X X ,,,21 的相互独立性,()n i i X X n X X nX X ---+--=- )1(121 21)(,0)(σnn X X D X X E i i -=-=-所以,)1,0(~2σnn N X X i --, dz enn z X X E nn z i 2212121|||)(|σσπ--∞+∞-⎰-=-dz e nn znn z 221201212σσπ--∞+⎰-=σπnn 122-=因为:⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-∑∑==n i i n i i X X E k X X k E 11||||σσπ=-=nn kn122 所以,)1(2-=n n k π.8、. [,];[解] 这是分布未知,样本容量较大,均值的区间估计,所以有:05.0,40,1000=α==S X ,96.1025.0=Zμ的95%的置信区间是:]84.1007,16.992[],[025.0025.0=+-Z nSX Z n S X . 9、22((1),(1))X n X n αα--; [解]这是2σ为未知的情形,所以)1(~/--n t nS X μ.10、 [,];[解] 这是方差已知均值的区间估计,所以区间为:],[22αασ+σ-Z n x Z n x 由题意得:905.004.0152==α=σ=n x ,代入计算可得:]96.192.015,96.192.015[⨯+⨯-, 化间得:]131.15,869.14[. 11、 [,];[解] 这是方差已知,均值的区间估计,所以有:置信区间为:],[22αασ+σ-Z n X Z n X 由题得:95.14)1.152.158.149.141.156.14(61=+++++=X696.105.0025.0===αn Z 代入即得:]96.1606.095.14,96.1606.095.14[⨯-⨯- 所以为:]146.15,754.14[12、. [,]; [解] 由2222221)1(ααχσχ≤-≤-S n 得: 2222)1(αχσS n -≥,22122)1(αχσ--≤S n所以σ的置信区间为:[)11()1(222αχS n -,)11()1(2212αχ--S n ] , 将12=n ,2.0=S 代入得 [15.0,31.0].第八章 假设检验一、选择题 、、、、、、、 二、填空题 1.100=μ 2.。
《概率论与数理统计》练习题一、单项选择题1. A 、B 为两事件,则B A ⋃=( )A .B A ⋃ B .A ∪BC .A BD .A ∩B 2.对任意的事件A 、B ,有( )A .0)(=AB P ,则AB 不可能事件 B .1)(=⋃B A P ,则B A ⋃为必然事件C .)()()(B P A P B A P -=-D .)()()(AB P A P B A P -=⋂ 3.事件A 、B 互不相容,则( )A .1)(=⋃B A P B .1)(=⋂B A PC .)()()(B P A P AB P =D .)(1)(AB P A P -= 4.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =5.任意抛一个均匀的骰子两次,则这两次出现的点数之和为8的概率为( ) A .363 B .364 C .365 D .3626.已知A 、B 、C 两两独立,21)()()(===C P B P A P ,51)(=ABC P ,则)(C AB P 等于( )A .401 B .201 C .101 D .417.事件A 、B 互为对立事件等价于( )(1)A 、B 互不相容 (2)A 、B 相互独立(3)Ω=⋃B A (4)A 、B 构成对样本空间的一个剖分 8.A 、B 为两个事件,则)(B A P -=( )A .)()(B P A P - B .)()(AB P A P -C .)()(B P A P -D .)(A B P - 9.1A 、2A 、3A 为三个事件,则( )A .若321,,A A A 相互独立,则321,,A A A 两两独立;B .若321,,A A A 两两独立,则321,,A A A 相互独立;C .若)()()()(321321A P A P A P A A A P =,则321,,A A A 相互独立;D .若1A 与2A 独立,2A 与3A 独立,则1A 与3A 独立10.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2B .0.4C .0.6D .0.811.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( ) A.0.125 B.0.25 C.0.375 D.0.5 12.设A 、B 为任意两个事件,则有( )A.(A ∪B )-B=AB.(A-B)∪B=AC.(A ∪B)-B ⊂AD.(A-B)∪B ⊂A 13.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )14.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( )A .151B .51C .154D .3115.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) A .P (AB )=lB .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=116.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) A .P (AB )=0 B .P (A -B )=P (A )P (B ) C .P (A )+P (B )=1D .P (A |B )=017.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A .0.125 B .0.25C .0.375D .0.5018.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A19.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p 2B .(1-p )2C .1-2pD .p (1-p )20.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( )A .0B .0.4C .0.8D .121.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )A .0.20B .0.30C .0.38D .0.5722.X 的密度为⎩⎨⎧∈=其它,0],0[,2)(A x x x f ,则A=( )A .41 B .21 C .1 D .223.离散型随机变量X 的分布列为其分布函数为)(x F ,则=)3(F ( ) A . 0 B .3.0 C .8.0 D .1 24.随机变量X 的密度函数⎩⎨⎧∈=其它]1,0[)(4x cx x f 则常数c =( )A .51 B .41 C .4 D .525.离散型随机变量X 的分布列为其分布函数为)(x F ,则=)1(F ( ) A .4.0 B .2.0 C .6.0 D .126.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e31 B .3eC .11--eD .1311--e27.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41 B .31C .3D .428.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )C .41 D .8329.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F YD .130.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(N B .)27,7(N C .)45,7(ND .)45,11(N31.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤<-≤<.,0;2x 1,x 2;1x 0,x 其它 则P{0.2<X<1.2}的值是( )A .5.0B .6.0C .66.0D .7.032.某人射击三次,其命中率为0.7,则三次中至多击中一次的概率为( ) A.027.0 B.081.0 C.0.189 D.0.21633.设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为( )则F (0,1)=( )A.2.0B.6.0C.7.0D.0.834.设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+.,0;1y 0,2x 0),y x (k 其它则k=( )A.41 B.31C.21 D.3235.设随机变量X 在[-1,2]上服从均匀分布,则随机变量X 的概率密度f (x )为( )A .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x fB .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f36.设随机变量X ~ B ⎪⎭⎫ ⎝⎛31,3,则P{X ≥1}=( )C .2719D .272637.设二维随机变量(X ,Y )的分布律为Y X1231 2101 103102 101102 101则P{XY=2}=( ) A .51 B .103 C .21D .5338.设二维随机变量(X ,Y )的概率密度为 ⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y )= ( ) A .x 21 B .2x C .y21D .2y39.设函数f (x )在[a ,b ]上等于sin x ,在此区间外等于零,若f (x )可以作为某连续型随机变量的概率密度,则区间[a ,b ]应为( )A .[0,2π-] B .[2π,0] C .]π,0[D .[23π,0]40.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤<-≤<其它21210x xx x ,则P (0.2<X<1.2)=( ) A .0.5 B .0.6 C .0.66 D .0.741.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( )A .61 B .41 C .31D .2142.设随机变量X ,Y 相互独立,其联合分布为则有( ) A .92,91==βα B .91,92==βα C .32,31==βαD .31,32==βα43.设随机变量X 的分布律为X 0 1 2 P0.3 0.2 0.5则P {X <1}=( )A .0B .0.2C .0.3D .0.544.下列函数中可作为某随机变量的概率密度的是( )A .⎪⎩⎪⎨⎧≤>100,0,100,1002x x x B .⎪⎩⎪⎨⎧≤>0,0,0,10x x xC .⎩⎨⎧≤≤-其他,0,20,1xD .⎪⎩⎪⎨⎧≤≤其他,0,232121x ,45.随机变量X 服从二项分布)2.0,10(B ,则( ) A .==DX EX 2 B .==DX EX 6.1C .=EX 2,=DX 6.1D .=EX 6.1,=DX 246.X 可取无穷多个值 ,2,1,0,其概率分布为普阿松分布)3(P ,则( ) A .DX EX ==3 B .DX EX ==31 C .EX =3,DX =31 D .EX =31,DX =9147.随机向量),(Y X 有25,36==DY DX ,协方差12=XYσ,则)()(=-Y X DA .1B .37C .61D .8548.设X~B(10, 31), 则=)X (E )X (D ( )A.31 B.32 C.1D.31049.已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--.;0x e 1x2其它则X 的均值和方差分别为( )A.E(X)=2, D(X)=4B.E(X)=4, D(x)=2C.E(X)=41,D(X)=21D.E(X)=21, D(X)=4150.设随机变量X 的E (X )=μ,D(X)=2σ,用切比雪夫不等式估计≥σ≤-)3|)X (E X (|P ( ) A.91 B.31C.98D.151.设二维随机变量(X ,Y )的分布律为Y X 010 131 3131则E (XY )=( ) A .91- B .0 C .91D .3152.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( ) A .-2 B .0 C .21 D .253.设n μ是n 次独立重复试验中事件A 出现的次数,P 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有}|{|lim εμ>-∞→p nP n n ( )A .=0B .=1C .> 0D .不存在54.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( )A .25- B .21C .2D .555.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=61,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( )A .2161B .361C .61 D .156.设总体X 服从),(2σμN ,n X X X ,,21为其样本,则SX n Y )(μ-=服从( ))(.)1(.)1,0(.)1(.2n t D n t C N B n x A --57.设总体X 服从),(2σμN ,,,21X X …n X ,为其样本,则∑=-=n i iXY 122)(1μσ服从( ))(.)1(.)(.)1(.22n t D n t C n x B n x A --58.设总体X 的分布律为{}p X P ==1,{}p X P -==10,其中10<<p .设n X X X ,,,21 为来自总体的样本,则样本均值X 的标准差为 ( )A .np p )1(- B .np p )1(-C .)1(p np -D .)1(p np -59.设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22YX +( )A .)2,0(NB .)2(2χC .)2(tD .)1,1(F60.记F 1-α(m,n)为自由度m 与n 的F 分布的1-α分位数,则有( ) A.)n ,m (F 1)m ,n (F 1α-α=B.)n ,m (F 1)m ,n (F 11α-α-=C.)n ,m (F 1)m ,n (F αα=D.)m ,n (F 1)m ,n (F 1α-α=61.设x 1, x 2, …, x 100为来自总体X ~ N (0,42)的一个样本,以x 表示样本均值,则x ~( ) A .N (0,16) B .N (0,0.16) C .N (0,0.04)D .N (0,1.6)62.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( )A .)10(2σμ,N B .)(2σμ,NC .)10(2σμ,N D .)10(2σμ,N63.设X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则样本方差S 2=( ) A .∑=-ni iX X n12)(1B .∑=--ni iX X n 12)(11C .∑=-ni iX X n12)(1D .∑=--ni iX X n 12)(1164.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( )A .∑=--ni iX X n 12)(11B .∑=--ni iX n 12)(11μC .∑=-ni iX X n12)(1D .∑=-+ni iX n 12)(11μ65.设总体X ~ N (2,σμ),其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个估计:)(41ˆ43211x x x x +++=μ,3212515151ˆx x x ++=μ,2136261ˆx x +=μ,1471ˆx =μ中,哪一个是无偏估计?( )A .1ˆμB .2ˆμC .3ˆμD .4ˆμ 66.总体X 服从)(λP ,其中0>λ为未知参数,n X X X ,,21为样本,则下面说法错误的是( ) A .X 是E X 的无偏估计量 B .X 是DX 的无偏估计量 C .X 是EX 的矩估计量 D .X 是2λ的无偏估计量 67.矩估计必然是( )(1)无偏估计 (2)总体矩的函数 (3)样本矩的函数 (4)极大似然估计 68.设θˆ是未知参数θ的一个估计量,若θθ=)ˆ(E ,则θˆ是θ的( ) A .极大似然估计 B .矩估计 C .无偏估计 D .有偏估计二、填空题1. A 、B 为两事件,8.0)(=⋃B A P ,2.0)(=A P ,4.0)(=B P ,则=-)(A B P 。
第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。
2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。
3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =U ;(C )(|)()P A B P B =; (D )(|)()P A B P A =。
4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P A B P A =U ;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。
5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。
6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P A B P A P B =+U ; (B )()()()P A B P A P B ≠+U ;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。