八年级数学经典错题分析
- 格式:doc
- 大小:808.00 KB
- 文档页数:20
初中数学错题分析与纠错第一篇范文:初中数学错题分析与纠错本文针对初中数学教学过程中学生常犯的错误进行深入剖析,以人性化的语言提出有效的错题分析与纠错策略,旨在提高学生的数学学习效果,培养学生的自主学习能力。
在初中数学教学中,我们常常发现学生存在这样或那样的错误。
这些错误往往源自于学生对知识点的理解不深,或者是解题方法的不当。
为了提高学生的数学学习效果,我们需要对这些错误进行深入分析,并采取有效的纠错策略。
初中数学错题分析知识理解错误学生在解题过程中,可能会对某些数学概念、定理或公式理解不深,导致解题错误。
例如,学生在解决分数问题时,可能会忘记分数的乘除法规则,导致计算错误。
解题方法错误学生在解题过程中,可能会采用错误的解题方法,导致解题困难或错误。
例如,学生在解决几何问题时,可能会采用不适合的解题方法,导致无法得出正确答案。
计算错误学生在解题过程中,可能会出现计算错误。
这些错误可能是由于粗心大意,也可能是由于对数学规则的理解不清。
例如,学生在计算乘法时,可能会忘记交换因数的位置,导致计算错误。
初中数学纠错策略知识点的深入讲解对于知识理解错误,我们需要对学生进行深入的知识点讲解,帮助他们理解数学概念、定理或公式的本质。
例如,在讲解分数的乘除法规则时,我们可以通过实际例题,让学生理解分数乘除法的本质。
解题方法的指导对于解题方法错误,我们需要引导学生采用合适的解题方法。
例如,在解决几何问题时,我们可以引导学生采用画图的方法,帮助他们更好地理解问题和解题思路。
计算错误的纠正对于计算错误,我们需要帮助学生养成良好的计算习惯,并加强对数学规则的理解。
例如,在计算乘法时,我们可以提醒学生注意因数的交换位置,避免计算错误。
通过对初中数学错题的深入分析,我们可以发现学生常犯的错误,并采取有效的纠错策略。
这样,我们可以提高学生的数学学习效果,培养学生的自主学习能力。
以上是关于“初中数学错题分析与纠错”的教育文档示例,内容完整,语言人性化,符合教学实际需要。
初中数学错题分类整理与分析在初中数学教学中,错题整理与分析是提高学生数学素养的重要环节。
通过对错题的深入剖析,学生可以更好地掌握数学知识,提升解题能力。
本文将从分类整理和分析的角度,探讨初中数学错题的处理策略。
一、错题分类1.概念性错误:学生对数学概念理解不透彻,导致解题过程中出现偏差。
例如,分不清有理数和无理数,将导致有关根号的题目解答错误。
2.计算性错误:学生在计算过程中,由于疏忽、马虎等原因,出现算术错误。
例如,简单的加减乘除运算错误,或者在小数点和分数运算中出现失误。
3.逻辑性错误:学生在解题过程中,逻辑思维不严密,导致解答不完整或者答案错误。
例如,在解一元一次方程时,忽略检验解的正确性。
4.应用题错误:学生在解决应用题时,不能正确将数学知识运用到实际问题中,或者对题目的理解出现偏差。
例如,在解决几何问题时,不能准确运用面积公式。
5.构图错误:学生在作图过程中,不能准确地根据题目要求绘制图形,导致解题思路混乱。
例如,在解几何证明题时,作图不准确,导致无法找到关键证明步骤。
二、错题整理1.建立错题本:学生应养成建立错题本的的习惯,将每次考试、练习中出现的错题记录下来。
2.归纳错题类型:学生在记录错题时,应注意归纳错题的类型,以便于后续分析和复习。
3.标注错题原因:学生在整理错题时,应在每道错题旁边标注出错的原因,以便于查找和改正。
4.定期复习:学生应定期复习错题本,巩固已掌握的知识点,避免重复犯错。
三、错题分析1.自我分析:学生应对错题进行自我分析,找出自己在解题过程中的不足之处,如概念理解不深、计算不准确等。
2.寻求帮助:学生在分析错题时,如有遇到困难,可以向老师、同学请教,以便更好地掌握知识点。
3.总结经验:学生应总结错题解析过程中的经验教训,提高解题能力。
4.反馈调整:学生应对错题进行分析总结后,对自己的学习方法、复习计划等进行调整,以提高学习效果。
四、教学建议1.注重概念教学:教师应加强对数学概念的教学,让学生充分理解并掌握基本概念。
初二数学学习中的错题分析与纠正在初二数学学习的过程中,学生们经常会遇到一些难题,甚至会犯错。
正确的对待和分析错题,并且及时纠正,对于提高数学学习效果至关重要。
本文将对初二数学学习中的错题进行分析,并提供一些纠正错误的方法。
一、题目一:方程求解首先,我们来看一个关于方程求解的例子:2x + 5 = 15这是一个简单的一元一次方程,我们可以通过移项和化简的方式来求解。
首先,我们可以将式子转化为标准形式:2x = 15 - 52x = 10然后,我们继续化简方程,得到:x = 10 / 2x = 5通过对这个题目的分析,我们可以发现学生们在求解方程时容易出现以下几个问题:没有正确地进行移项操作、算式化简错误或者没有得到最终结果。
对于这些问题,我们可以通过提供更多的练习题来加强练习,并且通过详细的解答过程来引导学生正确地解题。
二、题目二:几何图形计算接下来,我们来看一个关于几何图形计算的例子:已知一个等边三角形的边长为5厘米,求其面积。
对于这个题目,我们知道等边三角形的面积公式为:面积 = (边长^2 * √3) / 4带入已知条件,我们可以计算得到:面积= (5^2 * √3) / 4= (25 * √3) / 4≈ 10.83 平方厘米通过对这个题目的分析,我们可以发现学生们在几何图形计算过程中容易出现以下几个问题:对公式不熟悉、计算错误、结果保留不准确等。
我们可以通过反复练习应用几何图形计算公式来巩固学生们的知识,并且强调计算过程中的准确性,培养学生们对结果保留有效数字的意识。
三、题目三:概率与统计最后,我们来看一个关于概率与统计的例子:某班共有40个学生,学生升入高中的可能性为0.85。
请问,此班有多少学生可以升入高中?对于这个题目,我们可以通过计算概率来得到答案。
已知概率公式为:概率 = 事件发生次数 / 总事件数带入已知条件,我们可以计算得到:升入高中的学生数 = 40 * 0.85≈ 34通过对这个题目的分析,我们可以发现学生们在概率与统计计算过程中容易出现以下几个问题:对概率公式理解不深刻、计算错误或者概念模糊。
八年级数学上册易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
初中数学错题分析方法第一篇范文:初中数学错题分析方法在初中数学教学过程中,错题分析是提高学生数学素养的重要环节。
本文将从以下几个方面阐述初中数学错题分析方法:错题分类、错因分析、纠错策略及巩固提高。
一、错题分类对错题进行分类,有助于我们找出学生在数学学习中存在的问题。
常见的错题分类有以下几种:1.概念性错误:学生对数学概念理解不透彻,导致解题过程中出现偏差。
2.计算错误:学生在计算过程中出现的算术错误。
3.逻辑错误:学生在解题过程中,逻辑思维不严密,导致答案错误。
4.应用题错误:学生在解决应用题时,不能正确运用所学知识,或对题意理解不准确。
5.解决问题策略错误:学生在面对问题时,选择了错误的解决方法。
二、错因分析了解错因,有助于我们针对性地采取措施,避免学生在今后的学习中再次犯同样的错误。
常见的错因有以下几种:1.基础知识不扎实:学生对数学基本概念、定理、公式掌握不牢固。
2.学习方法不当:学生没有形成良好的学习习惯,如课前预习、课后复习等。
3.思维能力不足:学生逻辑思维、发散思维能力不强。
4.心理因素:学生对数学学科缺乏兴趣,或存在焦虑、恐惧等情绪。
5.教学因素:教师教学方法不适合学生,或教学内容安排不合理。
三、纠错策略针对不同类型的错题和错因,采取相应的纠错策略,有助于学生提高数学学习成绩。
以下是一些建议:1.概念性错误:引导学生加强对数学概念的理解,可通过举例、讲解等方式,让学生在实际问题中正确运用概念。
2.计算错误:加强学生的计算训练,培养学生的计算能力。
3.逻辑错误:培养学生严谨的逻辑思维,可通过逻辑游戏、思维训练等方式进行。
4.应用题错误:引导学生正确理解题意,培养学生的应用能力。
5.解决问题策略错误:引导学生学会分析问题,形成正确的解决问题思路。
四、巩固提高在错题分析的基础上,采取以下措施,有助于学生巩固所学知识,提高数学素养:1.定期复习:引导学生定期复习错题,加深对知识点的理解。
初中数学错题分析与应对第一篇范文在初中数学教学过程中,学生常常会遇到各种困难,导致在解题时出现错误。
为了提高学生的数学学习效果,教师需要对学生的错题进行分析,找出错误产生的原因,并采取相应的应对策略。
本文将从心理、教学、学生个体差异等方面对初中数学错题进行分析,并提出相应的应对措施。
一、错题分析1. 知识性错误知识性错误主要是由于学生对基本数学概念、定理、公式等掌握不牢固导致的。
学生在解题过程中,可能会出现概念混淆、公式使用错误等情况。
例如,在解一元二次方程时,学生可能会忘记移项、合并同类项等基本步骤,导致解题结果错误。
2. 逻辑性错误逻辑性错误主要是学生在解题过程中,推理不严谨、论证不充分导致的。
这类错误可能体现在学生对题目的理解不准确,或者在解题过程中跳跃性思维过大,导致答案不完整或错误。
例如,在解决几何问题时,学生可能会忽略某些条件,导致论证不充分,从而得出错误的结论。
3. 计算性错误计算性错误是学生在解题过程中,由于运算规则掌握不牢固、粗心大意等原因导致的。
这类错误在数学学习中非常常见,如加减乘除运算错误、小数点位置错误等。
这些错误往往会导致解题结果与正确答案相差甚远。
4. 策略性错误策略性错误主要是学生在解题过程中,选用不当的解题方法或策略导致的。
这类错误可能源于学生对题目的分析不准确,或者在解题过程中缺乏灵活变通的能力。
例如,在解决应用题时,学生可能会固定思维,无法找到最合适的解题方法,导致解题过程复杂化或错误。
二、应对措施1. 加强基础知识教学针对知识性错误,教师需要加强对基本数学概念、定理、公式等知识的教学。
可以通过举例子、讲解应用场景等方式,帮助学生加深对知识点的理解。
同时,教师要注重知识点的巩固,通过布置相关的练习题,让学生在实践中掌握知识。
2. 培养逻辑思维能力针对逻辑性错误,教师需要培养学生的逻辑思维能力。
可以在教学过程中,引导学生进行有条理的推理和论证。
同时,教师要教会学生如何分析题目,抓住关键条件,避免跳跃性思维。
初二数学学习中常见的易错题分析数学作为一门理科学科,对于初中生而言,往往是一门让人又爱又恨的学科。
在学习数学的过程中,常常会遇到一些易错题,这些题目看似简单,却往往容易让学生犯错。
本文将对初二数学学习中常见的易错题进行深入分析,并给出相应的解题技巧,帮助同学们更好地应对这些题目。
一、整数的绝对值问题整数的绝对值题目属于初二数学中一个常见的易错点。
很多同学在解这类题目时容易混淆绝对值的概念。
例如,有一道题目如下:|-5| + |3| = ?在解这道题时,很多同学会将|-5|和|3|的值分别计算出来,然后进行相加,得出答案为8。
然而,这种做法是错误的,因为绝对值符号的作用是将其内部的值变为正数。
所以,正确的解题步骤应该是先计算|-5|和|3|的值,得到5和3,然后再进行相加,得到答案为8。
二、分数与小数的比较分数与小数的比较题目在初二数学中也很常见。
例如,有一道题目如下:将以下四个数按从小到大的顺序排列:0.5,1/4,0.3,2/5很多同学在解这类题目时容易混淆分数和小数的大小关系。
一种常见的错误做法是将分数转换成小数后再进行比较。
例如,将1/4转换成小数后是0.25,将2/5转换成小数后是0.4,然后再进行比较。
然而,这种做法是错误的,因为小数的计算结果可能会带来计算误差。
正确的做法是将所有的数都转换成相同的形式进行比较。
在这个例子中,可以将0.5转换成1/2,将0.3转换成3/10,然后再进行比较。
按照这种方法,从小到大的顺序排列为:1/4,3/10,2/5,1/2。
三、平方根和立方根的计算初二数学中经常会遇到一些关于平方根和立方根的计算题目,而这也是一些同学容易出错的地方。
例如,有一道题目如下:√(16 - 9) = ?在解这道题时,很多同学容易将16-9的结果计算出来,然后再求它的平方根,得出答案为1。
然而,这是一个错误的做法。
我们知道,平方根的运算优先于减法运算,所以正确的解题步骤应该是先计算√16和√9的值,得到4和3,然后再进行相减,得到答案为1。
八年级数学上册常见易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
一.选择题(共16 小题)1.如图,要测量河两岸相对两点A、B 的距离,可以在AB 的垂线BF 上取两点C 、D,使CD=BC,再作BF 的垂线DE,且使A、C、E 在同一条直线上,可得△ABC≌△EDC.用于判定两三角形全等的最佳依据是( )A.ASA B.SAS C.SSS D.AAS2.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC.下列结论中不正确的是( )A.∠MBE=∠MEB B.MN∥BE C.S△BEM=S△BEN D.∠MBN=∠MNB3.如图,D 为∠BAC 的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC 于E,DF⊥AB 交BA 的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )个B.2 个C.3 个D.4 个4.在平面直角坐标系内,点O 为坐标原点,A(﹣4,0),B(0,3).若在该坐标平面内有以点P(不与点A、B、O 重合)为一个顶点的直角三角形与Rt△ABO 全等,且这个以点P 为顶点的直角三角形与Rt△ABO 有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7 C.5 D.35.如图所示,已知在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,若∠ B=28°, 则∠AEC=( )A.28° B.59° C.60° D.62°6.下列语句中,正确的有( )(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等.A.1 个B.2 个C.3 个D.4 个7.如图,AB=AC,AD=AE,BE、CD 交于点O,则图中全等三角形共有( )A.五对B.四对C.三对D.二对8.如图,已知:AD∥BC,AB∥DC,AC 与BD 交于点O,AE⊥BD 于点E,CF⊥ BD 于点F,那么图中全等的三角形有( )A.8 对B.7 对C.6 对D.5 对9.在如图所示的5×5 方格中,每个小方格都是边长为1 的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是( )A.1 B.2 C.3 D.410.如图,△ABC 的3 个顶点分别在小正方形的顶点上,这样的三角形叫做格点三角形,在图中再画格点三角形(位置不同于△ABC),使得所画三角形与△ABC全等,则这样的格点三角形能画( )A.1 个B.2 个C.3 个D.4 个11.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.12.不能用尺规作出唯一三角形的是( )A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角13.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A 放在角的顶点 ,AB和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS14.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<1915.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( ) A.37° B.53° C.37°或63°D.37°或53°16.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C 在一条直线上.下列结论: ①BD 是∠ABE 的平分线;②AB⊥AC;③∠C=30°;④线段DE 是△BDC 的中线;⑤AD+BD=AC其中正确的有( )个.A.2 B.3 C.4 D.5参考答案与试题解析一.选择题(共16 小题)1.如图,要测量河两岸相对两点A、B 的距离,可以在AB 的垂线BF 上取两点C 、D,使CD=BC,再作BF 的垂线DE,且使A、C、E 在同一条直线上,可得△ABC≌△EDC.用于判定两三角形全等的最佳依据是( )A.ASA B.SAS C.SSS D.AAS[解答]解:在△ABC 和△EDC 中,∴△ABC≌△EDC(ASA),她的依据是两角及这两角的夹边对应相等即ASA 这一方法.故选:A.2.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC.下列结论中不正确的是( )A.∠MBE=∠MEB B.MN∥BE C.S△BEM=S△BEN D.∠MBN=∠MNB[解答]解:∵EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC,∴∠MEB=∠ABE,∠ABC=∠EMC,∠ABE=∠MBE,∠EMN=∠NMC,∴∠MEB=∠MBE(故A 正确),∠EBM=∠NMC,∴MN ∥BE (故 B 正确),∴MN 和 BE 之间的距离处处相等,∴S △BEM =S △BEN (故 C 正确),∵∠MNB=∠EBN ,而∠EBN 和∠MBN 的关系不知,∴∠MBN 和∠MNB 的关系无法确定,故 D 错误,故选:D .3. 如图,D 为∠BAC 的外角平分线上一点并且满足 BD=CD ,∠DBC=∠DCB ,过 D 作 DE ⊥AC 于 E ,DF ⊥AB 交 BA 的延长线于 F ,则下列结论:①△CDE ≌△BDF ;②CE=AB +AE ;③∠BDC=∠BAC ;④∠DAF=∠CBD . 其中正确的结论有( )个B .2 个C .3 个D .4 个[解答]解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE=DF ,在 Rt △CDE 和 Rt △BDF 中,,∴Rt △CDE ≌Rt △BDF (HL ),故①正确;∴CE=AF ,在 Rt △ADE 和 Rt △ADF 中,,∴Rt △ADE ≌Rt △ADF (HL ),∴AE=AF ,∴CE=AB +AF=AB +AE ,故②正确;∵Rt△CDE≌Rt△BDF,∴∠DBF=∠DCE,∴A、B、C、D 四点共圆,∴∠BDC=∠BAC,故③正确;∠DAE=∠CBD,∵Rt△ADE≌Rt△ADF,∴∠DAE=∠DAF,∴∠DAF=∠CBD,故④正确;综上所述,正确的结论有①②③④共 4个.故选:D.4.在平面直角坐标系内,点O 为坐标原点,A(﹣4,0),B(0,3).若在该坐标平面内有以点P(不与点A、B、O 重合)为一个顶点的直角三角形与Rt△ABO 全等,且这个以点P 为顶点的直角三角形与Rt△ABO 有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7 C.5 D.3[解答]解:如图:分别以OA、OB、AB 为边作与Rt△ABO 全等的三角形各有3 个,则所有符合条件的三角形个数为9.故选:A.5.如图所示,已知在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,若∠B=28°, 则∠AEC=( )A.28° B.59° C.60° D.62°[解答]解:∵在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,∴△CAE≌△DAE,∴∠CAE=∠DAE= ∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∵∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.6.下列语句中,正确的有( )(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等.A.1 个B.2 个C.3 个D.4 个[解答]解:①有一条直角边和斜边上的高对应相等的两个直角三角形全等,正确; 有两边和其中一边上高对应相等的两个三角形不一定全等,所以②错误;③有两边和第三边上的高对应相等的两个三角形全等,错误;故选:A.7.如图,AB=AC,AD=AE,BE、CD 交于点O,则图中全等三角形共有( )A.五对B.四对C.三对D.二对[解答]解:∵AB=AC,AD=AE,∴∠ABC=∠ACB,BD=EC.∵在△BDC 和△CEB 中, ,∴△BDC≌△CEB.∴∠EBC=∠DCB,∴∠ABO=∠ACO.在△DBO 和△ECO 中, ,∴△DBO≌△ECO.∵∠EBC=∠DCB,∴OB=OC.∵在△ABO 和△ACO 中, ,∴△ABO≌△ACO.∴∠DAO=∠EAO.∵在△DAO 和△EAO 中, ,∴△DAO≌△EAO.∵在△DAC 和△EAB 中, ,∴△DAC≌△EAB.故选:A.8.如图,已知:AD∥BC,AB∥DC,AC 与BD 交于点O,AE⊥BD 于点E,CF⊥ BD 于点F,那么图中全等的三角形有( )A.8 对B.7 对C.6 对D.5 对[解答]解:由平行四边形的性质可知:△ABD≌△CDB,△ABO≌△CDO,△ADE≌△CBF,△AOE≌△CFO,△AOD≌△COB,△ABC≌△CDA,△ABE 和△CDF故选:B.9.在如图所示的5×5 方格中,每个小方格都是边长为1 的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是( )A.1 B.2 C.3 D.4[解答]解:以BC 为公共边的三角形有3 个,以AB 为公共边的三角形有0 个, 以AC 为公共边的三角形有1 个,共3+0+1=4 个,故选:D.10.如图,△ABC 的3 个顶点分别在小正方形的顶点上,这样的三角形叫做格点三角形,在图中再画格点三角形(位置不同于△ABC),使得所画三角形与△ABC全等,则这样的格点三角形能画( )A.1 个B.2 个C.3 个D.4 个[解答]解:如图所示可作 3 个全等的三角形.故选:C.11.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.[解答]解:A、由全等三角形的判定定理SAS 证得图中两个小三角形全等, 故本选项不符合题意;B、由全等三角形的判定定理SAS 证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE 和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意; D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=FC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.12.不能用尺规作出唯一三角形的是( )A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角[解答]解:A、已知两角和夹边,满足ASA,可知该三角形是唯一的; B、已知两边和夹角,满足SAS,可知该三角形是唯一的;C、已知两角和其中一角的对边,满足AAS,可知该三角形是唯一的;D、已知两边和其中一边的对角,满足SSA,不能确定三角形是唯一的.故选:D.13.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A 放在角的顶点 ,AB和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS[解答]解:在△ADC 和△ABC 中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC 就是∠DAB 的平分线.故选:A.14.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19[解答]解:如图,延长AD 至E,使DE=AD,∵AD 是△ABC 的中线,∴BD=CD,在△ABD 和△ECD 中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=7,∴AE=7+7=14,∵14+5=19,14﹣5=9,∴9<CE<19,即9<AB<19.故选:D.15.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( ) A.37° B.53° C.37°或63°D.37°或53°[解答]解:在△ABC 中,∠C=180°﹣∠A﹣∠B=53°.∵△ABC 与△DEF 全等,∴当△ABC≌△DEF 时,∠E=∠B=37°,当△ABC≌△DFE 时,∠E=∠C=53°.∠E 的度数是37 度或53度.故选:D.16.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C 在一条直线上.下列结论: ①BD 是∠ABE 的平分线;②AB⊥AC;③∠C=30°;④线段DE 是△BDC 的中线;⑤AD+BD=AC其中正确的有( )个.A.2 B.3 C.4 D.5[解答]解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD 是∠ABE 的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C 可能不在同一直线上∴AB 可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C 不在同一直线上,则∠ABD+∠EBD+∠C≠90°, ∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE 是△BDC 的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C 不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.。
八年级错题集1、如图11-1,,12,,ABE ACD B C ∆≅∆∠=∠∠=∠指出对应边和另外一组对应角。
错解:对应边是AB 与AD ,AC 与AE ,BD 与CE ,另一组对应角是∠BAD 与∠CAE 。
错误原因分析:对全等三角形的表示理解不清,在全等三角形的表示中对应顶点的位置需要对齐,不能根据对应顶点来确定对应角和对应边。
同时对全等三角形中对应角与对应边之间的对应关系也没有理解,对应角所对的边应该是对应边,如∠2所对的边是AB ,∠1所对的边是AC ,因为∠1=∠2,即∠1与∠2是对应角,所以AB 与AC 是对应边。
正解:对应边是AB 与AC ,AE 与AD ,BE 与CD ,另一组对应角是∠BAD 与∠CAE 。
2、如图11-2,在ABD ACE ∆∆和中,AB=AC ,AD=AE ,欲证ABD ACE ∆≅∆,须补充的条件是( )。
A 、∠B =∠C ; B 、∠D=∠E ; C 、∠BAC=∠DAE ;D 、∠CAD=∠DAE 。
错解:选A 或B 或D 。
错误原因分析:对全等三角形的判定定理(SAS )理解不清,运用SAS 判定定理来证明两三角形全等时,一定要看清角必须是两条对应边的夹角,边必须是夹相等角的两对应边。
上题中AB 与AC ,AD 与AE 是对应边,并且AB 与AD 的夹角是∠BAD ,AC 与AE 的夹角是∠CAE,而∠B 与∠C ,∠D 与∠E 不是AB 与AC ,AD 与AE 的夹角,故不能选择A 或B 。
∠CAD 与∠DAE 不是ABD ∆和ACE ∆中的内角,故不能选择D 。
所以只有选择C ,因为∠BAC+∠CAD=∠DAE+∠CAD ,即:∠BAD=∠CAE 。
正解:选C 。
3、如图11-3所示,点0为码头,A ,B 两个灯塔与码头的距离相等,0A 、OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B的距离相等,试问轮船航行是否偏离指定航线?错解:不能判断,因为应该是到角两边距离相等(即垂线段相等)的点才在角平分线上。
错误原因分析:生搬硬套“角的内部到角的两边的距离相等的点在角的平分线上”,而忽略了角平分线的实质是所分得的两个角相等,本题由OA=OB ,轮船到两灯塔的距离相等,再加上已行的航线,可构造出一对全等三角形,从而可得到已行航线把∠AOB 分成相等的两个角,即没有偏离指定航线。
正解:没有偏离指定航线,如图11-4,依题意可得:OA=OB ,AC=BC ,OC=OC ,AOC BOC ∆≅∆,∴∠AOC=∠BOC ,即OC 平分∠AOB ,∴没有偏离指定航线。
4、如图11-5,,CAB DBA C D ∠=∠∠=∠,E 为AC 和BD 的交点,ADB ∆与BCA ∆全等吗?说明理由。
错解:ADB BCA ∆≅∆。
理由如下:,,,()CAB DBA C D CBA DBA ADB BCA AAA ∠=∠∠=∠∴∠=∠∴∆≅∆错误原因分析:两个三角形全等是正确的,但说明的理由不正确,三个角对应相等不能作为三角形全等的判定方法。
在初中数学中,往往有较多同学会从自己错误的主观意识出发,自己去编造一些不正确的定理,用来证明和计算。
这就要求我们学生在学习的过程中,要准确地理解和掌握自己所学过的一些性质和判定定理。
另外,在书写的要求上也要养成严谨的习惯。
象上面问题中,三组对应角相等的两个三角形全等,这不是三角形全等的判定方法。
在书写上也没有按照全等三角形书写的形式来规范书写。
正解:ADB BCA ∆≅∆。
理由如下:(),,()DBA CAB D C AB BA ADB BCA AAS ∠=∠∠=∠=∴∆≅∆公共边5、已知,如图11-6,ABD AEC ∆∆和都是等边三角形,求证:BE=DC 。
错解:ABD AEC ∆∆和都是等边三角形,0060,120.,.,.BAD CAE CAD EAB AB AD AE AC ABE ADC BE DC ∴∠==∠∠==∠==∴∆≅∆∴=又 错误原因分析:只靠眼睛直观,主观臆断,误认为D 、A 、E 三点在同一直线上,是造成解题的错误的主要原因。
实际上由于BAC ∠的大小不确定,所以D 、A 、E 三点不一定在同一直线上,而应该寻找DAC BAE ∠∠和相等。
象这种错误在初中学生解答有关几何题时经常出现的,这要求我们学生在审题时一定要审清楚题目中的已知条件及隐含条件,题目中没有出现的,我们不能去编造。
正解:ABD AEC ∆∆和都是等边三角形,060,,.,.,.BAD CAE BAD BAC CAE BAC DAC BAE AB AD AE AC ABE ADC BE DC ∴∠==∠∴∠+∠=∠+∠∴∠=∠==∴∆≅∆∴=又6、到三角形三边所在的直线的距离相等的点有 个。
错解:1个。
错误原因分析:三角形的三个内角角平分线会相交于一点,且这个点到三角形三边的距离相等。
由于所求的点是到三边所在直线的距离相等,因此,相邻两个外角的角平分线的交点到三边所在直线的距离也相等,所以符合条件的点有4个。
正解:4个。
如图11-7,四个点分别是D 、E 、F 、G 。
7、写出下列各图形的对称轴。
(1)、角的对称轴是;(2)、等腰三角形的对称轴是;(3)、圆的对称轴是。
错解:(1)角的平分线;(2)等腰三角形底边上的高;(3)圆的每一条直径。
错误原因分析:对对称轴的概念理解不准确,对称轴指的是一条直线,不能将它误认为是射线和线段。
象角平分线是射线而不是直线,所以它不是角的对称轴,等腰三角形底边上的高是线段,也不是直线,所以它也不是等腰三角形的对称轴,圆的直径是线段,也不是直线,所以它也不是圆的对称轴。
正解:(1)、角平分线所在的直线;(2)、等腰三角形底边上的高所在的直线;(3)、过圆心的每一条直线。
8、已知点A(1-a,5)与点B(3,b)关于y轴对称,求a-b的值。
错解:∵点A(1-a,5)与点B(3,b)关于y轴对称,∴1-a=3,b=-5,∴a=-2,∴a-b=-2-(-5)=3 。
错误原因分析:没有正确理解和掌握关于y轴对称的点的坐标特征,在平面直角坐标系中,关于x轴对称的两个点的横坐标相等,纵坐标互为相反数;关于y轴对称的两个点的纵坐标相等,横坐标互为相反数。
即点P(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)。
这题是将关于x轴对称点的坐标特征与关于y轴对称点的坐标特征搞混淆了。
正解:∵点A(1-a,5)与点B(3,b)关于y轴对称,∴1-a=-3,b=5,∴a=4,b=5 ,∴a-b=4-5=-1 。
9、等腰三角形的两边长分别为4cm和9cm,试求其周长。
错解:分情况讨论:①、当腰长为4cm时,底边长就为9cm。
∴等腰三角形的周长为4×2+9=17(cm)。
②、当腰长为9cm时,底边长就为4cm。
∴等腰三角形的周长为9×2+4=22 (cm)。
错误原因分析:本题分两种情况考虑了等腰三角形的特点(即腰长为4cm 与9cm 两种情况),但忽略了构成三角形的条件(三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边。
)。
因为4+4<9,所以4cm 不能作为腰长。
只有9cm 为腰长,4cm 为底边一种情况成立。
正解:分情况讨论:①、当腰长为4cm 时,底边长就为9cm 。
∵4+4<9 ,∴这种情况不成立。
②、当腰长为9cm 时,底边长就为4cm 。
∴等腰三角形的周长为9×2+4=22 (cm )。
∴等腰三角形的周长为22cm 。
10、等腰三角形一腰上的高等于腰长的一半,求其顶角。
错解:如图12-1,AB=AC,B D ⊥AC 于D ,且12BD AB =, ∴∠A=30°,即其顶角为30°。
错误原因分析:等腰三角形是比较特殊的三角形,它有许多特性和,在解决与等腰三角形有关的问题时,一定要全面地分析问题,不漏解,上题只考虑到腰上的高线在三角形的内部是产生错解的原因。
事实上,对于本题腰上的高线还可能在三角形的外部,应分两种情况进行求解。
正解:分两种情况来讨论:①、当高线在三角形内部时,如图12-1,AB=AC,B D ⊥AC 于D ,且12BD AB =, ∴∠A=30°,即其顶角为30°。
②、当高线在三角形外部时,如图12-2,AB=AC,B D ⊥AC 于D ,且12BD AB =, ∴∠BAD=30°,∴∠BAC=150°。
∴等腰三角形的顶角为30°或150°。
11、在一次数学课上,王老师在黑板上画出图12-3,并写下了四个等式:(1)A B D C =,(2)B E C E =,(3) B C ∠=∠,(4) B A E C D E∠=∠。
要求同学从这四个等式中选出两个作为条件,推出A E D△是等腰三角形.请你试着完成王老师提出的要求,并说明理由。
(写出一种即可)已知:求证:A E D△是等腰三角形。
错解:已知:A B D C =,B E C E =, B E D A C 图-12-3求证:A E D△是等腰三角形。
证明: ∵A B D C =,B E C E =,,DEC AEB ∠=∠∴.DCE ABE ∆≅∆∴.DE AE =∴A E D△是等腰三角形. 错误原因分析:受思维定势的影响,以为三个条件就可证两个三角形全等,思维混乱,,运用了不成立的命题“SSA ”去证明题目,即犯了“虚假理由”的错误。
说明对两个三角形全等的判定定理掌握不透,上课时没真正弄懂定理的运用。
中等偏下的学生易犯这种错误。
正解:如:已知:A B D C =,B C ∠=∠,求证:A E D△是等腰三角形。
证明:∵A B D C =,B C ∠=∠,,DEC AEB ∠=∠∴.DCE ABE ∆≅∆∴.DE AE =∴A E D△是等腰三角形。
12、下列说法正确的是 ( )。
A 、 如果线段AB 和''A B 关于某条直线对称,那么AB=''A B ;B 、 如果点A 和点'A 到直线l 的距离相等,则点A 与点'A 关于直线l 对称;C 、 如果AB=''A B ,且直线MN 垂直平分A 'A ,那么线段AB 和''A B 关于直线MN对称;D 、 如果在直线MN 两旁的两个图形能够完全重合,那么这两个图形关于直线MN对称。
错解:选B 或C 或D 。
错误原因分析:对轴对称的定义和性质理解不够准确是这题解题错误的主要原因,因为线段AB 和''A B 关于某直线对称,则沿着这条直线对折AB 与''A B 一定能够重合,所以AB=''A B 。