人教版初中数学代数式基础测试题附答案解析
- 格式:doc
- 大小:266.00 KB
- 文档页数:10
代数式单元测试卷一.选择题(共10小题共20分)1.计算-3(x -2y )+4(x -2y )的结果是( )A .x -2yB .x+2yC .-x-2yD .-x+2y2.若2y m+5x n+3与-3x 2y 3是同类项,则m n =( )A .21B .21- C .1 D .-2 3.下列各式中,是3a 2b 的同类项的是( )A .2x 2yB .-2ab 2C .a 2bD .3ab4.若-x 3y m 与x n y 是同类项,则m+n 的值为( )A .1B .2C .3D .45.下列计算正确的是( )A .3a -2a =1B .x 2y-2xy 2=-xy 2C .3a 2+5a 2=8a 4D .3ax-2xa=ax6.若单项式2x n y m-n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .m =3,n =9B .m =9,n =9C .m =9,n =3D .m =3,n =37.下列判断错误的是( )A .若x <y ,则x +2010<y +2010B .单项式7432y x -的系数是-4 C .若|x -1|+(y -3)2=0,则x =1,y =3 D .一个有理数不是整数就是分数8.化简m-n-(m+n )的结果是( )A .0B .2mC .-2nD .2m -2n 9.已知a ,b 两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-2|+|b+2|的结果是( )A .2a+2bB .2b +3C .2a -3D .-110.若x-y =2,x-z =3,则(y-z )2-3(z-y )+9的值为( )A .13B .11C .5D .7 二.填空题(共10小题共30分)11.如果单项式-xy b+1与21x a-2y 3是同类项,那么(a-b )2015= . 12.若单项式2x 2y m 与331y x n -的和仍为单项式,则m+n 的值是 .13.若-2x 2y m 与6x 2n y 3是同类项,则mn = .14.单项式-4x 2y 3的系数是 ,次数 .15.单项式322y x -的系数与次数之积为 . 16.多项式 与m 2+m-2的和是m 2-2m .17.多项式-2m 2+3m -21的各项系数之积为 . 18.在代数式3xy 2,m ,6a 2-a +3,12,22514xy yz x -,ab 32中,单项式有 个,多项式有 个.19.单项式-2πa 2bc 的系数是 .20.观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3…,则第2013个单项式是 .三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(每小题4分)合并同类项①3a-2b-5a+2b②(2m+3n-5)-(2m-n-5)③2(x 2y+3xy 2)-3(2xy 2-4x 2y )22.(每小题4分)化简:(1)16x-5x+10x(2)7x-y+5x-3y+3(3)a 2+(2a 2-b 2)+b 2(4)6a 2b+(2a+1)-2(3a 2b-a )23.(6分)已知|a-2|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值。
(易错题精选)初中数学代数式知识点总复习附解析一、选择题1.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是()A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.3.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.4.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.5.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a-= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.8.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】 根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯==325a a a +=()3263a b a b = 故选B .13.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.14.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.15.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( )A .-1B .1C .2D .-2【答案】C【解析】分析:先计算(x ﹣a )(x 2+2x ﹣1),然后将含x 2的项进行合并,最后令其系数为0即可求出a 的值.详解:(x ﹣a )(x 2+2x ﹣1)=x 3+2x 2﹣x ﹣ax 2﹣2ax +a=x 3+2x 2﹣ax 2﹣x ﹣2ax +a=x 3+(2﹣a )x 2﹣x ﹣2ax +a令2﹣a =0,∴a =2.故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g=221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.17.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.18.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2 =(1.25×45)2012×(45)2 =1625.故选B .【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.19.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意; 3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.20.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .18 【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n 个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.。
新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为 岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。
初中数学代数式经典测试题附答案一、选择题1.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是() A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.2.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x4+ 4x2+1=(2x+1)2,∴A=1,不符合题意,∵4x4+ 4x2+ 4不是完全平方式,∴A=4,符合题意,∵4x4+ 4x2+x6=(2x+x3)2,∴A= x6,不符合题意,∵4x4+ 4x2+8x3=(2x2+2x)2,∴A=8x3,不符合题意.故选B.【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.3.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.4.下列计算正确的是( )A .235x x x +=B .236x x x =C .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x = ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.5.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235aa a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.7.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-,23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.8.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.9.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】 本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.10.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .13.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯==325a a a +=()3263a b a b =故选B .14.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.15.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.16.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.17.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .18.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】 根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.20.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.。
人教版初中数学代数式难题汇编含答案解析一、选择题1.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.2.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.3.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A.3a3+a3=4a3,故A错误;B.(a+b)2=a2+b2+2ab,故B错误;C.5a﹣3a=2a,故C正确;D.(﹣a)2•a3=a5,故D错误;故选C.【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是()A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.计算的值等于( )A .1B .C .D .【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式===.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1 B.1 C.﹣2 D.2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x的多项式,再将它与x2+mx-2作比较,即可分别求得m,n的值.【详解】解:∵(x+1)(x+n)=x2+(1+n)x+n,∴x2+(1+n)x+n=x2+mx-2,∴12n m n+=⎧⎨=-⎩,∴m=-1,n=-2.故选A.【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.9.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.10【答案】A【解析】【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值.【详解】解:根据勾股定理可得a2+b2=9,四个直角三角形的面积是:12ab×4=9﹣1=8,即:ab=4.故选A.考点:勾股定理.10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a += 【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.13.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.14.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】 此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B .【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.16.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】解:∵112x y+= ∴2x y xy+= ∴2x y xy +=∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.17.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.18.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.20.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2 【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.。
代数式一、选择题1.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2016个这样的三角形镶嵌而成的四边形的周长是()A.2018 B.2019 C.2017 D.20162.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)3.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=144二、填空题4.一组按规律排列的式子:.(ab≠0),其中第7个式子是,第n个式子是(n为正整数).5.搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要根钢管.6.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.7.把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有个边长是1的正六边形.8.一盒铅笔12支,n盒铅笔共有支.9.观察下列等式:1、32﹣12=4×2;2、42﹣22=4×3;3、52﹣32=4×4;4、()2﹣()2=()×();…则第4个等式为,第n个等式为.(n是正整数)10.观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为.表一:0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 ………………表二:1114a表三:11 1317 b11.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.12.已知21=2,22=4,23=8,24=16,25=32,…,观察上面规律,试猜22008的末位数是.13.用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)14.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有个★.15.下列给出的一串数:2,5,10,17,26,□,50.仔细观察后回答:缺少的数是.16.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.17.观察右表,依据表格数据排列的规律,数2008在表格中出现的次数共有次.1 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 ………………三、解答题18.先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.代数式参考答案与试题解析一、选择题1.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2016个这样的三角形镶嵌而成的四边形的周长是()A.2018 B.2019 C.2017 D.2016【考点】平面镶嵌(密铺).【专题】压轴题;规律型.【分析】根据图象显示的规律找到,1个三角形,2个三角形,3个三角形组成的周长,得到规律为第n个三角形的周长为3+(n﹣1),所以可求得2016个这样的三角形镶嵌而成的四边形的周长.【解答】解:由图中可知:1个三角形组成的图形的周长是3;2个三角形组成的图形的周长是3+1=4;3个三角形组成的图形的周长是3+2=5;…那么2016个这样的三角形镶嵌而成的四边形的周长是3+2015=2018.故选A.【点评】本题需注意要以第一图为基数来找规律.2.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)【考点】平行四边形的性质.【专题】压轴题;规律型.【分析】从图中这三个图形中找出规律,可以先找出这三个图形中平行四边形的个数,分析三个数字之间的关系.从而求出第n个图中平行四边形的个数.【解答】解:从图中我们发现(1)中有6个平行四边形,6=1×6,(2)中有18个平行四边形,18=(1+2)×6,(3)中有36个平行四边形,36=(1+2+3)×6,∴第n个中有3n(n+1)个平行四边形.故选B.【点评】本题为找规律题,从前三个图形各自找出有多少个平行四边形,从中观察出规律,然后写出与n有关的代数式来表示第n个中的平行四边形的数目.3.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=144【考点】由实际问题抽象出二元一次方程组.【专题】几何图形问题;压轴题.【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.【解答】解:A、根据大正方形的面积求得该正方形的边长是12,则x+y=12,故A选项正确;B、根据小正方形的面积可以求得该正方形的边长是2,则x﹣y=2,故B选项正确;C、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即4xy=144﹣4=140,xy=35,故C选项正确;D、(x+y)2=x2+y2+2xy=144,故D选项错误.故选:D.【点评】此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.二、填空题4.一组按规律排列的式子:.(ab≠0),其中第7个式子是﹣,第n个式子是(﹣1)n(n为正整数).【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】观察给出的一列数,发现这一列数的分母a的指数分别是1、2、3、4…,与这列数的项数相同,故第7个式子的分母是a7,第n个式子的分母是a n;这一列数的分子b的指数分别是2、5、8、11,…即第一个数是3×1﹣1=2,第二个数是3×2﹣1=5,第三个数是3×3﹣1=8,第四个数是3×4﹣1=11,…每个数都比项数的3倍少1,故第7个式子的分子是b3×7﹣1=b20,第n个式子的分子是b3n﹣1;特别要注意的是这列数字每一项的符号,它们的规律是奇数项为负,偶数项为正,故第7个式子的符号为负,第n个式子的符号为(﹣1)n.【解答】解:第7个式子是﹣,第n个式子是(﹣1)n.故答案为:﹣,(﹣1)n.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.对于本题而言难点就是变化的部分太多,有三处发生变化:分子、分母、分式的符号.学生很容易发现各部分的变化规律,但是如何用一个统一的式子表示出分式的符号的变化规律是难点中的难点.5.搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要83 根钢管.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】根据题意分析可得:搭建如图①的单顶帐篷需要17根钢管,从串第2顶帐篷开始,每多串一顶帐篷需多用11根钢管.【解答】解:第一顶帐篷用钢管数为17根;串二顶帐篷用钢管数为17+11×1=28根;串三顶帐篷用钢管数为17+11×2=39根;以此类推,串七顶帐篷用钢管数为17+11×6=83根.故答案为:83.【点评】本题考查图形中的计数规律,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.6.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.【考点】规律型:数字的变化类;倒数.【专题】压轴题;规律型.【分析】理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可.【解答】解:根据差倒数定义可得: ==, =4,.显然每三个循环一次,又2009÷3=669余2,故a2009和a2的值相等.【点评】此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律.7.把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有15 个边长是1的正六边形.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】分割含有边长是1的正六边形,其实你可以看个底部,要数六边形,可以看出三角形的三个顶点小三角形是不包含在内的,一开始你可以忽略它们,而底部每个小三角形都由一个正六边形所独有的底三角形,当大的正三角形边长为N时,所以底部有六边形有N﹣2个,上一层的两个顶点小三角形又可以忽略,而第二层有小三角形N﹣1个,所以第二层有六边形有N﹣1﹣2个,即N﹣3个,如此类推,再上几层就是N﹣4,N﹣5,N﹣6个,一直到从上数下第三层,再上一层的三角形已经不能再当六边形的底了,所以到此为止,所以共有的六边形是N﹣2+N﹣3+N﹣4+…+2+1=[(1+N﹣2)(N﹣2)]÷2=.【解答】解:故当N=7时, =15个.【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.8.一盒铅笔12支,n盒铅笔共有12n 支.【考点】列代数式.【专题】应用题.【分析】本题考查列代数式,要注意文字中的数学关系,一盒12支,n盒则共有12n支.【解答】解:12•n=12n.【点评】本题考查列代数式,要明确一盒12支与n盒的关系.解决问题的关键是读懂题意,找到所求的量的等量关系.9.观察下列等式:1、32﹣12=4×2;2、42﹣22=4×3;3、52﹣32=4×4;4、()2﹣()2=()×();…则第4个等式为62﹣42=4×5 ,第n个等式为(n+2)2﹣n2=4×(n+1).(n是正整数)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】观察几个式子可得①32﹣12=4×2可化为:(1+2)2﹣12=4×(1+1);②42﹣22=4×3可化为(2+2)2﹣22=4×(2+1);故第4个等式为62﹣42=4×5;第n个等式为(n+2)2﹣n2=4×(n+1).【解答】解:62﹣42=4×5,(n+2)2﹣n2=4×(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.10.观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为37 .表一:0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 ………………表二:1114a表三:11 1317 b【考点】规律型:图形的变化类.【专题】压轴题;图表型.【分析】每一竖行相隔的数是相同的,每相邻两个横行之间相隔的数也相隔1.【解答】解:表二从竖行看,下边的数应比上面的数大3,∴a=14+3=17.表三从竖行看,下边的数比上边的数大6,那么后面那行下边的数就该比上边的数大7.∴b=13+7=20∴a+b的值为37.【点评】关键是通过归纳与总结,得到其中的规律.11.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是(6,5).【考点】坐标确定位置.【专题】压轴题;规律型.【分析】寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.【解答】解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案为:(6,5).【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.12.已知21=2,22=4,23=8,24=16,25=32,…,观察上面规律,试猜22008的末位数是 6 .【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】由题中可以看出,以2为底的幂的末位数字是2,4,8,6顺次循环.那么2008÷4=502,则22008的末位数是应是循环的最后一个6.【解答】解:∵以2为底的幂的末位数字是2,4,8,6顺次循环,且2008÷4=502,∴22008的末位数是应是循环的最后一个6.【点评】解决本题的关键是得到以2为底的幂的末位数字的循环规律.13.用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子3n+1 枚.(用含n的代数式表示)【考点】规律型:图形的变化类.【专题】规律型.【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解答】解:第一个图需棋子4;第二个图需棋子4+3=7;第三个图需棋子4+3+3=10;…第n个图需棋子4+3(n﹣1)=3n+1枚.故答案为:3n+1.【点评】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.14.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有60个★.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】排列组成的图形都是三角形.第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第20个图形共有20×3=60个★.【解答】解:根据规律可知第n个图形有3n个★,所以第20个图形共有20×3=60个★.【点评】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n个图形有3n个★.15.下列给出的一串数:2,5,10,17,26,□,50.仔细观察后回答:缺少的数是37 .【考点】规律型:数字的变化类.【专题】规律型.【分析】第一个数是12+1=2;第二个数是22+1=2;缺少的是第6个数应为62+1=37.【解答】解:缺少的是第6个数应为62+1=37.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到数列中的数和相应的数的平方之间的关系.16.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.【考点】坐标确定位置.【专题】压轴题;规律型.【分析】观察图表寻找规律:是第几行就有几个分数;每行每个分数的分子都是1;每行第一个分数的分母为行号,如第n行为,第二个的分母为;每行首尾对称.据此规律解答.【解答】解:观察图表可知以下规律:是第几行就有几个分数;每行每个分数的分子都是1;每行第一个分数的分母为行号,如第n行为,第二个的分母为;每行首尾对称.故(9,2)表示第9行,从左到右第2个数,即=.故答案填:.【点评】考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.17.观察右表,依据表格数据排列的规律,数2008在表格中出现的次数共有8 次.1 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 ………………【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析可得:第一行分别为1的1,2,3,…的倍数;第二行分别为2的1,2,3,…的倍数;第三行分别为3的1,2,3,…的倍数;…;2008=1×2×2×2×251;故2008在表格中出现的次数共有8次.【解答】解:2008=1×2×2×2×251,故2008在表格中出现的次数共有8次.【点评】本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.三、解答题18.先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】通过观察数据找到规律,并以规律解题即可.【解答】解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出分式的符号的变化规律是此类题目中的难点.。
(易错题精选)初中数学代数式经典测试题附答案一、选择题1.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500【答案】A【解析】【分析】 用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.4.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.5.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .0(51)1=D .61200 = 6.12×10 4【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.6.下列运算正确的是( )A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A ,2m 2+m 2=3m 2,故此选项错误;选项B ,(mn 2)2=m 2n 4,故此选项错误;选项C ,2m •4m 2=8m 3,故此选项错误;选项D ,m 5÷m 3=m 2,正确.故选D .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.7.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.8.如图,两个连接在一起的菱形的边长都是1cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A .点FB .点EC .点AD .点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A 共爬行了8cm (称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm ,所以它停的位置是F 点.详解:一只电子甲虫从点A 开始按ABCDAEFGAB …的顺序沿菱形的边循环爬行,从出发到第1次回到点A 共爬行了8cm ,而2014÷8=251……6,所以当电子甲虫爬行2014cm 时停下,它停的位置是F 点.故选A .点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A【解析】【分析】 分别计算出两个图形中阴影部分的面积即可.图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ),由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2,故选:A .【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.13.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.14.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.15.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.16.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B .【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.18.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】 根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.19.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.20.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.。
初中数学代数式与方程练习题及参考答案以下是初中数学代数式与方程练习题及参考答案的内容:代数式部分:1. 求以下代数式的值:a) 2x + 3y,当x = 5,y = 4时解:2x + 3y = 2(5) + 3(4) = 10 + 12 = 22b) x²– 4x,当x = 3时解:x²– 4x = 3²– 4(3) = 9 – 12 = -32. 合并化简以下代数式:a) x² + 3x – 5 + 2x²– 4x + 7解:x² + 3x – 5 + 2x²– 4x + 7 = 3x²– x + 2b) 2a²b – ab² + 3a²b – 2ab²– a²b + 5ab²解:2a²b – ab² + 3a²b – 2ab²– a²b + 5ab² = 4a²b + 2ab²3. 展开以下代数式:a) (x + 3)(x – 4)解:(x + 3)(x – 4) = x²– x – 12b) (2a – 5)(a + 2)解:(2a – 5)(a + 2) = 2a²– a – 104. 化简以下代数式:a) 6x²y ÷ 3xy解:6x²y ÷ 3xy = 2xb) (4a²b³)²解:(4a²b³)² = 16a^4b^6方程部分:1. 解以下方程:a) 3x – 4 = 7解:3x – 4 = 7,加4得3x = 11,除以3得x = 11÷3b) 2(x – 5) = 12解:2(x – 5) = 12,去括号得2x – 10 = 12,加10得2x = 22,除以2得x = 112. 解以下方程组:a) y = 2x + 13x – 2y = 8解:将第一个方程中的y代入第二个方程,得到3x –2(2x + 1) = 8,化简得x = 5,将x代入第一个方程中得到y = 11b) 2x + y = 54x – y = 1解:将第一个方程中的y代入第二个方程,得到4x – (5 – 2x) = 1,化简得x = 2,将x代入第一个方程中得到y = 1答案部分:代数式:1. a) 22 b) -32. a) 3x²– x + 2 b) 4a²b + 2ab²3. a) x²– x – 12 b) 2a²– a – 104. a) 2x b) 16a^4b^6方程式:1. a) x = 11÷3 b) x = 112. a) x = 5,y = 11 b) x = 2,y = 1总结:初中数学代数式与方程是数学学科的重要组成部分。
初中数学代数式基础测试题附答案解析(1)一、选择题1.通过计算大正方形的面积,可以验证的公式是( )A .B .C .D .【答案】C【解析】【分析】 根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac ,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.2.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.6.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.7.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -=D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A .B .C .D .无法确定 【答案】A【解析】【分析】 利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】 =(AB-a )·a+(CD-b )(AD-a )=(AB-a )·a+(AD-a )(AB-b )=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a ) ∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b )=(AB-a )(AD-a-b)∵AD <a+b , ∴-<0, 故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.11.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2 =(1.25×45)2012×(45)2 =1625. 故选B .【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.12.如图,两个连接在一起的菱形的边长都是1cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.13.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.14.下列计算正确的是( )A .2x 2•2xy =4x 3y 4B .3x 2y ﹣5xy 2=﹣2x 2yC .x ﹣1÷x ﹣2=x ﹣1D .(﹣3a ﹣2)(﹣3a +2)=9a 2﹣4【答案】D【解析】A 选项:2x 2·2xy =4x 3y ,故是错误的;B 选项:3x 2y 和5xy 2不是同类项,不可直接相加减,故是错误的;C.选项:x -1÷x -2=x ,故是错误的;D 选项:(-3a -2)(-3a +2)=9a 2-4,计算正确,故是正确的.故选D.15.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .16.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.17.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.18.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .19.按如图所示的运算程序,能使输出y 的值为1的是( )A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.20.观察下列图形:()它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为() A.20B.21C.22D.23【答案】C【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.【详解】解:设第n个图形共有a n(n为正整数)个五角星,∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,∴a n=3n+1(n为正整数),∴a7=3×7+1=22.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.。
人教版初中数学代数式基础测试题附答案解析一、选择题1.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m =12×14−10=158.故选C.2.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x =【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.4.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.5.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.6.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .7.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.9.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n+1-2.10.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是() A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.11.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6 B.4 C.6 或4 D.-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.12.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(-10%)(+15%)万元B.(1-10%)(1+15%)万元C.(-10%+15%)万元D.(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a万元,用a把4月份的产值表示出来a(1-10%),从而得出5月份产值列出式子a1-10%)(1+15%).故选B.13.图为“L”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是()A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.14.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( )A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡【答案】C【解析】【分析】设一年内在该健身俱乐部健身x 次,分别用含x 的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x 次,由题意可知:50≤x≤60则购买A 类会员年卡,需要消费(1500+100x )元;购买B 类会员年卡,需要消费(3000+60x )元;购买C 类会员年卡,需要消费(4000+40x )元;不购买会员卡年卡,需要消费180x 元;当x=50时,购买A 类会员年卡,需要消费1500+100×50=6500元;购买B 类会员年卡,需要消费3000+60×50=6000元;购买C 类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A 类会员年卡,需要消费1500+100×60=7500元;购买B 类会员年卡,需要消费3000+60×60=6600元;购买C 类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C 类会员年卡故选C .【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.15.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.16.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.17.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.18.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.19.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy ===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.20.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.。