单因素方差分析教材
- 格式:ppt
- 大小:883.50 KB
- 文档页数:42
第十三章单因素设计方差分析方差分析是由英国统计学家Ronald Fisher 研究出来的,并以他的名字命名的方法,称为F检验。
它可以解决单因素和多因素实验设计结果的数据处理问题。
早期的心理学实验是严格的实验室控制实验。
在实验中只允许研究者感兴趣的一种变量作为自变量,希望观察到自变量引起的因变量的变化。
自变量也称为因素(factor),在实验中只安排一个自变量的实验叫做单因素实验。
经典心理学实验通常是单因素实验。
单因素的实验可以较明确的观察到自变量与因变量之间的因果关系,较适用于研究比较单纯的心理现象,但往往无法说明复杂的心理现象。
现代的实验设计将一些额外变量引入实验成为实验中新的因素,以期实验的结果更贴近真实的情景,从而发展了多因素的实验设计。
统计中用符号表示实验设计时,常用大写的英文字母表示因素,如因素A、因素B、因素C等;用S表示被试(subject)。
把S写在表示因素符号的后边、前面或中间,则表示不同的实验设计,例如:单因素被试间设计AS、单因素被试内设计SA、多因素被试间设计ABS、多因素被试内设计SAB、混合设计ASB。
第一节t检验与I类错误当两个总体没有差异,而统计推论的结论说有差异,就犯了I类错误;当两个总体存在差异,而统计推论的结论说没有差异,就犯了II类错误。
通常,I类错误的发生概率用α表示,II类错误发生的概率用β表示。
当采用多个两两t检验时,发生I类错误的概率就会增大。
I类错误的计算公式如下:I类错误发生的概率=1-(1-α)C(13.1)所以当要比较3个或3个以上的总体平均数两两检验时,应采用方差分析(analysis of variance)的方法。
一个显著的F值表示,在所比较的总体平均数里至少有两个总体平均数存在着显著差异。
第二节方差分析的原理方差(V ariance)有时也称为变异数(V ariation),是表示一组数据离散程度的统计量。
方差的总体参数用符号σ2表示;方差的样本统计量用符号S2表示。
第二节单因素试验资料的方差分析在方差分析中,根据所研究试验因素的多少,可分为单因素、两因素和多因素试验资料的方差分析。
单因素试验资料的方差分析是其中最简单的一种,目的在于正确判断该试验因素各水平的优劣。
根据各处理内重复数是否相等,单因素方差分析又分为重复数相等和重复数不等两种情况。
上节讨论的是重复数相等的情况。
当重复数不等时,各项平方和与自由度的计算,多重比较中标准误的计算略有不同。
本节各举一例予以说明。
一、各处理重复数相等的方差分析【例6.3】抽测5个不同品种的若干头母猪的窝产仔数,结果见表6-12,试检验不同品种母猪平均窝产仔数的差异是否显著。
表6-12五个不同品种母猪的窝产仔数这是一个单因素试验,k=5,n=5。
现对此试验结果进行方差分析如下:1、计算各项平方和与自由度2、列出方差分析表,进行F检验表6-13不同品种母猪的窝产仔数的方差分析表根据df1=df t=4,df2=df e=20查临界F值得:F0.05(4,20)=2.87,F0.05(4,20)=4.43,因为F>F0.01(4,20),即P<0.01,表明品种间产仔数的差异达到1%显著水平。
3、多重比较采用新复极差法,各处理平均数多重比较表见表6-14。
表6-14不同品种母猪的平均窝产仔数多重比较表(SSR法)-8.2 -9.6因为MS e=3.14,n=5,所以为:根据df e=20,秩次距k=2,3,4,5由附表6查出α=0.05和α=0.01的各临界SSR 值,乘以=0.7925,即得各最小显著极差,所得结果列于表6-15。
表6-15SSR值及LSR值将表6-14中的差数与表6-15中相应的最小显著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数极显著高于2号品种母猪,显著高于4号和1号品种,但与3号品种差异不显著;3号品种母猪的平均窝产仔数极显著高于2号品种,与1号和4号品种差异不显著;1号、4号、2号品种母猪的平均窝产仔数间差异均不显著。
第12章方差分析(Analysis of V ariance)方差分析是鉴别各因素效应的一种有效统计方法,它是通过实验观察某一种或多种因素的变化对实验结果是否带来显著影响,从而选取最优方案的一种统计方法。
在科学实验和生产实践中,影响一件事物的因素往往很多,每一个因素的改变都有可能影响产品产量和质量特征。
有的影响大些,有的影响小些。
为了使生产过程稳定,保证优质高产,就有必要找出对产品质量有显著影响的那些因素及因素所处等级。
方差分析就是处理这类问题,从中找出最佳方案。
方差分析开始于本世纪20年代。
1923年英国统计学家R.A. Fisher 首先提出这个概念,(ANOV A)。
因当时他在Rothamsted农业实验场工作,所以首先把方差分析应用于农业实验上,通过分析提高农作物产量的主要因素。
Fisher1926年在澳大利亚去世。
现在方差分析方法已广泛应用于科学实验,医学,化工,管理学等各个领域,范围广阔。
在方差分析中,把可控制的条件称为“因素”(factor),把因素变化的各个等级称为“水平”或“处理”(treatment)。
若是试验中只有一个可控因素在变化,其它可控因素不变,称之为单因素试验,否则是多因素试验。
下面分别介绍单因素和双因素试验结果的方差分析。
1.1 单因素方差分析(One Way Analysis of Variance)1.一般表达形式2.方差分析的假定前提3.数学模形4.统计假设5.方差分析:(1)总平方和的分解;(2)自由度分解;(3)F检验6.举例7.多重比较1.1.1 一般表达形式首先通过一个例子引出单因素方差分析方法。
某农业科研所新培养了四种水稻品种,分别用A1,A2,A3,A4表示。
每个品种随机选种在四块试验田中,共16块试验田。
除水稻品种之外,尽量保持其它条件相同(如面积,水分,日照,肥量等),收获后计算各试验田中产量如下表:通过这些数据要考察四个不同品种的单位产量,是否有显著性差异。
单因素⽅差分析(one-wayANOVA)单因素⽅差分析(⼀)单因素⽅差分析概念是⽤来研究⼀个控制变量的不同⽔平是否对观测变量产⽣了显著影响。
这⾥,由于仅研究单个因素对观测变量的影响,因此称为单因素⽅差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇⼥的⽣育率,研究学历对⼯资收⼊的影响等。
这些问题都可以通过单因素⽅差分析得到答案。
(⼆)单因素⽅差分析步骤第⼀步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇⼥⽣育率、⼯资收⼊;控制变量分别为施肥量、地区、学历。
第⼆步是剖析观测变量的⽅差。
⽅差分析认为:观测变量值的变动会受控制变量和随机变量两⽅⾯的影响。
据此,单因素⽅差分析将观测变量总的离差平⽅和分解为组间离差平⽅和和组内离差平⽅和两部分,⽤数学形式表述为:SST=SSA+SSE。
第三步是通过⽐较观测变量总离差平⽅和各部分所占的⽐例,推断控制变量是否给观测变量带来了显著影响。
(三)单因素⽅差分析原理总结在观测变量总离差平⽅和中,如果组间离差平⽅和所占⽐例较⼤,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平⽅和所占⽐例⼩,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同⽔平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(四)单因素⽅差分析基本步骤1、提出原假设:H0——⽆差异;H1——有显著差异2、选择检验统计量:⽅差分析采⽤的检验统计量是F统计量,即F值检验。
3、计算检验统计量的观测值和概率P值:该步骤的⽬的就是计算检验统计量的观测值和相应的概率P值。
4、给定显著性⽔平,并作出决策(五)单因素⽅差分析的进⼀步分析在完成上述单因素⽅差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他⼏个重要分析,主要包括⽅差齐性检验、多重⽐较检验。