简单的线性规划教程
- 格式:ppt
- 大小:426.00 KB
- 文档页数:23
课题:7.4 简单的线性规划(一)教材分析:本节课是在学生学习了直线与直线方程的关系,初步了解了二元一次方程的几何意义的基础上,引领学生进一步研究二元一次不等式的几何意义,为后面学习用图解法求二元函数最值问题创造条件.使学生体会数与形的转化过程,逐步加强学生应用几何图形解决代数问题的意识.基于以上分析,在教学中应充分利用多媒体课件向学生展示代数条件与几何图形的对应关系,加强学生对问题的了解,培养学生学习数学的兴趣.教学目标:1.使学生了解二元一次不等式表示平面区域;2. 掌握根据二元一次不等式(组)正确做出平面区域的方法,培养学生作图的能力.3.让学生通过观察、联想,体验数学的作用,培养学生学习数学的兴趣,培养学生勤于思考、勇于探索和团结协作的精神。
教学重点:二元一次不等式表示平面区域.教学难点:1.二元一次不等式表示平面区域;2.根据二元一次不等式(组)正确做出平面区域.教法分析:师生互动,探究、研讨、辨析、总结鉴于高二学生已具有较好的数学基础知识和较强的分析问题、解决问题的能力,本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法.首先设置“问题”情境,激发学生解决问题的欲望;其次提供观察、探索、交流的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识.恰当的利用多媒体课件辅助教学,直观生动地呈现学生思维的形成过程,从而提高教学效率.在教学过程中,注重学生的探索经历和发现新知的体验,使其形成自己对数学知识的理解和有效的学习策略.:二元一次不等式表示平面区域的作图步骤:⑴作出直线;⑵取特殊点;⑶代入表示的平面区域.不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.小结:1.二元一次不等式表示平面区域;2.二元一次不等式(组)表示平面区域的作图方法.作业:1.阅读教材P63-P65;2.习题7.4 1.《简单的线性规划(一)》教案说明“简单的线性规划”是高中《数学》第二册(上)第七章第四节的内容,这是《新大纲》中增加的一个新内容,反映了《新大纲》对数学知识应用的重视.线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.本大节内容实质上是在学习了直线方程的基础上,介绍直线方程的一个简单应用,它虽然只是规划论中极小的一部分,但这部分内容,也能体现数学的工具性、应用性,同时渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,激发学生学习数学的兴趣,应用数学的意识,提高认识问题、分析问题和解决实际问题的能力.《大纲》和教科书在这部分内容之前安排了简易逻辑、平面向量等教学内容,把过去教材中位于这部分内容之后的充要条件移入第一章“集合与简易逻辑”中,客观上使这部分内容有了新的思维角度和处理方法的可能.数学思想是对于数学知识的理性的、本质的、高度抽象和概括的认识,带有普遍的指导意义,蕴涵于运用数学方法分析、处理和解决数学问题的过程之中.数学方法是研究或解决数学问题并使之达到目的的手段、方式、途径或程序.数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深对于具体数学知识的理解和掌握.本节内容重视与之密切相关的数形结合思想和坐标方法的教学.在教学中注意把同一数学对象在数量关系和空间形式这两方面结合起来思考,由形思数,由数思形,互相联想,达到相互转化并使问题得以解决.对于某些数学问题,通过引进坐标系,把问题的条件和结论用点的坐标表示为某些数量关系式,然后用代数方法进行解决.在讨论二元一次不等式表示平面区域时候,应用集合观点来描述直线和被直线划分所得的平面区域,并用集合的语言来表达这些点的集合,比较准确和简明.本节内容是本小节的重点.教科书首先借助于一个具体例子,提出一个有关二元一次不等式表示平面区域的问题和猜想,然后证明这一猜想,并不加证明地给出一般的二元一次不等式表示平面区域的结论,说明怎样确定不等式表示直线0Ax By C ++=的哪儿一侧区域,举例说明怎样用二元一次不等式(组)表示平面区域.依据教材的内容,教学中有两个问题有待解决.一个是如何理解二元一次不等式与平面区域的对应关系,另一个是在第一个问题解决之后如何准确作出二元一次不等式所对应的平面区域.如果直接告诉学生一般的二元一次不等式表示平面区域的结论和作出区域的方法,学生可能也能解决一些用二元一次不等式平面区域的题目,但是很难真正理解数形结合的思想方法,并自觉地将这种思想方法应用于其他的数学知识.普通高中《数学课程标准》指出:在高中数学教学中,教师应鼓励学生积极参与教学活动,包括思维的参与和行为的参与.课堂上,既要有教师的讲授和指导,也要有学生的自主探索与合作交流.教师要创设适当的问题情境,鼓励学生发现数学的规律和问题解决的途径,使他们经历知识形成的过程.创设情境必须紧紧围绕意义建构这一目的.本节课开篇借助北京奥运会开幕式上的一幕作为引入,创设了一个导情引思的情境.平面直角坐标系的建立,将形(点)与数(坐标)联系在一起,为奥运场馆、大脚印与坐标平面内的点的对应关系,为区域内的点与坐标代入代数式的结果的对应,做了很好的铺垫.学生已经学过了直线上的点的坐标都满足二元一次方程,而且以二元一次方程的解为坐标的点都在直线上.在学生得出直线方程后,如何使教材的认知结构(不等关系)和学生的认知(相等关系)构建和谐统一?在教学设计上,我采用以问题为中心,在老师的引导下,通过学生独立思考、讨论、交流等形式,对数学问题进行探究、求解、延伸和发展,通过发现问题、提出问题、解决问题来揭示二元一次不等式与平面区域的关系.对猜想的证明,要从两方面来进行.在直线3460x y -+=左上方区域内的点的坐标都满足3460x y -+<,而且在直线3460x y -+=右下方区域内的点的坐标都满足3460x y -+>.学生在证明的时候,往往会只证明其中的一方面,而忽略对另一方面的证明.只有两方面都得到证明,才能用特殊点来确定平面区域.在实际教学中,处理一些问题时,注意不纠缠于一些细枝末节问题的讨论,重在让学生应用基本的思想方法去解决问题.这样,学生是应用数学思想在思考问题,解决问题,避免了复杂的记忆和一般的讨论.正是基于这样的考虑,教材在给出猜想的证明后,直接给出了一般的二元一次不等式表示平面区域的结论.通过对引入的问题的回顾与反思,其实作出二元一次不等式表示的平面区域的方法步骤,已经很明确了.我们将教材中的例1加以变化后作为练习给出,目的是巩固作平面区域的步骤,区分边界的虚实.本节课的教学设计始终以问题为中心,将学生吸引到教师设置的问题之中,启发学生探讨、辨析,主动地参与探索学习.使学生经历了一个完整的问题提出、解决、发展的过程.通过这节课的教学,不仅仅使学生会用二元一次不等式表示平面区域,更让学生亲眼目睹数学过程形象而生动的特点,亲身体会数学活动的乐趣,培养学生利用已知数学知识解决未知问题的创新意识,理解知识的来龙去脉,领会知识的产生、发展、形成过程,真正体现知识与技能、过程与方法、情感态度与价值观的新课程理念.。
错解剖析得真知(十三)§5.2简单的线性规划一、知识导学1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.三、经典例题导讲[例1].画出不等式组表示的平面区域.错解:如图(1)所示阴影部分即为不等式组表示的平面区域.错因一是实虚线不清,二是部分不等式所表示的平面区域弄错了.正解:如图(2)所示阴影部分即为不等式组表示的平面区域.[例2]已知1x-y2,且2x+y4,求4x-2y的范围.错解:由于1x-y 2 ①,2x+y 4 ②,①+②得32x 6 ③①×(-1)+②得:02y 3 ④.③×2+④×(-1)得. 34x-2y12错因:可行域范围扩大了.正解:线性约束条件是:令z=4x-2y,画出可行域如图所示,由得A点坐标(1.5,0.5)此时z=4×1.5-2×0.5=5.由得B点坐标(3,1)此时z=4×3-2×1=10.54x-2y10[例3]已知,求x2+y2的最值.错解:不等式组表示的平面区域如图所示ABC的内部(包括边界),令z= x2+y2由得A点坐标(4,1),此时z=x2+y2=42+12=17,由得B点坐标(-1,-6),此时z=x2+y2=(-1)2+(-6)2=37,由得C点坐标(-3,2),此时z=x2+y2=(-3)2+22=13,当时x2+y2取得最大值37,当时x2+y2取得最小值13.错因:误将求可行域内的点到原点的距离的平方的最值误认为是求三点A、B、C到原点的距离的平方的最值.正解:不等式组表示的平面区域如图所示ABC的内部(包括边界),令z= x2+y2,则z即为点(x,y)到原点的距离的平方.由得A点坐标(4,1),此时z=x2+y2=42+12=17,由得B点坐标(-1,-6),此时z=x2+y2=(-1)2+(-6)2=37,由得C点坐标(-3,2),此时z=x2+y2=(-3)2+22=13,而在原点处,,此时z=x2+y2=02+02=0,当时x2+y2取得最大值37,当时x2+y2取得最小值0.[例4]某家具厂有方木料90m3,五合板600m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m3,五合板2m2,生产每个书橱需要方木料0.2m3,五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使得利润最大?分析:数据分析列表设生产书桌x张,书橱y张,利润z元,则约束条件为目标函数z=80x+120y作出上可行域:作出一组平行直线2x+3y=t, 此直线经过点A(100,400)时,即合理安排生产,生产书桌100张,书橱400张,有最大利润为z=80×100+400×120=56000(元)max若只生产书桌,得0<x≤300,即最多生产300张书桌,利润为z=80×300=24000(元)若只生产书橱,得0<y≤450,即最多生产450张书橱,利润为z=120×450=54000(元)答:略[例5]某钢材厂要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格小钢板的块数如下表:2,今需要A、B、C三种规格的成品各12、15、27块,请你们为该厂计划一下,应该分别截这两种钢板多少张,可以得到所需的三种规格成品,而且使所用钢板的面积最小?只用第一种钢板行吗?解:设需要截第一种钢板x张,第二种钢板y张,所用钢板面积为z m2,则目标函数z=x+2y作出可行域如图作一组平行直线x+2y=t,由可得交点,但点不是可行域内的整点,其附近的整点(4,8)或(6,7)可都使z有最小值,且zmin =4+2×8=20 或zmin=6+2×7=20若只截第一种钢板,由上可知x≥27,所用钢板面积最少为z=27(m2);若只截第二种钢板,则y≥15,最少需要钢板面积z=2×15=30(m2).它们都比zmin大,因此都不行.答:略[例6]设,式中满足条件,求的最大值和最小值.解:由引例可知:直线与所在直线平行,则由引例的解题过程知,当与所在直线重合时最大,此时满足条件的最优解有无数多个,当经过点时,对应最小,∴,.说明:1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;2.线性目标函数的最值也可在可行域的边界上取得,即满足条件的最优解有无数多个.四、典型习题导练1.画出不等式-+2y-4<0表示的平面区域.2.画出不等式组表示的平面区域3.求z=3x+5y的最大值和最小值,使式中的x、y满足约束条件4.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6000元,运费不超过2000元,那么此工厂每月最多可生产多少千克产品?5.某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?6.(06年高考广东)在约束条件下,当时,目标函数的最大值的变化范围是A.[6,15]B.[7,15]C.[6,8]D.[7,8]§5.3 基本不等式的证明一、知识导学1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法).(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法.(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法.2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B.3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件.4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法.5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法.主要有两种换元形式.(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示.此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题; (2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简.如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元.二、疑难知识导析1.在用商值比较法证明不等式时,要注意分母的正、负号,以确定不等号的方向.2.分析法与综合法是对立统一的两个方面,前者执果索因,利于思考,因为它方向明确,思路自然,易于掌握;后者是由因导果,宜于表述,因为它条理清晰,形式简洁,适合人们的思维习惯.但是,用分析法探求证明不等式,只是一种重要的探求方式,而不是一种好的书写形式,因为它叙述较繁,如果把“只需证明”等字眼不写,就成了错误.而用综合法书写的形式,它掩盖了分析、探索的过程.因而证明不等式时,分析法、综合法常常是不能分离的.如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程,以适应人们习惯的思维规律.还有的不等式证明难度较大,需一边分析,一边综合,实现两头往中间靠以达到证题的目的.这充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系.分析的终点是综合的起点,综合的终点又成为进一步分析的起点.3.分析法证明过程中的每一步不一定“步步可逆”,也没有必要要求“步步可逆”,因为这时仅需寻找充分条件,而不是充要条件.如果非要“步步可逆”,则限制了分析法解决问题的范围,使得分析法只能使用于证明等价命题了.用分析法证明问题时,一定要恰当地用好“要证”、“只需证”、“即证”、“也即证”等词语.4.反证法证明不等式时,必须要将命题结论的反面的各种情形一一加以导出矛盾.5.在三角换元中,由于已知条件的限制作用,可能对引入的角有一定的限制,应引起高度重视,否则可能会出现错误的结果.这是换元法的重点,也是难点,且要注意整体思想的应用.三、经典例题导讲[例1] 已知a>b(ab),比较与的大小.错解: a>b(ab),<.错因:简单的认为大数的倒数必定小,小数的倒数必定大.正确的结论是:当两数同号时,大数的倒数必定小,小数的倒数必定大.正解:,又 a>b(ab),(1)当a、b同号时,即a>b>0或b<a<0时,则ab>0,b-a<0, ,<.(2)当a、b异号时,则a>0,b<0, >0,<0>.[例2]当a、b为两个不相等的正实数时,下列各式中最小的是()A. B. C. D.错解:所以选B.错因是由于在、、中很容易确定最小,所以易误选B.而事实上三者中最小者,并不一定是四者中最小者,要得到正确的结论,就需要全面比较,不可遗漏与前三者的大小比较.正解:由均值不等式及a2+b22ab,可知选项A、B、C中,最小,而=,由当a b时,a+b>2,两端同乘以,可得(a+b)·>2ab,<,因此选D.[例3]已知:a>0 , b>0 , a+b=1,求(a+ )2+(b+ )2的最小值.错解: (a+)2+(b+)2=a2+b2+++4≥2ab++4≥4+4=8,∴(a+)2+(b+)2的最小值是8.错因:上面的解答中,两次用到了基本不等式a2+b2≥2ab,第一次等号成立的条件是a=b=,第二次等号成立的条件是ab=,显然,这两个条件是不能同时成立的.因此,8不是最小值.正解:原式= a2+b2+++4=( a2+b2)+(+)+4=[(a+b)2-2ab]+[(+)2-]+4 = (1-2ab)(1+)+4,由ab≤()2=得:1-2ab≥1-=, 且≥16,1+≥17,∴原式≥×17+4= (当且仅当a=b=时,等号成立),∴(a + )2 + (b + )2的最小值是.[例4]已知0 < x < 1, 0 < a < 1,试比较的大小.解法一:∵0 < 1 x2 < 1, ∴∴解法二:∵0 < 1 -x2 < 1, 1 + x > 1, ∴∴∴解法三:∵0 < x < 1, ∴0 < 1 -x < 1, 1 < 1 + x < 2,∴∴左-右 =∵0 < 1 -x2 < 1, 且0 < a < 1 ∴∴[例5]已知x2 = a2 + b2,y2 = c2 + d2,且所有字母均为正,求证:xy≥ac + bd 证:证法一(分析法)∵a, b, c, d, x, y都是正数∴要证:xy≥ac + bd只需证:(xy)2≥(ac + bd)2即:(a2 + b2)(c2 + d2)≥a2c2 + b2d2 + 2abcd展开得:a2c2 + b2d2 + a2d2 + b2c2≥a2c2 + b2d2 + 2abcd即:a2d2 + b2c2≥2abcd由基本不等式,显然成立∴xy≥ac + bd证法二(综合法)xy =≥证法三(三角代换法)∵x2 = a2 + b2,∴不妨设a = x sinα, b = x cosαy2 = c2 + d2 c = y sinβ, d = y cosβ∴ac + bd = xy sinαsinβ + xy cosαcosβ = xy cos(α-β)≤xy[例6]已知x > 0,求证:证:构造函数则,设2≤α<β由显然∵2≤α<β∴α-β > 0, αβ- 1 > 0, αβ > 0 ∴上式 > 0∴f (x)在上单调递增,∴左边四、典型习题导练1.比较(a+3)(a-5)与(a+2)(a-4)的大小.2.已知a,b,c,d都是正数,求证:3.已知x > 0 , y > 0,2x + y = 1,求证:4.若,求证:5.若x > 1,y > 1,求证:6.证明:若a > 0,则。