matlab中图像小波变换的应用实例
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
Matlab中的小波变换与小波包分析方法详解引言近年来,小波变换在信号处理领域中得到了广泛的应用。
小波变换是一种能够捕捉信号时频特性的有效工具,可以用来分析、压缩和去噪各种类型的信号。
本文将详细介绍Matlab中的小波变换和小波包分析方法,以帮助读者更好地理解和应用这一强大的信号处理技术。
一、小波变换(Wavelet Transform)小波变换是一种将信号分解成不同尺度的基函数的技术。
与传统的傅里叶变换相比,小波变换具有更好的时频局部化特性。
Matlab中提供了丰富的小波分析工具箱,可以方便地进行小波变换的计算。
1.1 小波基函数小波基函数是小波变换的基础。
不同类型的小波基函数适用于不同类型的信号。
在Matlab中,我们可以使用多种小波基函数,如Daubechies小波、Haar小波和Morlet小波等。
1.2 小波分解小波分解是指将信号分解成多个尺度的小波系数。
通过小波分解,我们可以获取信号在不同尺度上的时频特性。
Matlab中提供了方便的小波分解函数,例如'dwt'和'wavedec'。
1.3 小波重构小波重构是指根据小波系数重新构建原始信号。
通过小波重构,我们可以恢复原始信号的时域特性。
在Matlab中,可以使用'idwt'和'waverec'函数进行小波重构。
二、小波包分析(Wavelet Packet Analysis)小波包分析是对小波变换的进一步扩展,它允许对信号进行更精细的分解和重构。
小波包分析提供了一种更灵活的信号分析方法,能够获得更详细的时频特性。
2.1 小波包分解小波包分解是指将信号分解成具有不同频带的小波包系数。
与小波分解相比,小波包分解提供了更高的分辨率和更详细的频谱信息。
在Matlab中,可以使用'wavedec'函数进行小波包分解。
2.2 小波包重构小波包重构是根据小波包系数重新构建原始信号。
Matlab中的小波变换技术详解1. 引言小波变换是一种数学工具,可将任意信号分解成不同尺度和频率成分。
它在信号处理、图像压缩等领域得到广泛应用。
Matlab作为一种功能强大的数值计算和数据可视化软件,提供了丰富的小波变换函数和工具箱。
本文将详细介绍Matlab中小波变换的原理、应用和实现方法。
2. 小波变换原理小波变换利用小波函数的一组基来表示信号。
小波函数是一种局部振荡函数,具有时域和频域局部化的特性。
通过将信号与小波函数进行内积运算,可以得到不同尺度和频率的小波系数,从而揭示信号的局部特征。
小波变换具有多分辨率分析的优势,能够在时间和频率上同时提供较好的分析结果。
3. 小波变换函数在Matlab中,可以使用wavelet工具箱提供的函数来进行小波变换。
最常用的函数是cwt,用于连续小波变换。
通过设置小波函数、尺度范围和采样频率等参数,可以得到连续小波系数矩阵。
另外,还有其他函数如dwt、idwt用于离散小波变换和反离散小波变换。
4. 小波函数小波变换的关键在于选择合适的小波函数。
常用的小波函数有多种,如哈尔、Daubechies、Symlets等。
这些小波函数在时域和频域上都有不同的特性,适用于不同类型的信号。
Matlab提供了丰富的小波函数库,可以根据需要选择合适的小波基函数。
5. 小波分析与信号处理小波变换在信号处理中有广泛的应用。
它可以用于信号去噪、特征提取、边缘检测等方面。
通过对小波系数进行阈值去噪,可以有效地去除信号中的噪声。
小波变换还能够提取信号的局部特征,捕捉信号的边缘信息。
此外,小波变换还可以用于图像压缩、图像分割等领域。
6. Matlab中的小波分析实例为了更好地理解Matlab中小波变换的应用,下面将给出一个实例。
假设我们有一个包含某种周期性成分和噪声的信号,我们希望通过小波变换将其分解成不同尺度的成分,并去除噪声。
首先,我们使用Matlab中的cwt函数对信号进行连续小波变换,并得到小波系数矩阵。
小波变换是一种在信号和图像处理中广泛应用的工具。
在Matlab 中,你可以使用内置的函数来进行小波变换。
以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。
接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。
最后,我们使用`wave2gray`函数显示小波分解的结果。
这只是使用Matlab进行小波变换的一个基本示例。
实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。
同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。
1 绪论1.1概述小波分析是近15年来发展起来的一种新的时频分析方法。
其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。
而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。
从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。
这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。
在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。
但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。
其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。
换言之,短时傅立叶分析只能在一个分辨率上进行。
所以对很多应用来说不够精确,存在很大的缺陷。
而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。
因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。
1、选择'(t)或,使心(t-k)J∙k z为一组正交归一基2、求h n。
h n *W(t)]或H( Jh?(2 •)/ ?( •)3、由h n求g n。
gn - ( -I) h1 Jn或G( J=e^1H (仁)4、由g n, ;:(t)构成正交小波基函数(t)⑴八g n ln(t)或?^ J=GC ■ /2)?C ■ /2)Haar小波的构造1)、选择尺度函数。
⑴=1 O *1 C)O 其他易知「(t - n)关于n为一正交归一基2)、求h nh n In(t);=2. - (t)(2t-n)dt其中n n 1壬F= 1 20 其他当n=0时,——Icp(2t)=[0 当n=1时,1 C -t2其他e J σj +26"S J U 6 N H e ^。
≡G怪A寸 超M O一L HU L ^二—7τdL I τu 6 0"u ⅛二甘 LHU≡ 超M 010!—’」丄U —&¥(?⅛H 0IHUP H (U l10)¾(I)Cb 匸∙f⅛LHU O H U ≡疼超M 0________CXI H — &) Cb其图形如下:1、Haar尺度函数Haar尺度函数空间:C , (2 jχ 2), (2 j X -1), (2j x), (2 jχ -1), :(2j x-1), ? J 为非负的整数,该空间又称为J级阶梯函数空间V i。
则V O 二V1二V2二=V jJ=V j= V j 1 随j的增加,分辨更为精细。
2、性质函数集、2j/2「(2j X - k): k Z ?是V j的一个标准正交基。
f(x) V0当且仅当f(2j x) V j。
3、Haar小波函数函数满足两点:(1)••是V1的成员;(2)••与V0正交。
(X)V(2x) _ (2x -1)-bo性质:j(,(x)dx=0(x)是对称的、局部支撑的函数;小波函数空间Wj : V a k (2j x-k),a k RkZW j是V j的正交互补,即V jT=V j二W j函数集、2j/2 "2j x-k):k・Zi是W i的一个标准正交基4、Haar小波分解与重建对Haar 小波,有(2j x^( (2j^xp :(2j4x))/2 (2jχ-1) = ( Q j"1 x) - ’(2j*x)) / 2Haar 小波分解定理: 设:f j (χ)=∖a k (2j x-k),f j (x) := V j k 目则它可以有如下分解:f j = f j 1 ' ' 'j Jfj 」八 a k(2 X -k), f jI (X^ V j JkNCe j 丄=Σ b k^(2j」x — k )Q j 」(X)EW j 二 k 目_ a 2k ' a 2k 1_ 2a 2k - a2k 12把函数f 分解成一个小波空间与一个尺度空间的分量f(x)=^2 (4x) 2 (4x _1) (4x _2) _ (4x _3)解:按照分解定理,此j=2, ; k=0,1,2,3对应的系数是2,2,1, -1 ;代入公式,得出分解后尺度2-2 C 0,2f(x) =2 (2x)'(2x -1)a k 」2+2 1 _1函数空间元素的系数是〒二2 w 0 ;分解后小波函数空间元素的系数是Matlab 程序image1=imread('512.jpg');image1=rgb2gray(image1); subplot(2,2,1);imshow(image1); title('original image');image1=double(image1); imagew=imread('shuiyin.bmp'); imagew= rgb2gray (imagew); subplot(2,2,2);imshow(imagew); title('original watermark');[ca,ch,cv,cd]=dwt2(image1,'db1');[ca1,ch1,cv1,cd1]=dwt2(ca, 'db1');[cas,chs,cvs,cds]=dwt2(ca1,'db1');M=512;N=64;for i=1:Nfor j=1:N Ca(i,j)=cas(i,j)+0.01*imagew(i,j); end;end;IM=idwt2(Ca,chs,cvs,cds,'db1'); IM1=idwt2(IM,ch1,cv1,cd1, 'db1'); markedimage=double(idwt2(IM1,ch,cv,cd,'db1')); subplot(2,2,3);colormap(gray(256)); image(markedimage); title('marked image');imwrite(markedimage,gray(256),'watermarked.bmp','bmp'); image1=imread('512.jpg');image1=rgb2gray(image1); image1=double(image1); imaged=imread('watermarked.bmp');[ca,ch,cv,cd]=dwt2(image1,'db1');[ca1,ch1,cv1,cd1]=dwt2(ca,'db1');[cas,chs,cvs,cds]=dwt2(ca1,'db1');[caa,chh,cvv,cdd]=dwt2(imaged,'db1');[caa1,chh1,cvv1,cdd1]=dwt2(caa,'db1');[caas,chhs,cvvs,cdds]=dwt2(caa1,'db1');for p=1:Nfor q=1:NW(p,q)=100*(caas(p,q)-cas(p,q));end; subplot(2,2,4); colormap(gray(256)); image(W);title(' 从含水印图像中提取的水印');imwrite(W,gray(256),'watermark.bmp','bmp');。
完整版)小波变换图像去噪MATLAB实现本论文旨在研究数字图像的滤波去噪问题,以提高图像质量。
数字图像处理(Digital Image Processing。
DIP)是指用计算机辅助技术对图像信号进行处理的过程。
DIP技术在医疗、艺术、军事、航天等图像处理领域都有着十分广泛的应用。
然而,图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。
如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。
因此,通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。
小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。
小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数Ψ(x)来构造,Ψ(x)称为母小波,或者叫做基本小波。
一组小波基函数,{Ψa,b(x)},可以通过缩放和平移基本小波来生成。
当a=2j和b=ia的情况下,一维小波基函数序列定义为Ψi,j(x)=2-j2Ψ2-jx-1.函数f(x)以小波Ψ(x)为基的连续小波变换定义为函数f(x)和Ψa,b(x)的内积。
在频域上有Ψa,b(x)=ae-jωΨ(aω)。
因此,本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。
当绝对值|a|减小时,小波函数在时域的宽度会减小,但在频域的宽度会增大,同时窗口中心会向|ω|增大的方向移动。
这说明连续小波的局部变化是不同的,高频时分辨率高,低频时分辨率低,这是小波变换相对于___变换的优势之一。
总的来说,小波变换具有更好的时频窗口特性。
噪声是指妨碍人或相关传感器理解或分析图像信息的各种因素。
噪声通常是不可预测的随机信号。
由于噪声在图像输入、采集、处理和输出的各个环节中都会影响,特别是在输入和采集中,噪声会影响整个图像处理过程,因此抑制噪声已成为图像处理中非常重要的一步。
MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname’)[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname’)使用指定的小波基函数’wname’ 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D)使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解.(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,’wname’)X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname’) 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X .’wname'为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R)用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,’wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L)指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能——————----—--——--———--—-—-----————-——————-—--—---——dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换—-—-—--——-—-——-—-—---—-—-——-—————------——-—----—-————---——-(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为’mat’),即:别可以实现一维、二维和N 维 DFTOPT='row’ ,按行编码OPT=’col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为’1’),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname’)[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname’)使用指定的小波基函数 'wname'对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
在MATLAB中,Morlet小波变换可以通过使用内置的cwt函数来实现。
cwt函数用于执行连续小波变换,它支持多种小波类型,包括Morlet小波。
以下是一个示例代码,演示如何在MATLAB中执行Morlet小波变换:
matlab复制代码
% 创建一个信号
x = sin(2 * pi * 10 * (0:0.01:1)) + randn(size(0:0.01:1));
% 定义Morlet小波的参数
scales = logspace(-1, 2, 128); % 尺度范围
waveletName = 'morl'; % 小波名称
% 执行Morlet小波变换
[cwtmatr, freqs] = cwt(x, scales, waveletName);
% 绘制结果
imagesc(freqs, 1:length(x), abs(cwtmatr));
colormap(jet);
xlabel('Frequency (Hz)');
ylabel('Time (s)');
title('Morlet Wavelet Transform');
在上述示例中,首先创建了一个包含噪声的正弦波信号。
然后,定义了Morlet小波的参数,包括尺度范围和小波名称。
接下来,使用cwt函数执行Morlet小波变换,并将结果存储在cwtmatr和freqs变量中。
最后,使用imagesc函数绘制了变换结果的图像。
请注意,cwt函数的参数可以根据需要进行调整,例如可以更改尺度范围、小波类型等。
matlab中图像小波变换的应用实例如下:
1 一维小波变换的Matlab 实现
(1) dwt 函数
功能:一维离散小波变换
格式:[cA,cD]=dwt(X,'wname')
[cA,cD]=dwt(X,Lo_D,Hi_D)
说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数'wname' 对信号X 进行分解,cA、cD
分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数
功能:一维离散小波反变换
格式:X=idwt(cA,cD,'wname')
X=idwt(cA,cD,Lo_R,Hi_R)
X=idwt(cA,cD,'wname',L)
X=idwt(cA,cD,Lo_R,Hi_R,L)
说明:X=idwt(cA,cD,'wname') 由近似分量cA 和细节分量cD 经小波反变换重构原始信号X 。
'wname' 为所选的小波函数
X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器Lo_R 和Hi_R 经小波反变换重构原始信号X 。
X=idwt(cA,cD,'wname',L) 和X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号X 中心附近的L 个点。
2 二维小波变换的Matlab 实现
二维小波变换的函数
-------------------------------------------------
函数名函数功能
---------------------------------------------------
dwt2 二维离散小波变换
wavedec2 二维信号的多层小波分解
idwt2 二维离散小波反变换
waverec2 二维信号的多层小波重构
wrcoef2 由多层小波分解重构某一层的分解信号
upcoef2 由多层小波分解重构近似分量或细节分量
detcoef2 提取二维信号小波分解的细节分量
appcoef2 提取二维信号小波分解的近似分量
upwlev2 二维小波分解的单层重构
dwtpet2 二维周期小波变换
idwtper2 二维周期小波反变换
-------------------------------------------------------------
(1) wcodemat 函数
功能:对数据矩阵进行伪彩色编码
格式:Y=wcodemat(X,NB,OPT,ABSOL)
Y=wcodemat(X,NB,OPT)
Y=wcodemat(X,NB)
Y=wcodemat(X)
说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为0~NB,缺省值NB=16;
OPT 指定了编码的方式(缺省值为'mat'),即:
OPT='row' ,按行编码
OPT='col' ,按列编码
OPT='mat' ,按整个矩阵编码
ABSOL 是函数的控制参数(缺省值为'1'),即:
ABSOL=0 时,返回编码矩阵
ABSOL=1 时,返回数据矩阵的绝对值ABS(X)
(2) dwt2 函数
功能:二维离散小波变换
格式:[cA,cH,cV,cD]=dwt2(X,'wname')
[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)
说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分
量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器Lo_D 和Hi_D 分
解信号X 。
(3) wavedec2 函数
功能:二维信号的多层小波分解
格式:[C,S]=wavedec2(X,N,'wname')
[C,S]=wavedec2(X,N,Lo_D,Hi_D)
说明:[C,S]=wavedec2(X,N,'wname') 使用小波基函数'wname' 对二维信号X 进行N 层分解;
[C,S]=wavedec2(X,N,Lo_D,Hi_D) 使用指定
的分解低通和高通滤波器Lo_D 和Hi_D 分解信号X 。
(4) idwt2 函数
功能:二维离散小波反变换
格式:X=idwt2(cA,cH,cV,cD,'wname')
X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
X=idwt2(cA,cH,cV,cD,'wname',S)
X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
说明:X=idwt2(cA,cH,cV,cD,'wname') 由信号小波分解的近似信号cA 和细节信号cH、cH、cV、cD 经小波反变换重构原信号X
;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) 使用指定的重构低通和高通滤波器Lo_R 和Hi_R 重构原信号X ;X=idwt2(cA,cH,cV,cD,'wname',S)
和X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) 返回中心附近的S 个数据点。
(5) waverec2 函数
说明:二维信号的多层小波重构
格式:X=waverec2(C,S,'wname')
X=waverec2(C,S,Lo_R,Hi_R)
说明:X=waverec2(C,S,'wname') 由多层二维小波分解的结果C、S 重构原始信号X ,'wname'
为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R) 使用重构低通和高通滤波器Lo_R 和Hi_R 重构原信号。