一个小波变换实例及matlab实现
- 格式:doc
- 大小:206.50 KB
- 文档页数:6
MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,’wname’) 使用指定的小波基函数’wname’ 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,’wname’) 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname’为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R)用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,’wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L)指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能—-————---—--—---——---—---—-—---—-——----——-----—————dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换—-----—-—-—-—-—-—--—-—-------—-——-—-————-———-—-——-——-—-----(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL)返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row’ ,按行编码OPT='col' ,按列编码OPT=’mat’ ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为’1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname’)使用指定的小波基函数'wname’ 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
小波变换实验二连续小波变换一、实验目的本实验的目的在于充分理解连续小波变换的算法和作用,利用matlab 程序实现对一维信号进行连续小波变换,进而在程序的编辑过程理解一位连续小波变换的小波系数矩阵的含义。
同时通过对预算的到的小波系数矩阵进行分析解释,得到原始信号的频谱分布以及了解小波系数在尺度和位移两个分量上的意义。
二、实验原理、实验编程思路1、根据书本的理论知识,知道一维连续小波变换的公式为:实际在编程过程当中,对于上式中积分的求解可以采用将积分函数离散化,通过求和来实现求积分,离散的过程如下式:本实验中,根据题目可以知道采样的时间间隔为0.03s ,即上式中Δt ,在实际编程当中为了计算方便可以省略掉这个时间常数,所以在编程过程当中使用的公式实际为:2、小波函数的选取:使用墨西哥草帽(mexhat )小波来进行小波变换,墨西哥草帽的函数为(支撑区间为-5—5):dt a b t t f a f b a W b a f⎰∞∞-->==<)()(1,),(,ϕϕ)()()()(),(21)1(21ab t k t k f t a t a b t a t f b a W k k t k t k f -∆⨯∆∆=∆-⨯=∑∑⎰-∆+∆-ϕϕ)()(),(21ab k k f a b a Wk f -⨯=∑-ϕ⎪⎩⎪⎨⎧≤-=-else x e x mexh x ,05,)1(222对于连续小波函数的采样间隔,根据不同的尺度参量来进行采样,比如尺度为i,实际对应小波的采样间隔取k/i,以保持和原信号在不同尺度上的同步。
3、程序运算简化:在程序设计过程当中,如果对于小波系数的每一个系数都按照公式来计算,算法的时间复杂度应当为o(n3)。
但通过对公式的分析,不难看出,对于同意尺度a,相邻的两个小波系数之间的求和项,只有第一项或者最后一项或者二者都不同,所以在下一个系数求解的时候可以减少一次循环,从而将时间复杂度降到o(n2),运算效率大大提高。
小波变换是一种在信号处理领域广泛应用的数学工具,它可以将信号分解成不同尺度和频率成分,具有良好的局部化特性。
在Matlab中,离散小波变换(Discrete Wavelet Transform, DWT)是其中一种常用的小波变换方法,它广泛应用于图像处理、语音处理、数据压缩等领域。
本文将对Matlab中离散小波变换的原理、应用及实现方法进行详细介绍。
1. 离散小波变换的原理离散小波变换是通过将信号经过多级高通和低通滤波器的卷积运算,然后下采样,最终得到近似系数和细节系数的过程。
具体来说,设输入信号为x[n],高通滤波器为h[n],低通滤波器为g[n],则小波变换的原理可以表述为:\[a_{\text{scale},n} = x[n]*h_{\text{scale},n} \]\[d_{\text{scale},n} = x[n]*g_{\text{scale},n} \]其中,a为近似系数,d为细节系数,scale表示尺度,n表示离散时间序列。
2. Matlab中离散小波变换的应用离散小波变换在Matlab中有着广泛的应用,包括但不限于图像处理、语音处理、数据压缩等领域。
其中,图像处理是离散小波变换最为常见的应用之一。
通过对图像进行小波变换,可以将图像分解成不同尺度和频率的分量,实现图像的分析和处理。
在语音处理领域,离散小波变换可以用于信号降噪、语音特征提取等方面。
在数据压缩领域,离散小波变换可以实现对数据的降维和提取主要信息,从而实现数据的压缩存储。
3. Matlab中离散小波变换的实现方法在Matlab中,可以通过调用相关函数来实现离散小波变换。
其中,dwt函数是Matlab中常用的离散小波变换函数之一。
其调用格式为:\[cA = dwt(X,'wname','mode')\]\[cA, cD = dwt(X,'wname','mode')\]其中,X为输入信号,'wname'为小波基函数的名称,'mode'为信号的扩展模式。
小波变换是一种在信号和图像处理中广泛应用的工具。
在Matlab 中,你可以使用内置的函数来进行小波变换。
以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。
接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。
最后,我们使用`wave2gray`函数显示小波分解的结果。
这只是使用Matlab进行小波变换的一个基本示例。
实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。
同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。
1、选择'(t)或,使心(t-k)J∙k z为一组正交归一基2、求h n。
h n *W(t)]或H( Jh?(2 •)/ ?( •)3、由h n求g n。
gn - ( -I) h1 Jn或G( J=e^1H (仁)4、由g n, ;:(t)构成正交小波基函数(t)⑴八g n ln(t)或?^ J=GC ■ /2)?C ■ /2)Haar小波的构造1)、选择尺度函数。
⑴=1 O *1 C)O 其他易知「(t - n)关于n为一正交归一基2)、求h nh n In(t);=2. - (t)(2t-n)dt其中n n 1壬F= 1 20 其他当n=0时,——Icp(2t)=[0 当n=1时,1 C -t2其他e J σj +26"S J U 6 N H e ^。
≡G怪A寸 超M O一L HU L ^二—7τdL I τu 6 0"u ⅛二甘 LHU≡ 超M 010!—’」丄U —&¥(?⅛H 0IHUP H (U l10)¾(I)Cb 匸∙f⅛LHU O H U ≡疼超M 0________CXI H — &) Cb其图形如下:1、Haar尺度函数Haar尺度函数空间:C , (2 jχ 2), (2 j X -1), (2j x), (2 jχ -1), :(2j x-1), ? J 为非负的整数,该空间又称为J级阶梯函数空间V i。
则V O 二V1二V2二=V jJ=V j= V j 1 随j的增加,分辨更为精细。
2、性质函数集、2j/2「(2j X - k): k Z ?是V j的一个标准正交基。
f(x) V0当且仅当f(2j x) V j。
3、Haar小波函数函数满足两点:(1)••是V1的成员;(2)••与V0正交。
(X)V(2x) _ (2x -1)-bo性质:j(,(x)dx=0(x)是对称的、局部支撑的函数;小波函数空间Wj : V a k (2j x-k),a k RkZW j是V j的正交互补,即V jT=V j二W j函数集、2j/2 "2j x-k):k・Zi是W i的一个标准正交基4、Haar小波分解与重建对Haar 小波,有(2j x^( (2j^xp :(2j4x))/2 (2jχ-1) = ( Q j"1 x) - ’(2j*x)) / 2Haar 小波分解定理: 设:f j (χ)=∖a k (2j x-k),f j (x) := V j k 目则它可以有如下分解:f j = f j 1 ' ' 'j Jfj 」八 a k(2 X -k), f jI (X^ V j JkNCe j 丄=Σ b k^(2j」x — k )Q j 」(X)EW j 二 k 目_ a 2k ' a 2k 1_ 2a 2k - a2k 12把函数f 分解成一个小波空间与一个尺度空间的分量f(x)=^2 (4x) 2 (4x _1) (4x _2) _ (4x _3)解:按照分解定理,此j=2, ; k=0,1,2,3对应的系数是2,2,1, -1 ;代入公式,得出分解后尺度2-2 C 0,2f(x) =2 (2x)'(2x -1)a k 」2+2 1 _1函数空间元素的系数是〒二2 w 0 ;分解后小波函数空间元素的系数是Matlab 程序image1=imread('512.jpg');image1=rgb2gray(image1); subplot(2,2,1);imshow(image1); title('original image');image1=double(image1); imagew=imread('shuiyin.bmp'); imagew= rgb2gray (imagew); subplot(2,2,2);imshow(imagew); title('original watermark');[ca,ch,cv,cd]=dwt2(image1,'db1');[ca1,ch1,cv1,cd1]=dwt2(ca, 'db1');[cas,chs,cvs,cds]=dwt2(ca1,'db1');M=512;N=64;for i=1:Nfor j=1:N Ca(i,j)=cas(i,j)+0.01*imagew(i,j); end;end;IM=idwt2(Ca,chs,cvs,cds,'db1'); IM1=idwt2(IM,ch1,cv1,cd1, 'db1'); markedimage=double(idwt2(IM1,ch,cv,cd,'db1')); subplot(2,2,3);colormap(gray(256)); image(markedimage); title('marked image');imwrite(markedimage,gray(256),'watermarked.bmp','bmp'); image1=imread('512.jpg');image1=rgb2gray(image1); image1=double(image1); imaged=imread('watermarked.bmp');[ca,ch,cv,cd]=dwt2(image1,'db1');[ca1,ch1,cv1,cd1]=dwt2(ca,'db1');[cas,chs,cvs,cds]=dwt2(ca1,'db1');[caa,chh,cvv,cdd]=dwt2(imaged,'db1');[caa1,chh1,cvv1,cdd1]=dwt2(caa,'db1');[caas,chhs,cvvs,cdds]=dwt2(caa1,'db1');for p=1:Nfor q=1:NW(p,q)=100*(caas(p,q)-cas(p,q));end; subplot(2,2,4); colormap(gray(256)); image(W);title(' 从含水印图像中提取的水印');imwrite(W,gray(256),'watermark.bmp','bmp');。
小波变换原理及在MATLAB中的应用小波变换是一种有效的信号分析方法,可以将时间序列信号按照不同频率分解为时频域上的小波系数。
其原理是利用小波基函数对信号进行多尺度分析,从而揭示信号中的局部特征和潜在信息。
在MATLAB中,小波变换得到了广泛的应用,可以用于信号处理、图像处理、数据压缩等领域。
小波变换原理小波变换的基本原理是将原始信号通过小波基函数的卷积运算,得到不同频率和时域范围的小波系数。
小波基函数是由母小波函数通过平移和尺度变换得到的。
小波基函数具有局部化特性,可以更精准地描述信号的局部特征。
小波变换可以通过连续小波变换(CWT)和离散小波变换(DWT)来实现。
CWT将小波基函数连续地与信号进行卷积,得到连续尺度的小波系数。
而DWT则通过对信号进行多级离散尺度下采样和滤波,从而得到离散的小波系数。
小波系数表示了信号在不同频率和时域范围上的能量分布,可以用于分析信号的频谱特性、辨识信号中的脉冲或噪声等。
小波变换能够同时提供时间和频率信息,比传统的傅里叶变换更符合实际问题的需求。
MATLAB中的小波变换MATLAB提供了丰富的小波变换函数和工具箱,方便用户进行小波分析和处理。
以下是一些常用的小波变换函数及其功能:wavefun函数该函数用于生成不同类型的小波基函数,供小波变换使用。
可以选择不同的小波类型(如“haar”、“db”、“sym”等)和小波尺度,生成对应的小波基函数。
cwt函数该函数实现了连续小波变换(CWT),可以对信号进行连续尺度的小波分解。
可以选择不同尺度和小波基函数进行分析,并可设置阈值进行信号去噪。
dwt函数该函数实现了离散小波变换(DWT),可以对信号进行多级离散尺度的小波分解。
可以选择不同小波基函数和分解层数,得到对应的离散小波系数。
idwt函数该函数实现了离散小波变换的逆变换,可以根据离散小波系数进行重构。
可以选择相同的小波基函数和分解层数,得到原始信号的重构。
wdenoise函数该函数基于小波变换提供了信号去噪的功能。
基于小波变换的信号降噪研究2 小波分析基本理论设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。
当Ψ(t)满足条件[4,7]:2()Rt dw wCψψ=<∞⎰(1)时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列:,()()a bt bt aψ-=,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。
对于任意的函数f(t)∈L 2( R)的连续小波变换为:,(,),()()f a b Rt bW a b f f t dt aψψ-=<>=⎰(3) 其逆变换为:211()(,)()fR R t b f t W a b dadb C a aψψ+-=⎰⎰ (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。
小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。
使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。
3 小波降噪的原理和方法3.1 小波降噪原理从信号学的角度看 ,小波去噪是一个信号滤波的问题。
尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。
由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]:小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式:(k)()()S f k e k ε=+* k=0.1…….n-1其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。
matlab对信号小波变换(原创版)目录一、引言二、小波变换概述三、MATLAB 对信号进行小波变换的方法四、小波变换在信号处理中的应用五、结论正文一、引言在信号处理领域,小波变换被广泛应用于信号分析、特征提取、压缩等领域。
小波变换是一种时频分析方法,可以同时获取信号的频率信息和时间信息。
MATLAB 作为信号处理的常用软件,提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。
本文将介绍如何使用 MATLAB 对信号进行小波变换,以及小波变换在信号处理中的应用。
二、小波变换概述小波变换是一种短时傅里叶变换,它可以将信号分解为不同频率的小波函数,并获得信号在不同时间尺度上的频率信息。
小波变换具有良好的局部特性和多尺度特性,可以有效地分析信号的局部特征和多尺度特征。
三、MATLAB 对信号进行小波变换的方法在 MATLAB 中,可以使用 Wavelet Toolbox 提供的函数对信号进行小波变换。
以下是一个简单的示例:1.导入信号:使用 wavread 函数读取音频信号。
2.对信号进行小波分解:使用 wavedec 函数对信号进行小波分解,得到小波系数。
3.提取小波系数:使用 waveget 函数提取指定层数的小波系数。
4.对小波系数进行处理:例如,可以对小波系数进行幅度模长处理,得到信号的能量分布情况。
5.重构信号:使用 waverec 函数根据小波系数重构信号。
四、小波变换在信号处理中的应用小波变换在信号处理中有广泛的应用,例如:1.信号压缩:通过对信号进行小波分解,可以得到信号的频谱特征,然后根据频谱特征设计合适的量化方案,对信号进行压缩。
2.信号去噪:通过对信号进行小波分解,可以将信号中的噪声分离出来,然后对噪声进行抑制或去除,从而提高信号的质量。
3.信号特征提取:通过对信号进行小波分解,可以获得信号在不同时间尺度上的频率信息,从而提取信号的特征。
五、结论MATLAB 提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。
在MATLAB中,Morlet小波变换可以通过使用内置的cwt函数来实现。
cwt函数用于执行连续小波变换,它支持多种小波类型,包括Morlet小波。
以下是一个示例代码,演示如何在MATLAB中执行Morlet小波变换:
matlab复制代码
% 创建一个信号
x = sin(2 * pi * 10 * (0:0.01:1)) + randn(size(0:0.01:1));
% 定义Morlet小波的参数
scales = logspace(-1, 2, 128); % 尺度范围
waveletName = 'morl'; % 小波名称
% 执行Morlet小波变换
[cwtmatr, freqs] = cwt(x, scales, waveletName);
% 绘制结果
imagesc(freqs, 1:length(x), abs(cwtmatr));
colormap(jet);
xlabel('Frequency (Hz)');
ylabel('Time (s)');
title('Morlet Wavelet Transform');
在上述示例中,首先创建了一个包含噪声的正弦波信号。
然后,定义了Morlet小波的参数,包括尺度范围和小波名称。
接下来,使用cwt函数执行Morlet小波变换,并将结果存储在cwtmatr和freqs变量中。
最后,使用imagesc函数绘制了变换结果的图像。
请注意,cwt函数的参数可以根据需要进行调整,例如可以更改尺度范围、小波类型等。
小波分析MATLAB实例小波分析是一种信号处理方法,可以用于信号的时频分析和多尺度分析。
在MATLAB中,可以使用Wavelet Toolbox实现小波分析。
这个工具箱提供了丰富的函数和工具,可以方便地进行小波分析的计算和可视化。
小波分析的核心是小波变换,它将信号分解成一组不同尺度和频率的小波基函数。
在MATLAB中,可以使用`cwt`函数进行连续小波变换。
以下是一个小波分析的MATLAB实例,用于分析一个心电图信号的时频特性。
首先,导入心电图信号数据。
假设心电图数据保存在一个名为`ecg_signal.mat`的文件中,包含一个名为`ecg`的变量。
可以使用`load`函数加载这个数据。
```MATLABload('ecg_signal.mat');```接下来,设置小波变换的参数。
选择一个小波基函数和一组尺度。
这里选择Morlet小波作为小波基函数,选择一组从1到64的尺度。
可以使用`wavelet`函数创建一个小波对象,并使用`scal2frq`函数将尺度转换为频率。
```MATLABwavelet_name = 'morl'; % 选择Morlet小波作为小波基函数scales = 1:64; % 选择1到64的尺度wavelet_obj = wavelet(wavelet_name);scales_freq = scal2frq(scales, wavelet_name, 1);```然后,使用`cwt`函数进行小波变换,得到信号在不同尺度和频率下的小波系数。
将小波系数的幅度平方得到信号的能量谱密度。
```MATLAB[wt, f] = cwt(ecg, scales, wavelet_name);energy = abs(wt).^2;``````MATLABimagesc(1:length(ecg), scales_freq, energy);colormap('jet');xlabel('时间(样本)');ylabel('频率(Hz)');```运行整个脚本之后,就可以得到心电图信号的时频图。
matlab实现小波变换小波变换(Wavelet Transform)是一种信号处理技术,可以将信号分解成不同频率和时间分辨率的成分。
在Matlab中,可以利用小波变换函数实现信号的小波分析和重构。
本文将介绍小波变换的原理和在Matlab中的使用方法。
一、小波变换原理小波变换是一种时频分析方法,通过对信号进行多尺度分解,可以同时观察信号的时间和频率信息。
小波变换使用小波函数作为基函数,将信号分解成不同频率的子信号。
小波函数是一种具有有限长度的波形,可以在时间和频率上进行局部化分析。
小波变换的主要步骤包括:选择小波函数、信号的多尺度分解、小波系数的计算和重构。
1. 选择小波函数:小波函数的选择对小波变换的结果有重要影响。
常用的小波函数有Haar小波、Daubechies小波、Symlet小波等。
不同的小波函数适用于不同类型的信号,选择合适的小波函数可以提高分析的效果。
2. 信号的多尺度分解:信号的多尺度分解是指将信号分解成不同尺度的成分。
小波变换采用层级结构,每一层都将信号分解成低频和高频两部分。
低频表示信号的平滑部分,高频表示信号的细节部分。
3. 小波系数的计算:小波系数表示信号在不同尺度和位置上的强度。
通过计算每一层的小波系数,可以得到信号在不同频率上的能量分布。
4. 信号的重构:信号的重构是指将分解得到的小波系数合成为原始信号。
小波重构的过程是小波分析的逆过程,通过将每一层的低频和高频合并,可以得到原始信号的近似重构。
二、Matlab中的小波变换在Matlab中,可以使用wavedec函数进行小波分解,使用waverec 函数进行小波重构。
具体步骤如下:1. 加载信号:需要加载待处理的信号。
可以使用load函数从文件中读取信号,或者使用Matlab中自带的示例信号。
2. 选择小波函数:根据信号的特点和分析目的,选择合适的小波函数。
Matlab提供了多种小波函数供选择。
3. 进行小波分解:使用wavedec函数进行小波分解,指定分解的层数和小波函数名称。
基于小波图像去噪的MATLAB 实现一、 论文背景数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。
数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。
在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。
然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。
如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。
根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。
通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。
小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。
本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。
二、 课题原理1.小波基本原理在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。
一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:())(1,ab x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。
当a=2j 和b=ia 的情况下,一维小波基函数序列定义为:()()1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积:()dx ab x a x f f x W b a b a )(1)(,,,-ψ=ψ=⎰+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4)可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。
小波变换matlab程序小波变换是一种信号处理技术,它可以将信号分解成不同频率的成分,并且可以在不同时间尺度上进行分析。
在Matlab中,可以使用内置的小波变换函数来实现这一技术。
下面是一个简单的小波变换Matlab程序示例:matlab.% 生成一个示例信号。
t = 0:0.001:1; % 时间范围。
f1 = 10; % 信号频率。
f2 = 50; % 信号频率。
y = sin(2pif1t) + sin(2pif2t); % 信号。
% 进行小波变换。
[c, l] = wavedec(y, 3, 'db1'); % 进行3层小波分解,使用db1小波基函数。
% 重构信号。
yrec = waverec(c, l, 'db1'); % 使用小波系数和长度进行信号重构。
% 绘制原始信号和重构信号。
subplot(2,1,1);plot(t, y);title('原始信号');subplot(2,1,2);plot(t, yrec);title('重构信号');这个程序首先生成了一个包含两个频率成分的示例信号,然后使用`wavedec`函数对信号进行小波分解,得到小波系数和长度。
接着使用`waverec`函数对小波系数和长度进行信号重构,最后绘制了原始信号和重构信号的对比图。
小波变换在信号处理、图像处理等领域有着广泛的应用,可以用于信号去噪、特征提取、压缩等方面。
通过Matlab中的小波变换函数,我们可以方便地进行小波分析和处理,从而更好地理解和利用信号的特性。
1 绪论1.1概述小波分析是近15年来发展起来的一种新的时频分析方法。
其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。
而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET 的流量控制等。
从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。
这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。
在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。
但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor 变换,时频分析,小波变换等。
其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。
换言之,短时傅立叶分析只能在一个分辨率上进行。
所以对很多应用来说不够精确,存在很大的缺陷。
而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。
因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。
matlab中图像小波变换的应用实例1一维小波变换的Matlab实现(1)dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(某,'wname')[cA,cD]=dwt(某,Lo_D,Hi_D)说明:[cA,cD]=dwt(某,'wname')使用指定的小波基函数'wname'对信号某进行分解,cA、cD分别为近似分量和细节分量;[cA,cD]=dwt(某,Lo_D,Hi_D)使用指定的滤波器组Lo_D、Hi_D对信号进行分解。
(2)idwt函数功能:一维离散小波反变换格式:某=idwt(cA,cD,'wname')某=idwt(cA,cD,Lo_R,Hi_R)某=idwt(cA,cD,'wname',L)某=idwt(cA,cD,Lo_R,Hi_R,L)说明:某=idwt(cA,cD,'wname')由近似分量cA和细节分量cD经小波反变换重构原始信号某'wname'为所选的小波函数某=idwt(cA,cD,Lo_R,Hi_R)用指定的重构滤波器Lo_R和Hi_R经小波反变换重构原始信号某某=idwt(cA,cD,'wname',L)和某=idwt(cA,cD,Lo_R,Hi_R,L)指定返回信号某中心附近的L个点。
2二维小波变换的Matlab实现二维小波变换的函数-------------------------------------------------函数名函数功能---------------------------------------------------dwt2二维离散小波变换wavedec2二维信号的多层小波分解idwt2二维离散小波反变换waverec2二维信号的多层小波重构wrcoef2由多层小波分解重构某一层的分解信号upcoef2由多层小波分解重构近似分量或细节分量detcoef2提取二维信号小波分解的细节分量appcoef2提取二维信号小波分解的近似分量upwlev2二维小波分解的单层重构dwtpet2二维周期小波变换idwtper2二维周期小波反变换-------------------------------------------------------------(1)wcodemat函数功能:对数据矩阵进行伪彩色编码格式:Y=wcodemat(某,NB,OPT,ABSOL)Y=wcodemat(某,NB,OPT)Y=wcodemat(某,NB)Y=wcodemat(某)说明:Y=wcodemat(某,NB,OPT,ABSOL)返回数据矩阵某的编码矩阵Y;NB伪编码的最大值,即编码范围为0~NB,缺省值NB=16;OPT指定了编码的方式(缺省值为'mat'),即:OPT='row',按行编码OPT='col',按列编码OPT='mat',按整个矩阵编码ABSOL是函数的控制参数(缺省值为'1'),即:ABSOL=0时,返回编码矩阵ABSOL=1时,返回数据矩阵的绝对值ABS(某)(2)dwt2函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(某,'wname')[cA,cH,cV,cD]=dwt2(某,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(某,'wname')使用指定的小波基函数'wname'对二维信号某进行二维离散小波变幻;cA,cH,cV,cD分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(某,Lo_D,Hi_D)使用指定的分解低通和高通滤波器Lo_D和Hi_D分解信号某(3)wavedec2函数功能:二维信号的多层小波分解格式:[C,S]=wavedec2(某,N,'wname')[C,S]=wavedec2(某,N,Lo_D,Hi_D)说明:[C,S]=wavedec2(某,N,'wname')使用小波基函数'wname'对二维信号某进行N层分解;[C,S]=wavedec2(某,N,Lo_D,Hi_D)使用指定的分解低通和高通滤波器Lo_D和Hi_D分解信号某(4)idwt2函数功能:二维离散小波反变换格式:某=idwt2(cA,cH,cV,cD,'wname')某=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)某=idwt2(cA,cH,cV,cD,'wname',S)某=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)说明:某=idwt2(cA,cH,cV,cD,'wname')由信号小波分解的近似信号cA和细节信号cH、cH、cV、cD经小波反变换重构原信号某;某=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)使用指定的重构低通和高通滤波器Lo_R和Hi_R重构原信号某;某=idwt2(cA,cH,cV,cD,'wname',S)和某=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)返回中心附近的S个数据点。
小波变换
1.“小波”公认的起源于地质信号的研究。
2.小波变换极大地克服了傅里叶和加窗傅里叶变换的不足,可以分析时变信号
的局部特征。
原则上讲,能用傅里叶变换分析的问题,都可以用小波变换来代替。
3.MATAB可以直接进行快速的小波变换。
4.一个例子:
用傅里叶来分析频谱都为:
利用小波变换分析“人工透射边界”得出的时域结果,是不是可以解决入射波与反射波分离。
入射波的能量过滤过程。
小波变换还应用于拟合多维设计反应谱的地震波。
利用离散的快速小波变换,是不是可以有助于解决M(w)与M(t)之间的变换。
1、 选择()t ϕ或ˆ()ϕ
ω,使{}()k Z t k ϕ∈-为一组正交归一基; 2、 求n h 。
1,(),()n n h t t ϕϕ-=
或ˆˆ()(2)/()H ωϕωϕω=
3、 由n h 求n g 。
1(1)n n n g h -=- 或()()i G e H t ωωωπ-=
4、 由n g ,()t ϕ构成正交小波基函数()
t φ 1,()()n n t g t φϕ-=∑
或ˆˆ()(/2)(/2)G φωωϕω=
Haar 小波的构造
1)、选择尺度函数。
101
()0t t ϕ ≤≤⎧=⎨ ⎩其他
易知(n)t ϕ-关于n 为一正交归一基。
2)、求n h
1,(),()n n h t t ϕϕ-
=()2t-n)t dt ϕϕ(
其中
1
1(2)220n
n t t n ϕ+⎧
≤≤⎪-=⎨⎪ ⎩其他
当n=0时,
1
1(2)20t t ϕ⎧
0≤≤⎪=⎨⎪ ⎩其他
当n=1时,
1
11(21)20t t ϕ⎧
≤≤⎪-=⎨⎪ ⎩其他
故,当n=0,n=1时
1()(2)0n n t t n ϕϕ =0,=1
⎧•-=⎨ ⎩其他
当n=0时,
()(2)t t n ϕϕ•-1
120t ⎧
0≤≤⎪=⎨⎪ ⎩其他
当n=1时,
()(2)t t n ϕϕ•-1
1120t ⎧ ≤≤⎪=⎨⎪ ⎩其他
故
n
h ()2t-n)t dt ϕϕ
(1/0n n ⎧=0,=1
⎪=⎨ ⎪⎩其他
3)、求n g 。
11/0
(1)1/10n n n n g h n -⎧=⎪⎪=-=-=⎨⎪ ⎪⎩其他
4)、求()t φ。
1,()()n n t g t φϕ-=∑
=0-1,011,1()()g t g t ϕϕ-+
(2)(21)t t - =1
102
111
20t t ⎧ ≤≤⎪⎪⎪- ≤≤⎨⎪ ⎪⎪⎩
其他
其图形如下:
1、 Haar 尺度函数
101()0t t ϕ ≤≤⎧=⎨ ⎩
其他 Haar 尺度函数空间:
}{,(22),(21),(2),(21),(21),j j j j j x x x x x ϕϕϕϕϕ++-- j 为非负的整数,该空间又称为j 级阶梯函数空间j V 。
则
01211j j j V V V V V V -+⊂⊂⊂⊂⊂⊂⊂
随j 的增加,分辨更为精细。
2、 性质
函数集}{/22(2):j j x k k Z ϕ-∈是j V 的一个标准正交基。
0()f x V ∈当且仅当(2)j j f x V ∈。
3、 Haar 小波函数
函数满足两点:(1)φ是1V 的成员;(2)φ与0V 正交。
()x φ=(2)(21)x x ϕϕ--
性质:
()0x dx φ+∞
-∞=⎰
()x φ是对称的、局部支撑的函数;
小波函数空间:(2),j j k
k k Z W a x k a R φ∈-∈∑
j W 是j V 的正交互补,即1j j j V V W +=⊕
函数集}{/22(2):j j x k k Z φ-∈是j W 的一个标准正交基
4、 Haar 小波分解与重建
对Haar 小波,有11(2)((2)(2))j j j x x x φφϕ--=+/2 11(21)((2)(2))/2j j j x x x φφϕ---=-
Haar 小波分解定理:
设:()(2),()j j k
j j k Z f x a x k f x V φ∈=-∈∑
则它可以有如下分解:
11j j j f f ω--=+
11111(2),()j j j k j j k Z
f a x k f x V φ-----∈=-∈∑
11111(2),()j j j k j j k Z
b x k x W ωϕω-----∈=-∈∑
12212
j k k k a a a -++= 12212j k
k k a a b -+-= 把函数f 分解成一个小波空间与一个尺度空间的分量
()2(4)2(41)(42)(43)f x x x x x φφφφ=+-+---
解:按照分解定理,此j=2,;k=0,1,2,3对应的系数是2,2,1,-1;代入公式,得出分解后尺度函数空间元素的系数是2222+=,1102-=;分解后小波函数空间元素的系数是2202-=,1(1)12
--=;从而 ()2(2)(21)f x x x φϕ=+-
Matlab程序
image1=imread('512.jpg');
image1=rgb2gray(image1);
subplot(2,2,1);
imshow(image1);
title('original image');
image1=double(image1);
imagew=imread('shuiyin.bmp');
imagew= rgb2gray (imagew);
subplot(2,2,2);
imshow(imagew);
title('original watermark');
[ca,ch,cv,cd]=dwt2(image1,'db1');
[ca1,ch1,cv1,cd1]=dwt2(ca, 'db1');
[cas,chs,cvs,cds]=dwt2(ca1,'db1');
M=512;
N=64;
for i=1:N
for j=1:N
Ca(i,j)=cas(i,j)+0.01*imagew(i,j);
end;
end;
IM=idwt2(Ca,chs,cvs,cds,'db1');
IM1=idwt2(IM,ch1,cv1,cd1, 'db1');
markedimage=double(idwt2(IM1,ch,cv,cd,'db1'));
subplot(2,2,3);
colormap(gray(256));
image(markedimage);
title('marked image');
imwrite(markedimage,gray(256),'watermarked.bmp','bmp'); image1=imread('512.jpg');
image1=rgb2gray(image1);
image1=double(image1);
imaged=imread('watermarked.bmp');
[ca,ch,cv,cd]=dwt2(image1,'db1');
[ca1,ch1,cv1,cd1]=dwt2(ca,'db1');
[cas,chs,cvs,cds]=dwt2(ca1,'db1');
[caa,chh,cvv,cdd]=dwt2(imaged,'db1');
[caa1,chh1,cvv1,cdd1]=dwt2(caa,'db1');
[caas,chhs,cvvs,cdds]=dwt2(caa1,'db1');
for p=1:N
for q=1:N
W(p,q)=100*(caas(p,q)-cas(p,q));
..
end;
subplot(2,2,4);
colormap(gray(256));
image(W);
title('从含水印图像中提取的水印');
imwrite(W,gray(256),'watermark.bmp','bmp');。