风电齿轮箱
- 格式:ppt
- 大小:766.50 KB
- 文档页数:22
风电齿轮箱的振动与噪声特性分析引言:随着可再生能源的快速发展和风力发电机组的普及,风电齿轮箱作为关键部件也承受着越来越大的压力。
振动与噪声是风电齿轮箱存在的一个重要问题,直接影响其安全可靠运行。
因此,对风电齿轮箱振动与噪声特性的分析具有重要意义。
一、风电齿轮箱振动特性分析风电齿轮箱的振动特性是指其在运行过程中产生的振动波动。
振动可以分为水平、垂直和径向振动,其幅值和频率对齿轮箱的运行稳定性和寿命有重要影响。
1. 振动源分析风电齿轮箱振动源主要包括齿轮传动系统、轴承系统、机械齿齿接触以及结构声振等。
其中,齿轮传动系统是主要的振动源,由于齿轮的运动速度和载荷导致了振动源的产生。
2. 振动传递路径齿轮箱的振动传递路径包括两个方面,即基础刚度和振动传递途径。
基础刚度是指机组底座、基础等结构夺取的刚度,用于支撑风电齿轮箱的振动;振动传递途径主要包括内部途径、外部途径和耦合途径。
3. 振动信号分析振动信号是分析风电齿轮箱振动特性的重要手段之一。
通过加速度传感器等装置采集到的振动信号,可以进行时域分析、频域分析和时频域分析等,进而得到振动频谱图、频谱密度图和时频谱图等。
二、风电齿轮箱噪声特性分析风电齿轮箱的噪声特性是指其在运行过程中产生的噪声水平。
噪声是指任何会对人类和环境产生不良影响的声音。
1. 噪声源分析风电齿轮箱噪声源主要包括齿轮传动系统、轴承系统、空气噪声以及流体噪声等。
其中,齿轮传动系统和轴承系统是主要噪声源,由于齿轮的运动和轴承的摩擦等导致噪声产生。
2. 噪声传播路径齿轮箱的噪声传播路径包括实体传播路径和空气传播路径。
实体传播路径是指噪声通过机械结构的传输,如齿轮、轴承、壳体等;空气传播路径是指噪声通过空气传播,如风扇噪声和气动噪声等。
3. 噪声测量与评估通过噪声测量和评估,可以对风电齿轮箱的噪声问题进行有效的监测和控制。
噪声测量通常采用声级计等仪器设备,通过测量声音的强度、频率和时长等参数来评估噪声水平是否符合标准要求。
双馈式风电齿轮箱结构
双馈式风电齿轮箱结构主要由以下几个部分组成:
1. 大轴:即主轴,其上装有风机的叶片,风力通过叶片驱动主轴旋转。
2. 小轴:即发电机轴,与主轴通过齿轮传动相连接,将旋转的动力传递给发电机。
3. 中间轴:位于主轴和发电机轴之间,通过齿轮传动将风机的旋转速度和发电机的旋转速度进行匹配,以提高效率。
4. 齿轮:由多个齿轮组成的传动装置,可根据需要进行多级齿轮传动。
5. 润滑系统:用于齿轮箱的润滑和冷却,以确保齿轮运转平稳和寿命延长。
6. 安全装置:包括齿轮箱温度、压力、震动等传感器,以及相应的监控和报警系统,用于监测齿轮箱的运行状态,并在异常情况下及时采取措施。
双馈式风电齿轮箱结构相对复杂,但在风力发电行业中得到广泛应用。
其主要特点是能够根据风机转速的变化对发电机进行调速,提高发电效率;同时,由于齿轮传动系统的存在,使得双馈式风电齿轮箱具有较高的承载能力和较长的使用寿命。
风电机组齿轮箱介绍一、什么是风电机组齿轮箱?风电机组齿轮箱是风力发电设备中的关键部件之一,用于将风轮旋转的动能传递给发电机,从而产生电能。
它通常由多个齿轮组成,通过精确的传动比例来提高风轮转速,并将其转化为适合发电机工作的转速。
二、风电机组齿轮箱的结构风电机组齿轮箱由外壳、轴、齿轮、轴承和润滑系统等组成。
2.1 外壳外壳是齿轮箱的保护壳体,具有良好的密封性能和机械强度。
其结构通常由上、下两部分组成,方便维护和齿轮更换。
2.2 轴齿轮箱中的轴承负责承受齿轮和旋转部件的载荷,并确保它们平稳运行。
轴通常由高强度合金钢制成,具有较高的刚度和耐磨性。
2.3 齿轮齿轮是风电机组齿轮箱的核心部件,它们通过齿轮传动实现能量转换和传递。
常见的齿轮有斜齿轮、圆柱齿轮和行星齿轮等。
齿轮的优质材料和精确加工能够提高传动效率和耐久性。
2.4 轴承轴承是支撑齿轮箱内齿轮和转动部件的重要组成部分。
它们能够减少摩擦和磨损,并确保齿轮箱平稳运转。
常见的轴承类型包括滚动轴承和滑动轴承。
2.5 润滑系统润滑系统负责为齿轮箱提供足够的润滑油,并对齿轮和轴承进行冷却和保护。
良好的润滑系统能够降低齿轮箱的摩擦和磨损,延长使用寿命。
三、风电机组齿轮箱的工作原理风电机组齿轮箱采用齿轮传动的方式将风轮的旋转动能传递给发电机。
1.风轮旋转驱动主轴旋转;2.主轴通过第一级齿轮传动将低速大扭矩的运动转化为高速小扭矩的运动;3.高速轴通过第二级齿轮传动将高速小扭矩的运动转化为低速大扭矩的运动;4.最后,低速轴将此运动传递给发电机,发电机产生电能。
四、风电机组齿轮箱的维护与故障排除为保证风电机组齿轮箱的正常运行,需要进行定期的维护与故障排除。
4.1 维护•定期更换润滑油,并清洗润滑系统;•检查齿轮和轴承的磨损情况,及时更换或修复;•检查外壳密封性能,确保齿轮箱内部的油液不泄漏;•定期检查齿轮箱的整体结构,排查潜在故障。
4.2 故障排除•齿轮断裂:检查齿轮材料和制造工艺,确认是否需要更换更坚固的齿轮;•轴承失效:检查轴承润滑情况,并及时更换损坏的轴承;•润滑系统故障:检查润滑系统的油泵、油管和过滤器等,确保润滑油畅通无阻;•外壳磨损:定期检查外壳磨损情况,如有需要及时更换。
1.风电齿轮箱的技术特点风电齿轮箱在技术上有如下一些特点:(1)服役条件严酷由于机组安装在高山、荒野、海滩、海岛等风口处,受无规律的变向、变负荷的风力作用及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱在狭小的机舱不可能像在地面那样具有牢固的机座基础,整个传动系的动力匹配和扭转振动的因素总是集中反映在某个薄弱环节上。
大量的实践证明,这个环节常是机组中的齿轮箱。
(2)功率大主流风电机组已达到兆瓦级,丹麦的主流风机为2.0~3.0MW,美国主流风机为1.5MW,在2004年的汉诺威工博会上4.5MW的风电机组也已面世。
(3)速差大风力发电机组中的齿轮箱,其主要功用是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。
通常风轮的输入转速很低,约20r/min,远达不到发电机转子所要求的1500~1800r/min的转速,必须通过齿轮多级增速传动来实现。
(4)精度高齿轮箱内用作主传动的齿轮精度,外齿轮不低于5级(GB/T10095),内齿轮不低于6级。
齿部的最终加工是采用磨齿工艺,尤其内齿轮磨齿难度甚高。
(5)使用寿命要求长由于自然环境条件恶劣,交通又不方便,齿轮箱在数十米高塔顶部的狭小空间内,安装和维修相当困难,所以要求使用寿命最少20年。
(6)可靠性要求高与使用寿命都提出了比一般机械高得多的要求。
对构件材料,除了常规状态下力学性能外,还应该具有低温状态下抗冷脆性等特性:对齿轮箱,工作要平稳,防止振动和冲击等。
设计中要根据载荷谱进行疲劳分析,对齿轮箱整机及其零件的设计极限状态和使用极限状态进行动力学分析、极限强度分析、疲劳分析,以及稳定性和变形极限分析。
2.热处理生产中的主要技术难度由于风电齿轮的服役条件苛刻,技术要求高,在美国ANSI/AGMA/AWE A6006-A03《风力发电机齿轮箱设计规范》的52项质量控制项目中,材料热处理就占20项。
强调材料热处理的重要性就是要保证齿轮的疲劳强度和加工精度。
风力发电齿轮箱常见的故障风力发电齿轮箱是风力发电机组中非常重要的组成部分,其功能是将风轮的转动速度提高并传递给发电机,从而产生电能。
然而,由于长期运行和外部环境的影响,齿轮箱经常出现一些常见的故障,影响发电机组的正常运行。
本文将介绍风力发电齿轮箱常见的故障。
一、齿轮损伤齿轮损伤是风力发电齿轮箱最常见的故障之一。
齿轮工作时承受着较大的载荷和摩擦,长时间的工作会导致齿轮表面磨损,甚至出现齿面断裂、齿根断裂等故障。
齿轮损伤会导致齿轮箱噪音增大、振动加剧,并且会影响齿轮传动的精度和效率,严重时会导致齿轮箱完全失效。
二、轴承故障风力发电齿轮箱中的轴承是支撑齿轮和转子的重要部件,其工作条件较为恶劣。
长期运行和外部环境的影响会导致轴承磨损、损坏甚至断裂。
轴承故障会导致齿轮箱的振动增大、噪音变大,严重时还会造成齿轮箱的卡死,影响整个风力发电机组的正常运行。
三、油封泄漏风力发电齿轮箱中的油封起到密封和润滑的作用,保证齿轮箱内部的润滑油不泄漏,并防止外部灰尘和水分进入。
长期运行和外部环境的影响会导致油封老化、磨损,甚至出现泄漏现象。
油封泄漏会导致齿轮箱内部润滑油的减少,加速齿轮的磨损和故障,并可能引起齿轮箱的过热,严重时还会导致齿轮箱的失效。
四、润滑油污染风力发电齿轮箱中的润滑油起到润滑、冷却和减震的作用,保证齿轮和轴承的正常工作。
然而,长期运行和外部环境的影响会导致润滑油中混入金属粉末、水分和其它杂质,使润滑油变质、失去润滑性能。
润滑油污染会导致齿轮和轴承的磨损加剧,增加齿轮箱的摩擦和能量损耗,影响发电机组的效率和寿命。
五、齿轮箱过热风力发电齿轮箱在运行过程中会产生大量的摩擦热,需要通过润滑油来冷却。
然而,长期运行和外部环境的影响会导致润滑油的减少、质量下降,使齿轮箱无法有效地散热,导致齿轮箱温度升高。
齿轮箱过热会使齿轮和轴承的磨损加剧,降低齿轮传动的精度和效率,严重时甚至会引发火灾等安全事故。
风力发电齿轮箱常见的故障包括齿轮损伤、轴承故障、油封泄漏、润滑油污染和齿轮箱过热等。
风电机组齿轮箱故障分析报告一、引言随着全球对清洁能源的需求不断增长,风力发电作为一种可再生、清洁的能源形式,得到了广泛的应用和发展。
风电机组是风力发电系统的核心设备,而齿轮箱作为风电机组的关键部件之一,其运行状态直接影响着整个风电机组的性能和可靠性。
然而,由于风电机组运行环境恶劣、工况复杂,齿轮箱容易出现各种故障,给风电场的运行和维护带来了巨大的挑战。
因此,对风电机组齿轮箱故障进行深入分析,找出故障原因,提出有效的预防和维护措施,对于提高风电机组的可靠性和经济性具有重要意义。
二、风电机组齿轮箱的结构和工作原理(一)结构风电机组齿轮箱通常由行星齿轮系、平行轴齿轮系、箱体、轴承、润滑冷却系统等组成。
行星齿轮系具有体积小、承载能力大、传动比大等优点,常用于风电机组齿轮箱的高速级;平行轴齿轮系则用于低速级,以实现最终的输出扭矩。
(二)工作原理风电机组的叶片在风力的作用下旋转,通过主轴将扭矩传递给齿轮箱。
齿轮箱通过各级齿轮的传动,将转速逐渐提高或降低,以满足发电机的转速要求,同时将扭矩传递给发电机,实现机械能到电能的转换。
三、风电机组齿轮箱常见故障类型(一)齿轮故障1、齿面磨损齿面在长期的啮合过程中,由于摩擦和润滑油中的杂质等因素,会导致齿面磨损。
轻度磨损会影响齿轮的传动精度,严重磨损则会导致齿轮失效。
2、齿面胶合在高速、重载和润滑不良的情况下,齿面接触区温度过高,导致润滑油膜破裂,两齿面金属直接接触并相互粘连,形成齿面胶合。
3、齿面点蚀齿面在反复的接触应力作用下,会产生疲劳裂纹,裂纹扩展后形成点蚀坑。
点蚀会降低齿轮的承载能力,严重时会导致齿轮折断。
4、轮齿折断轮齿在承受过大的载荷或存在制造缺陷时,会发生折断现象,导致齿轮箱无法正常工作。
(二)轴承故障1、疲劳剥落轴承在长期的交变载荷作用下,滚道或滚动体表面会产生疲劳裂纹,裂纹扩展后形成剥落坑。
2、磨损轴承在工作过程中,由于润滑不良、异物侵入等原因,会导致滚道和滚动体表面磨损。
风电齿轮箱设计指南(一)引言概述:风电齿轮箱是风能转换系统中关键的组成部分之一,它承担着将风能转化为机械能的重要任务。
齿轮箱的设计对于风电机组的性能和可靠性有着至关重要的影响。
本文将为读者提供一份风电齿轮箱的设计指南,旨在帮助工程师和设计师更好地理解和应用齿轮箱的设计原则和优化方法。
正文:1. 齿轮箱的工作原理- 风能转换系统的概述- 齿轮箱的作用和功能- 齿轮箱的基本结构和组成部分小点:- 齿轮箱的定位和布局- 齿轮箱中的主要部件及其功能- 齿轮的选择和匹配原则2. 齿轮箱的设计考虑因素- 齿轮箱的负荷特性分析- 受力和振动分析- 温度和润滑分析小点:- 齿轮箱的承载能力与设计因素- 齿轮箱的可靠性分析- 齿轮箱的寿命评估方法3. 齿轮箱的优化设计方法- 材料选择和工艺优化- 优化设计原则和方法- 仿真与验证小点:- 加工工艺和制造工艺控制- 齿轮箱的降噪和减振措施- 齿轮箱的可维修性和可维护性考虑4. 齿轮箱的模拟和测试方法- 数值模拟和仿真方法- 实验测试与验证方法- 监测和维护方法小点:- 齿轮箱的运行监测与故障诊断- 功率传输效率的测试与验证- 齿轮箱的振动测试与分析5. 齿轮箱的发展与创新趋势- 新型齿轮材料和润滑技术- 齿轮箱的轻量化设计和节能减排- 齿轮箱的智能化和自适应控制小点:- 齿轮箱的可持续发展考虑- 齿轮箱的故障预测和智能维护- 多学科优化和集成设计的趋势总结:风电齿轮箱的设计是风能转换系统设计中至关重要的部分。
本文从齿轮箱的工作原理、设计考虑因素、优化设计方法、模拟与测试方法以及发展趋势等方面进行了阐述。
通过深入了解齿轮箱的设计原则和优化方法,工程师和设计师可以更好地设计和选择适合风电机组的齿轮箱,提升系统的性能和可靠性。
未来,随着新技术的不断发展和创新,风电齿轮箱的发展将迎来更多的机遇和挑战。
风电齿轮箱的材料选择与性能分析风电齿轮箱是风力发电机组中的核心部件,起着传递风能、提供转矩的关键作用。
材料的选择对于风电齿轮箱的性能和寿命具有重要影响。
本文将对风电齿轮箱的材料选择与性能分析进行深入探讨。
一、材料选择的重要性风电齿轮箱要能够承受长时间高速运转和大负载的工作条件,对材料的要求非常高。
材料的选择直接关系到齿轮箱的可靠性、寿命和经济性,因此是十分关键的。
1. 强度和韧性:风电齿轮箱在高速运转和高负载下容易受到巨大的冲击和振动力,因此材料需要具备足够的强度和韧性,以抵御外部应力并避免断裂和塑性变形。
2. 疲劳寿命:由于风电齿轮箱工作条件的特殊性,齿轮箱轴承在运行过程中会不可避免地产生疲劳,材料的疲劳寿命直接决定了齿轮箱的使用寿命。
3. 耐磨性:风电齿轮箱在高速运行下不可避免地会产生磨损和磨粒,耐磨性强的材料可以减少齿轮箱的磨损,延长使用寿命。
4. 耐腐蚀性:由于风电齿轮箱常常工作在复杂多变的环境中,材料需要具备一定的耐腐蚀性能,以避免因腐蚀而引起的寿命缩短。
二、常用材料分析根据风电齿轮箱的工作要求和性能指标,常用的材料包括钢、合金钢和铸铁等。
1. 钢:钢是目前最常用的风电齿轮箱材料之一,具有良好的强度、韧性和耐磨性。
同时,钢的加工性能好,生产成本相对较低,因此在齿轮箱中广泛应用。
2. 合金钢:合金钢是一种通过在钢中添加合金元素而得到的材料,可以进一步提高强度和韧性,并提高耐腐蚀性和耐磨性。
合金钢在风电齿轮箱中常用于承受较大负荷和高速工作的齿轮和轴承部件。
3. 铸铁:铸铁是一种具有良好刚性和耐磨性的材料,适用于承受较大载荷和较高速度的齿轮箱。
但相对于钢和合金钢,铸铁的韧性较差,容易产生裂纹和断裂,因此在一些高强度要求的风电齿轮箱中应用较少。
三、材料性能分析1. 强度和韧性性能:钢和合金钢在强度和韧性方面具有较好的平衡,能够满足风电齿轮箱的工作要求。
通过控制材料的化学成分和热处理工艺,可以进一步提高材料的强度和韧性性能。