智能分布式配电自动化方案
- 格式:pdf
- 大小:462.56 KB
- 文档页数:5
分布式配电自动化系统的构成与通信方案分布式配电自动化系统是一种基于分散的智能设备、通信网络和计算中心的现代化电力配电系统。
该系统具有较高的自动化程度、较高的可靠性和较快的响应速度,可以为用户提供更加优质的电力服务。
本文将就分布式配电自动化系统的构成与通信方案进行详细的讨论。
一、分布式配电自动化系统的构成1. 智能设备分布式配电自动化系统中的智能设备是系统的核心,包括智能电表、智能开关、智能变压器等。
这些智能设备可以实现自主的进程控制、自我诊断、故障定位和数据采集。
智能设备具备较高的智能化水平,能够较好地应对复杂的实际场景。
2. 通信网络分布式配电自动化系统需要保证智能设备之间的信息交流和数据传输。
因此,该系统需要具备高效稳定的通信网络。
通信网络一般分为局域网和广域网两种。
局域网通常使用以太网等通信协议,用于局部信息交换;广域网则可以采用现代化的通信协议,如TD-LTE等。
3. 计算中心分布式配电自动化系统需要对智能设备采集、处理的信息进行中央管理和控制。
因此,该系统需要建立计算中心,用于收集并分析处理智能设备采集到的数据。
计算中心可以采用云计算等技术,实现海量数据的处理和存储,以提高运行效率和数据安全性。
二、分布式配电自动化系统的通信方案1. 通信模式分布式配电自动化系统的通信模式可以采用集中式和分散式两种。
集中式通信方式一般采用串口和网口方式,通信速率较慢;分散式通信方式一般采用无线网络方式,信息交流和数据传输较快。
目前,分散式通信方式已经成为分布式配电自动化系统的主要通信方式。
2. 通信协议分布式配电自动化系统的通信协议可以采用Modbus、IEC61850、DNP3等协议。
Modbus协议是一种通信协议,广泛应用于工业自动化领域,支持较多的设备类型;IEC61850协议是基于国际标准的一种通信协议,支持分布式控制结构;DNP3协议是一种分布式网络协议,适用于分布式控制应用场合。
3. 通信安全分布式配电自动化系统需具备较高的安全性,防止黑客攻击和数据泄露。
智能分布式配电网自愈控制系统设计随着能源领域的不断发展,分布式电力系统的应用越来越广泛。
分布式电力系统能够提高能源利用效率,减少能源浪费,同时也能提高电网的安全性和可靠性。
由于分布式电力系统的特点,其运行过程中会出现各种故障和问题,需要及时快速的自愈控制系统进行处理。
设计一套智能分布式配电网自愈控制系统对于电力系统的安全运行至关重要。
一、系统架构设计智能分布式配电网自愈控制系统的基本架构包括:数据采集模块、数据处理模块、自愈决策模块和执行控制模块。
1.数据采集模块数据采集模块主要负责实时采集各个节点的运行数据,包括电压、电流、频率、功率等参数。
还需要采集各个设备的状态信息,如开关、断路器、保护器等。
2.数据处理模块数据处理模块负责对采集到的数据进行处理和分析,通过数据融合和数据挖掘技术,对电力系统运行状态进行分析和预测,以及对可能出现的故障进行诊断和定位。
3.自愈决策模块自愈决策模块是整个系统的核心部分,通过智能算法和强化学习技术,对系统运行状态进行实时监测和判断,发现异常情况后,在系统内部进行自愈决策,制定相应的控制策略,实现故障的自动隔离和快速恢复。
还需要考虑系统对外部的协同和调度能力,与配电网络控制中心进行互联互通,实现系统的整体协同控制。
4.执行控制模块执行控制模块负责将自愈决策模块制定的控制策略转化为具体的执行指令,对系统中的设备进行操作控制,实现分布式电力系统的自动恢复和自愈。
二、关键技术和方法1.数据融合和挖掘技术通过采用数据融合和挖掘技术,可以有效地对系统运行数据进行处理和分析,提取出有价值的信息和特征,为系统的自愈决策提供可靠的数据支持。
2.智能算法和强化学习技术智能算法和强化学习技术是实现系统自愈决策的关键方法,通过对系统运行状态进行实时监测和分析,制定相应的控制策略,实现分布式电力系统的自愈功能。
3.分布式协同控制技术分布式协同控制技术是保证系统内部协同运行和对外部控制中心调度的重要手段,通过建立统一的通讯和控制接口,实现系统内部节点之间的信息交换和控制指令的传递。
智能分布式配电网自愈控制系统设计1. 引言1.1 研究背景智能分布式配电网自愈控制系统设计是基于智能电网技术的发展而提出的一项重要技术。
近年来,随着电力系统规模的不断扩大以及可再生能源的大规模接入,传统的电力系统结构已经无法满足对电网安全、可靠和高效运行的要求。
在传统电力系统中,一旦出现故障,往往需要人工干预来恢复系统运行,效率低下且容易引起连锁故障。
研究智能分布式配电网自愈控制系统成为当前电力系统研究的热点之一。
随着信息通信技术和智能控制技术的日益成熟,智能电网技术逐渐引起了人们的关注。
智能电网技术能够对电力系统实现实时监测、故障诊断、智能控制和自愈恢复,提高了系统的安全性、可靠性和经济性。
而智能分布式配电网自愈控制系统作为智能电网技术的重要组成部分,对于解决传统电力系统中的故障处理问题具有重要意义。
本研究旨在设计并实现智能分布式配电网自愈控制系统,将其应用于现代电力系统中,提高系统的稳定性和可靠性,推动电力系统向智能化的方向发展。
1.2 研究意义智能分布式配电网自愈控制系统设计具有重要的研究意义。
随着智能电网技术的不断发展和应用,分布式配电网在电力系统中的地位日益重要。
传统的集中式配电网存在着单点故障易扩散、供电可靠性低、电能浪费大等问题。
而采用分布式配电网可以有效提高电网的容量利用率、抗干扰能力和供电可靠性,对于提高电网的智能化水平具有重要意义。
自愈控制系统是智能分布式配电网中的关键技术之一,它可以实现对电网故障的快速诊断和恢复,提高了电网的抗灾能力和供电可靠性。
通过设计智能分布式配电网自愈控制系统,可以有效解决传统电网中存在的故障自动定位和隔离、故障恢复时间长的问题,提高了电网的自动化水平和运行效率。
开展智能分布式配电网自愈控制系统设计的研究具有重要的现实意义和应用前景。
通过深入研究自愈控制系统的原理、系统架构设计、关键技术与算法应用等内容,可以进一步提高电网的智能化水平和运行效率,推动电力系统向智能化、可靠化、高效化方向发展。
智能分布式配电终端FTU/DTU及智能分布式FA 一、架空线路智能分布式馈线自动化终端(DAF-810馈线自动化终端)1.现状和问题传统的架空配电线路发生短路故障时,一般由变电站馈线出口断路器保护动作跳闸,并通过人工切除故障后,恢复供电。
这种方式下,人员的维护量大,并且停电时间长,供电可靠性低。
现有的配电网自动化中一般是基于电压时间型的FTU,不依赖于通讯,当故障发生时,依然由变电站馈线出口断路器保护动作跳闸,通过FTU之间时间的配合,不断的通过重合,实现故障的自动恢复。
这种方式下,如果发生的永久故障,并且故障发生在末端,会对配电网和用户设备造成多次短路冲击,而且恢复时间较长,供电可靠性依然低。
而智能分布式馈线自动化能够不依赖主站通过馈线自动化终端内部间的数据交换,实现故障点准确定位及跳闸。
图1 DAF-810馈线自动化终端FTU外观图2.产品特点广州市智昊电气技术有限公司DAF-810馈线自动化终端(分布式FTU)具有如下特点:提高故障隔离与恢复的速度:为了保证系统的快速性,由智能FTU装置间就地动态决策,快速实现故障的自动恢复,有效减少馈线出口开关和分段开关的动作次数,极大的缩短停电时间。
加强系统运行的可靠性:为了提高系统可靠性,主控FTU为动态的,当原主FTU故障时,其他FTU中编号最小的一台可自动取代原主控FTU,实现FTU协调功能。
系统基于无线通讯运行。
在通讯正常的情况下,主控FTU能够准确定位故障点,并通过预置的控制策略来进行故障的快速隔离及恢复,避免了电压时间型FTU多次尝试性重合,减少了恢复过程中故障对系统的多次冲击;在通讯异常的情况下,本装置自动按传统的电压时间型FTU逻辑运行。
通过本系统的II段近后备保护,并结合馈线出口断路器的保护、母线保护、变压器保护,实现了电网、变电站和馈线各类保护的协同配合,同时本系统还具备重合闸、解列、重构等功能,完善了智能配电网的自愈体系,提高了配电网的供电质量。
智能分布式配电网自愈控制系统设计1. 引言1.1 研究背景随着能源需求的不断增长和清洁能源的发展,智能分布式配电网自愈控制系统的研究和应用变得日益重要。
传统的配电网存在着线损率高、安全性差、供电可靠性低等问题,而智能分布式配电网自愈控制系统的引入可以有效解决这些问题。
在传统的配电网中,供电中断问题常常会导致用户用电需求无法满足,影响用户生活和生产。
而智能分布式配电网自愈控制系统可以实现故障时自动切换、快速恢复供电,提高供电可靠性和连续性。
随着我国能源需求的增长和清洁能源政策的实施,智能分布式配电网自愈控制系统的设计和应用已经成为能源领域的研究热点。
通过智能化的分布式控制和监测,可以实现配电网的快速自愈和智能调度,提高供电质量和稳定性,满足用户不同的用电需求。
对智能分布式配电网自愈控制系统进行深入研究和设计具有重要的实用价值和意义。
1.2 研究意义智能分布式配电网自愈控制系统设计的研究意义在于提高配电网的可靠性和稳定性,降低电网故障对用户的影响,为新能源接入提供支撑。
随着电力需求的增长和电网规模的不断扩大,电力系统的安全性和可靠性成为迫切需要解决的问题。
智能分布式配电网自愈控制系统设计的研究可以有效地提高电网的自愈能力,快速地恢复电网故障,减小故障范围,减少停电时间,提高供电可靠性。
智能分布式配电网自愈控制系统设计能够实现对电网设备和系统运行状态的实时监测和智能控制,提高电网运行的灵活性和自适应性,为未来智能电网的建设奠定基础。
研究智能分布式配电网自愈控制系统设计具有重要的现实意义和深远的发展前景。
通过不断完善自愈控制系统设计,可以提高配电网的自动化水平,提高电网运行效率,降低运行成本,为电力系统的可持续发展和健康运行提供坚实的技术支持。
1.3 研究目的本研究旨在设计智能分布式配电网自愈控制系统,通过引入先进的信息技术和智能算法,实现对配电网故障的自动定位和隔离,并通过智能控制方法实现故障恢复或转移,从而提高配电网的可靠性和供电质量。
智能配电系统方案第一点:智能配电系统概述智能配电系统是一种集成了现代电力电子技术、通信技术和计算机技术的电力管理系统,它通过对电网进行实时监测、分析、控制和优化,实现了对电力系统的高效、可靠和智能的管理。
智能配电系统主要由配电自动化设备、通信网络、数据处理与分析平台等多个部分组成。
在智能配电系统中,配电自动化设备起到了核心作用。
这些设备包括智能开关、故障检测器、电压电流互感器等,它们能够实时监测电网的运行状态,并对电网进行自动控制。
通过这些设备的配合,智能配电系统能够实现对电网的远程监控、自动故障隔离、自动重合闸等功能,大大提高了电网的可靠性和稳定性。
通信网络是智能配电系统的另一个重要组成部分。
它负责将配电自动化设备收集到的数据传输到数据处理与分析平台,同时也将控制指令从数据处理与分析平台传输到配电自动化设备。
通信网络的安全稳定运行对于智能配电系统的高效运行至关重要。
数据处理与分析平台是智能配电系统的智慧大脑。
它通过对收集到的数据进行处理和分析,实现了对电网运行状态的实时监测和预测,以及对电网运行参数的优化调整。
通过数据处理与分析平台,智能配电系统能够实现对电网的智能调度,提高电网的运行效率和节能效果。
第二点:智能配电系统的应用智能配电系统在电力行业的应用越来越广泛,它为电力行业带来了许多好处。
首先,智能配电系统能够提高电网的可靠性和稳定性。
通过对电网进行实时监测和自动控制,智能配电系统能够快速响应电网中的故障和异常情况,实现故障的快速隔离和恢复,减少停电时间和停电范围,提高电网的供电可靠性。
其次,智能配电系统能够提高电网的运行效率和节能效果。
通过对电网运行数据进行实时监测和分析,智能配电系统能够对电网的运行状态进行实时优化调整,实现电网运行参数的最佳匹配,提高电网的运行效率和节能效果。
最后,智能配电系统能够提高电力行业的管理水平和决策能力。
通过对电网运行数据的实时监测和分析,智能配电系统能够为电力行业提供准确、及时的运行数据和分析结果,帮助电力行业做出更科学、合理的决策,提高电力行业的管理水平和决策能力。
智能分布式配电解决方案1 系统网架和配置说明配电站1配电站2配电站3配电站4变电站1变电站2如上图所示:1. 供电模式:电缆线路、手拉手、开环运行2. 供电站2个:变电站1和变电站2,变电站分别配断路器甲、乙3. 配电站4个:配电站进线和出线配的都是负荷开关4. 系统常开点(联络开关):配电站3的“负6”5. 变电站1和2的二次配置:智能RTU500,2个网口,3个串口,可选BI 、BO 、AI 、AO 功能6. 配电站1到4的二次配置:智能DTU500,2个网口,3个串口,可选BI 、BO 、AI 、AO 功能,自由配置,支持“2进1出”,“2进2出”,“2进8出”,“2进16出”等典型配置 7. 通讯模式:工业网络,宜采用光纤环网2故障处理案例分析2.1 第1次故障第1次配电站1配电站2配电站3配电站4如上图所示,第1次故障处理过程:1.保护动作过程:a)系统发生故障,变电站1的保护设备首先动作,跳开断路器甲2.过流检测过程:a)配网自动化系统,在甲、负1、负2、负3、负4,共5处检测到过流信号b)系统中的任何节点(变电站RTU、配电站的DTU)都通过网络,向系统内的其他节点汇报本地的过流信息和状态信息c)系统中的任何节点(变电站RTU、配电站的DTU)都通过网络,接收到系统内其他节点发送的过流信息和状态信息。
3.故障定位过程:a)变电站的DA 系统接收到保护装置的事故总信号、断路器甲的分闸信号和甲处的过流信号,可以判定配电环发生故障,需要进行故障定位。
b)相同时刻,所有的配电站根据本地信息和系统中其他节点的信息,已经知道系统中发生故障,并开始进行故障定位过程。
c)最终故障定位结果:故障发生在配电站2和配电站3间4.故障隔离过程:a)系统故障定位成功,同时变电站的断路器甲已经处于分闸位置,启动故障隔离过程。
b)配电站2分开负4进行故障隔离c)配电站3分开负5进行故障隔离5. 非故障区恢复供电过程:a) 故障隔离成功,变电站1开始合上断路器甲,对配电站1和配电站2恢复供电 b) 配电站3通过合上负6,对配电站3进行转供电恢复,注意:在通过负6进行非故障区恢复时,需要判断配电站3转供是否会导致变电站2过载,如果变电站2过载,那么就不能通过负6进行恢复。
智能配电网分布式馈线自动化技术电力是社会重要的基础设施,能够维持社会安定,更好的发展社会经济。
配电网作为电力传输网络,对于其安全运行已经引起更多人的重视。
而近年来,随着我国供电负荷的不断增加,智能化配电网应运而生,并已经成为电力事业的核心。
标签:智能配电网;分布式;馈线自动化技术因配电网接线比较负责,在各种因素的影响下不利于提高配电网运行效率,如接地短路和相间故障等,不利于系统稳定和可靠的供电。
分布式馈线自动化技术作为一种重要的智能配电网技术,该技术的运用有助于促进智能配电网自动化水平的显著提高,在智能监测与自动装置的帮助下能够对配电网运行进行有效的监视,系统一旦出现故障,则需要立即采取必要的隔离措施,配电网自愈能力也能够获得有效提高,在短时间之内系统也能够恢复到安全运行状态[1]。
1 智能配电网分布式馈线自动化技术介绍1.1智能配电网当下,随着科技的进步与发展,新型技术与设备逐渐在各个行业中大量涌现出来。
智能配电网主要是在配电网基础上增加网络信息传输设备。
关于数据的处理主要借助各种计算机软件,可以统计全部用电单元数据,然后开展集成处理,最终形成一定的图形或表格。
1.2分布式馈线与输电线路相比,馈线具有很大的不同,主要是为了传输信息,对整个配电网的实际运行状态进行监控能够,然后针对存在的问题快速反馈、处理。
因整体配电网具有较大的范围,涉及多个用电单位,为更好的监控整体配电网,施工人员有必要做好馈线的合理分布连接工作,最终有助于全体馈线的形成,即所谓的分布式馈线[2]。
1.3自动化技术该技术被应用到多个方面,如数据监控、反馈、处理以及结果执行。
这类操作在控制配电网设备线路时主要借助网络通信与硬件控制,在短时间内实现对相关故障的处理,为能够安全、稳定的运行整个配电网十分有意义。
2 技术应用2.1配电网整体监控随着智能配电网的相继提出和实现,在一定程度上能够安全、稳定的运行整体配电网。
配电网整体监控是一种比较常见且应用最为广泛的智能配电网分布式馈线自动化技术,由于配电网通常会涉及较多的用电单位和广泛的范围,供电故障一旦出现,则必然会造成大范围影响。
智能配电网分布式馈线自动化技术概述智能配电网是一种基于信息技术和通信技术的电力系统,它通过将传统的单一控制中心改为分布式控制和管理,实现电力系统的自动化、智能化和可靠性的提高。
而其中的分布式馈线自动化技术则是智能配电网中一个重要的组成部分。
分布式馈线自动化技术旨在实现对配电网中各馈线的检测、分析、控制和优化调度等功能。
它通过使用传感器、执行器以及通信和控制系统等技术手段,实时获取和处理配电网的各种数据,并根据系统需求进行相应的操作。
在传统的配电网中,馈线的自动化控制主要是由集中的控制中心实现的,而分布式馈线自动化技术则改变了这一模式。
首先,它使用分散在各个馈线节点上的智能终端设备,实时监测和采集电网运行状态的各种数据。
这些数据包括电压、电流、功率、负荷、开关状态等信息。
然后,通过通信系统将这些数据传输到集中的控制中心,并进行实时的分析和处理。
最后,根据分析结果,控制中心通过通信系统下发相应的控制命令到馈线节点上的智能终端设备,实现对电网的自动控制。
分布式馈线自动化技术的一个重要功能是实时监测和故障检测。
它能够通过智能终端设备实时获取电网的各种运行数据,对电网进行实时监测。
同时,它还可以通过对数据进行分析,快速准确地检测出电网中的故障,并根据故障类型和位置进行定位和诊断。
分布式馈线自动化技术还具有智能分合闸功能。
通过智能终端设备,它可以实时感知电网的运行状态,并根据运行状态进行分合闸操作。
当电网出现异常或超负荷等情况时,它可以自动进行分闸操作,保护电网和设备的安全。
同时,当故障排除或负荷恢复时,它可以自动进行合闸操作,恢复供电。
此外,分布式馈线自动化技术还包括对电网的优化调度功能。
它可以通过智能终端设备收集各馈线的负荷数据,并根据负荷情况进行合理调度。
它可以实现对电网的负荷均衡、优化供电路径选择、降低电网损耗等功能,提高电网的运行效率和经济性。
总之,分布式馈线自动化技术是智能配电网中的重要组成部分,它通过使用分散在各个馈线节点上的智能终端设备,实现对电网的实时监测、故障检测、分合闸操作和优化调度等功能,进一步提高电力系统的自动化、智能化和可靠性。
智能分布式配电解决方案
1 系统网架和配置说明
配电站1配电站2配电站3配电站4变电站1变电站2
如上图所示:
1. 供电模式:电缆线路、手拉手、开环运行
2. 供电站2个:变电站1和变电站2,变电站分别配断路器甲、乙
3. 配电站4个:配电站进线和出线配的都是负荷开关
4. 系统常开点(联络开关):配电站3的“负6”
5. 变电站1和2的二次配置:智能RTU500,2个网口,3个串口,可选BI 、BO 、AI 、AO 功能
6. 配电站1到4的二次配置:智能DTU500,2个网口,3个串口,可选BI 、BO 、AI 、AO 功
能,自由配置,支持“2进1出”,“2进2出”,“2进8出”,“2进16出”等典型配置 7. 通讯模式:工业网络,宜采用光纤环网
2故障处理案例分析
2.1 第1次故障
第1次
配电站1配电站2配电站3配电站4
如上图所示,第1次故障处理过程:
1.保护动作过程:
a)系统发生故障,变电站1的保护设备首先动作,跳开断路器甲
2.过流检测过程:
a)配网自动化系统,在甲、负1、负2、负3、负4,共5处检测到过流信号
b)系统中的任何节点(变电站RTU、配电站的DTU)都通过网络,向系统内的其他节点汇
报本地的过流信息和状态信息
c)系统中的任何节点(变电站RTU、配电站的DTU)都通过网络,接收到系统内其他节点
发送的过流信息和状态信息。
3.故障定位过程:
a)变电站的DA 系统接收到保护装置的事故总信号、断路器甲的分闸信号和甲处的过流信
号,可以判定配电环发生故障,需要进行故障定位。
b)相同时刻,所有的配电站根据本地信息和系统中其他节点的信息,已经知道系统中发生
故障,并开始进行故障定位过程。
c)最终故障定位结果:故障发生在配电站2和配电站3间
4.故障隔离过程:
a)系统故障定位成功,同时变电站的断路器甲已经处于分闸位置,启动故障隔离过程。
b)配电站2分开负4进行故障隔离
c)配电站3分开负5进行故障隔离
5. 非故障区恢复供电过程:
a) 故障隔离成功,变电站1开始合上断路器甲,对配电站1和配电站2恢复供电 b) 配电站3通过合上负6,对配电站3进行转供电恢复,注意:在通过负6进行非故障区
恢复时,需要判断配电站3转供是否会导致变电站2过载,如果变电站2过载,那么就不能通过负6进行恢复。
2.2 第2次故障
配电站1配电站2配电站3配电站4变电站1变电站2
第1次
第2次
如上图所示,第2次故障处理过程:
1. 保护动作过程:
a) 系统发生故障,变电站1的保护设备首先动作,跳开断路器甲 2. 过流检测过程:
a) 配网自动化系统,在甲、负1、负2,共3处检测到过流信号 b) 其他处理同第1次故障 3. 故障定位过程:
a) 最终故障定位结果,故障发生在配电站1和配电站2间 b) 其他处理同第1次故障 4. 故障隔离过程:
a) 配电站1分开负2进行故障隔离 b) 配电站2分开负3进行故障隔离 c) 其他处理同第1次故障 5. 非故障区恢复供电过程:
a) 故障隔离成功,变电站1开始合上断路器甲,对配电站1恢复供电
b)第1次故障尚未排除,系统处于检修状态,系统中没有可以合闸的联络开关,必须禁止
负4、负5合闸,防止故障扩大。
3方案说明
与主站集中式配电自动化方案相比而言,在智能分布式配电自动化方案中减少了主站和子站间的通讯环节,从而避免了自动化功能对主站和子站间通讯的依赖性,提高了系统可靠性,同时由于减少了部分的通信环节,系统性能得以提升,可以有效加快系统故障定位、故障隔离和非故障区恢复的过程,减少用户停电时间。
在智能分布式方案中,采用国际标准IEC61850的GOOSE机制,有效解决节点间的对等通讯问题,避免私有通信协议的局限性和狭义性,通信效率更高、配置工具更规范、工程施工更简单、系统的可维护性高、具有极高的扩展性。
智能分布式配电自动化方案,符合当前配网生产的实际情况,有效解决电缆线路“手拉手”、“开环”运行模式的配电问题。
附件:组网方案
组网说明:
1.划分分布式网络自治区,每条电缆线路,每组架空线都属于一个独立的分布式自治区。
2.每个节点部署一台两层交换机,每个自治区内所有的交换机组成自愈式光纤环网。
3.在变电站部署三层交换机,对下接入所有出线的二层交换机,对上接入SDH主干网。