当前位置:文档之家› (整理)微积分2复习提纲1

(整理)微积分2复习提纲1

(整理)微积分2复习提纲1
(整理)微积分2复习提纲1

微积分复习提纲

一、多元函数微分学及其应用

1、会求多元函数的偏导数,进而会求函数的全微分df 或者梯度函数f ①多元显函数的偏导数,见P16 例1---例3,P24习题1 ②多元抽象函数的偏导数,见P28 例5---例7,P36 习题3 ③高阶偏导数,见P19 例8,P24习题2,P36 习题4

④复合函数的偏导数,见P26例1,例3,例4,P36习题1,2 2、会求由方程确定的隐函数的偏导数 ①“显”方程确定的隐函数求偏导数,(公式法),见P34 例12,P36习题6,7 ②抽象方程确定的隐函数求偏导数,(直接法),见P34 例13,P36习题8

③由方程组()()???==0,,0,,z y x G z y x F 确定的隐函数???==)()(x z z x y y 的导数dx dz dx dy ,,(直接法:在方

程两端同时对x 求导,求导过程中把z y ,都看做是x 的函数,然后解方程组即可), 见P35例14,P37习题9

④由方程组()()???==0,,,0,,,v u y x G v u y x F 确定的隐函数???==),()

,(y x v v y x u u 的偏导数(直接法)

见P37习题9

3、多元函数微分学的几何应用

①空间曲线??

?

??===)()()(x z x y t x ωφ?在点()0000,,z y x M 处的切线方程及法平面方程,

见P46 例1,例2, P50习题1、2

②空间曲线()()???==0,,0

,,z y x G z y x F 在点()0000,,z y x M 处的切线方程及法平面方程

见P46 例3, P50习题2

③曲面()0,,=z y x F 在点()0000,,z y x M 处的切平面方程与法线方程 见P46 例5,例6, P50习题3 4、方向导数与梯度

二、多元函数积分学及其应用 1、二重积分的计算

步骤:1)画出积分区域D ,

2)根据积分区域选择适当的坐标系来计算此二重积分 3)化二重积分为二次积分

4)做两次定积分,计算此积分的值

注:多元函数对某个自变量积分的时候,要把其他的自变量看做常数。

???

???

?→?→→???→??D rdrd r r f y x x y 化二重为二次积分积分化为极坐标系下的二重极坐标系化二重为二次积分积分再对先对积分再对先对选择积分次序直角坐标系θθθ)sin ,cos ( 注:要会做改变二次积分的积分次序,并计算此二次积分的值这种题型,见半期考试试题

2、三重积分的计算

步骤:1)根据题意写出积分区域Ω的边界曲面的方程

2)根据积分区域选择适当的坐标系来计算此三重积分

?????????→→???????→Ω→→→→??????化三重积分为三次积分标系下的三重积分将三重积分化为球面坐

球面坐标系看作常数的情况的方程中将的方程是围围先二后一法线”围消方程上下面,无用口诀“含先一后二法选择积分次序直角坐标系21

21),,(z ),,()

,(),(c c D z D y x y x z dxdy

z y x f dz D dz z y x f dxdy D z z z ??

3)化三重积分为三次定积分

4)做三次定积分,计算此积分的值 3、曲线积分的计算——化曲线积分为定积分 1)第一类曲线积分(对弧长的曲线积分)?L

ds y x f ),(

步骤:①写出积分弧段L 的参数方程???==)

()

(t y y t x x ,并确定参数的取值范围b t a ≤≤

②根据L 的参数方程写出弧长元素dt dt dy dt dx ds 2

2

??

?

??+??? ??=

③根据L 的参数方程化曲线积分?L

ds y x f ),(为对参数t 的定积分

?

?

??

?

??+??? ??=b

a

L

dt dt dy dt dx t y t x f ds y x f 2

2))(),((),(

2)第二类曲线积分(对坐标的曲线积分)??+=?L

L

dy y x Q dx y x P dl y x A ),(),(),( 方法一:直接化为定积分

步骤:①写出积分弧段L 的参数方程???==)

()

(t y y t x x ,并确定L 的起点和终点对应的参

数值?????→→↓

↓b

a t B A L ::

②根据L 的参数方程化曲线积分??+=?L

L

dy y x Q dx y x P dl y x A ),(),(),(为

对参数t 的定积分:

[]dt t y t y t x Q t x t y t x P dy y x Q dx y x P dl y x A b

a

L

L

??

?'?+'?=+=?)())(),(()())(),((),(),(),(

方法二:利用曲线积分与路径无关及格林公式 步骤:①找出),(),,(y x Q y x P ,并求

x

Q y

P ????, ②若

x

Q y P ??=??在一个单连通区域D 上恒成立,则曲线积分?+L dy

y x Q dx y x P ),(),(与路径无关,从而我们可以选择平行于坐标轴的折线段CB AC →计算此曲线积分:???+=+CB

AC

L

dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(

如图选择折线段作为积分路径:

③利用方法一把这两个曲线积分?AC

dx y x P ),(,?CB

dy y x Q ),(分别化为两个定积分

即可求出,即

(,)(,)(,)(,)(,)(,)c d

L

AC

CB

a

b

P x y dx Q x y dy P x y dx Q x y dy P t b dt Q c t dt +=+=+?

????

④若

x

Q

y P ??≠??在一个单连通区域D 上恒成立,则曲线积分?+L dy

y x Q dx y x P ),(),(与路径有关,可用格林公式求解

⑤添补直线段BC:???==d y t x ()a c t →:和CA:???==t y a

x ()b d t →:,则L 与BC ,CA 构

成一条封闭的曲线,记此闭曲线围成的平面有界闭区域为D 。如图所示:

)

d

利用格林公式及第二类曲线积分的垂直投影性得:

???

?+-+-+=+++CA

BC

CA

BC L L

Qdy Pdx Qdy Pdx Qdy Pdx dy y x Q dx y x P ),(),(

????--???? ?

???-??=CA BC D dy y x Q dx y x P dxdy y P x Q ),(),(

dt t a Q dt d t P dxdy y P x Q b d a c D ????--????

?

???-??=),(),( 注:计算曲线积分的时候,一般先用方法一把曲线积分转化为定积分,当这个定积分不容易求解时,就改用方法二求解

4、曲面积分的计算——化曲面积分为二重积分 1)第一类曲面积分(对面积的曲面积分)??S

dS z y x f ),,(

步骤:①将积分曲面S 的方程0),,(=z y x F 改写为:),(y x z ?=; ②画出积分曲面S 在xoy 面上的投影区域D ; ③根据积分曲面S 的方程写面积元素:

dxdy dxdy y z x z dS y x 2

22

2

)()(11??'+'+=?

??

? ????+??? ????+= ④化曲面积分为二重积分:

dxdy y x y x f dS z y x f y x D

S

22

)()(1))

,(,,(),,(???'+'+=????

2)第二类曲面积分(对坐标的曲面积分)

????++=?→

→S

S

dxdy z y x R dzdx z y x Q dydz z y x P S d z y x A ),,(),,(),,(),,(

方法一:(直接化曲面积分为二重积分)

步骤:①将积分曲面S 的方程0),,(=z y x F 改写为:),(y x z ?=,并指明此有向曲面S 取上侧还是下侧;

②画出积分曲面S 在xoy 面上的投影区域D ; ③化曲面积分为二重积分:

??++S

dxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(

()()()()????

???'-'-?-'-'-?+=????取下侧时

当取上侧时当S dxdy y x y x R y x y x Q y x y x P S dxdy y x y x R y x y x Q y x y x P D

y x D

y x 1,,)),(,,()),,(,,()),,(,,(1,,)),(,,()),,(,,()),,(,,(??????????

()()[]

()()[]

???????+'-?+'-?-+'-?+'-?+=????取下侧时

当取上侧时当S dxdy

y x y x R y x y x Q y x y x P S dxdy y x y x R y x y x Q y x y x P D

y x D

y x )),(,,()),(,,()),(,,()),(,,()),(,,()),(,,(??????????特别地,???????-+=??????D

D

S S dxdy y x y x R S dxdy y x y x R dxdy z y x R 取下侧时

当取上侧时

当)),(,,()),(,,(),,(??

注:1)计算出此二重积分的值就为所求的曲面积分的值;

2)若此二重积分不好计算或是积分曲面是由几个部分组成,分区面做积分比较麻烦的时候可以考虑利用高斯公式求解。

方法二:利用高斯公式 分情况讨论:

ⅰ)若积分曲面S 是一个取外侧的封闭的曲面,且),,(z y x P ,),,(z y x Q ,),,(z y x R 及其偏导数在此闭曲面围成的空间有界闭区域Ω上连续,则由高斯公式有:

dv z R y Q x P dxdy z y x R dzdx z y x Q dydz z y x P S ?????Ω????

?

???+??+??=++),,(),,(),,(

ⅱ)若积分曲面S 不是封闭的曲面,则不能直接利用高斯公式,一般需要添补平面∑:c z =()为常数c ,并指明∑所取的侧,使得S 与∑围成一个取外侧的闭曲面,记此闭曲面围成的空间有界闭区域为Ω,从而:

??++S

dxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(

????∑

+++-++=

dxdy

z y x R dzdx z y x Q dydz z y x P dxdy z y x R dzdx z y x Q dydz z y x P S ),,(),,(),,(),,(),,(),,(?????∑Ω-????

????+??+??=dxdy z y x R dv z R y Q x P ),,( (此处用到了第二类曲面积分的垂直投影性)

5、多元函数积分学的应用

1)的面积D d D

=??σ1(用于求平面图形的面积)

2)的体积Ω=???Ω

dV 1(用于求立体的体积)

3)的弧长L ds L

=?1(用于求曲线的弧长)

4)的面积曲面∑=??∑

dS 1(用于求曲面的面积)

5)物理应用

三、无穷级数 一)常数项级数

1、正项级数∑∞

n u )0(≥n u 的敛散性的判定

步骤:

1) 做极限n n u ∞

→lim ,若0lim ≠∞

→n n u ,则此级数发散;若0lim =∞

→n n u ,则?2)

2) 根据一般项的形式选择适当的方法?????

?

?????

?→根值审敛法比值审敛法

极限形式对一般项放缩一般形式比较判别法判断其敛散性。 2、交错级数∑∞

=--11

)

1(n n n u 或∑∞

=-1

)1(n n n u )0(≥n u 的敛散性的判定

莱布尼兹判别法: ①找到n u

②做极限n n u ∞→lim ,若0l i m ≠∞→n n u ,则此交错级数发散;若?????≥=+∞

→1

0lim n n n n u u u ,则此交错级

数收敛。

3、判断一般项级数∑∞

=1n n u ()n u 为任意常数是否收敛,若收敛,是条件收敛还是绝

对收敛?

解:1)判断1

n n u ∞

=∑的敛散性,(注:1

n n u ∞

=∑是一个正项级数)

2)若1n n u ∞=∑收敛,则作结论:∑∞

=1n n u 收敛,且绝对收敛。

3)若1

n n u ∞

=∑发散,则还要讨论∑∞

=1

n n u 本身的敛散性。

11lim 0n n n n n n u u u ∞

→∞∞==?≠?

?

??

∑∑若,则该级数发散

一般是个交错级数,用莱布尼兹判别法判定其收敛,从而收敛且条件收敛。

二)幂级数 1、

2、求幂级数n n a x ∞

∑的收敛域。

(先求收敛半径R ,再讨论端点x R =±处幂级数的敛散性) 3、求幂级数0n n n a x ∞

=∑的和函数()S x 。

1)

2)充分利用等比级数的求和公式及幂级数可用逐项求导或逐项积分的性

质,先求0()()x

S x S t dt '?或,再求()S x 。

3)利用幂级数展开式()0e (,)!

n

x

n x x n ∞

==∈-∞+∞∑

计算系数中含有阶乘的幂级数的和函数()S x 。

4、

5、将函数()f x 用x 的幂级数逼近或将()f x 展开成x 的幂级数

方法:①利用已知的幂级数展开式,通过变量代换求()f x 的幂级数展开式;

②先求0()()x

f x f t dt '?或的幂级数展开式,再利用幂级数可以逐项积分或逐

项求导得性质求出()f x 的幂级数展开式。 6、

7、将函数()f x 用0x x -的幂级数逼近或将()f x 展开成0x x -的幂级数

方法:利用已知的幂级数展开式,通过变量代换将()f x 展开成0x x -的幂级数

5、幂级数的应用——用于求数项级数∑∞

=1n n u 的和

关键找数项级数∑∞=1n n u 对应的幂级数0n

n n a x ∞=∑,并求幂级数0

n n n a x ∞

=∑的和函数()S x ,

从而0

010()n n n x x n n u a x S x ∞

∞===??

== ?

??∑∑。

三)

四)傅里叶级数 1、

2、已知()f x ,求()f x 的傅里叶级数在点0x x =处的和0()S x 。

3、将()

f x用傅里叶级数逼近。4、

微积分第一章

高等数学教案 、

第一章 函数、极限与与连续 本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。具体的要求如下: 1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中 逐步加深理解,对于给出ε求N 或δ不作过高要求)。 2. 掌握极限四则运算法则。 3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。 4. 了解无穷小、无穷大及无穷小的阶的概念。能够正确运用等价无穷小求极限。 5. 理解函数在一点连续的概念,理解区间内(上)连续函数的概念。 6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。 7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。 第一章共12学时,课时安排如下 绪论 §1.1、函数 §1.2初等函数 2课时 §1.4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1.4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时 绪论 数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科。数学具有高度的抽象性、严密的逻辑性和应用的广泛性。 关于数学应用和关于微积分的评价: 恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里。 华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。 张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。航天飞机,宇宙飞船等现代化交通工具都是微积分的直接后果。数学一下子到了前台。数学在人类社会的第二次浪潮中的作用比第一次浪潮要明显多了(《数学通报》数学与文化2001.1.封二) 初等数学与高等数学的根本区别:用初等数学解决实际问题常常只能在有限的范围内孤立的静止的观念来研究,有很多问题不能得到最终答案,甚至无法解决。高等数学用运动的辨正观点研究变量及其依赖关系,极限的方法是研究变量的一种基本方法,贯穿高等数学的始终。用高等数学解决实际问题,计算往往比较简单,且能获得最终的结果。

微积分2期末复习提纲答案

2015年6月微积分2期末复习提纲 1、 本学期期末考试考察的知识点如下: 第六章隐函数的偏导数求解P194例9-10,条件极值应用题(例10)求解,约占12% 第七章二重积分(二重积分的概念,比较大小P209课后习题,直角坐标系下的交换积分次序P212例题3&P213习题1(7),直角坐标与极坐标系下的二重积分计算)约占26%; 第八章无穷级数(无穷级数的概念,几何级数,P-级数,正项级数的比较判别法和比值判别法,任意项级数的敛散性,幂级数的收敛半径及收敛域,求幂级数的和函数,间接 展开以 1 ,,ln(1)1x e x x +-为主)约占35%; 第九章微分方程(微分方程及其解的概念,一阶分离变量,齐次和一阶线性微分方程求解(通解和特解),二阶常系数齐次,非齐次微分方程的通解(三角型的不要求)。约占27%. 2、样题供参考(难度、题型) 一、填空题:(14小题) 1、若D :224x y y +≤,则 D d σ=??4π。(表示求解积分区域D 的面积——圆) ● 或D :9122≤+≤y x ,则 ??=D dxdy 8π。(表示求解积分区域D 的面积——圆环) ● 或2 2 :4D x y y +≤,将 dxdy y D ??化为极坐标系下的累次积分4sin 20 sin d r dr π θ θθ? ? . (判断θ的范围作为上下限,判断r 的范围作为上下限,y 用rsin θ代入) 7.3极坐标系下二重积分的计算 2、交换积分次序 1 1 (,)y dy f x y dx = ? ?1 (,)x dx f x y dy ? ?。 (依题得:010<

大学微积分l知识点总结 二

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1(α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7)[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 ①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 数乘运算 加减运线性运 (8

释义:函数 对应:y=f(u) 说明: (11)c x dx a x a x ++??++?22ln 1 22 (12)分段函数的积分 例题说明:{} dx x ??2,1max (13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分 2.补充知识(课外补充) ☆【例谈不定积分的计算方法】☆ 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总 1、不定积分的定义及一般积分方法 (1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c (2)一般积分方法 值得注意的问题:

大学高等数学第一章函数(习题精讲)

第1章 函 数 §1.1 函数的概念与性质 1. 绝对值与不等式(0>a ,0b >) (1)x x x -≤≤;x y x y x y -≤±≤+ (2 )2 112 a b a b +≤+(调和平均值≤几何平均值≤算术平均值) 一般地,1212111n n x x x n n x x x +++≤≤ +++ (3){}max ,22a b a b a b -+=+;{}min ,22 a b a b a b -+=- 2. 函数概念与性质 对变量D x ∈的每一个确定值,变量y 按某确定规则f ,都有且只有一确定值与之对应,则称变量y 是变量x 的函数,记为()y f x =,D x ∈。 注意:定义域D 和对应规则f 是函数相等的两要素。 (1)无关性 ()()y f x f t == D t x ∈, (2)单调性 1212,,x x I x x ?∈< 1212()()()()()()f x f x f x f x f x f x ≤???≥? ?单调递增单调递减;1212()()()()()()f x f x f x f x f x f x ??严格单增严格单减 (3)奇偶性 ()() ()()()()f x f x f x y f x f x f x -=???-=-??为偶函数,对称于轴为奇函数,对称于原点 注意:函数的奇偶性是相对于对称区间而言,若定义域关于原点不对称,则不是奇/偶函数。 (4)周期性 若()()f x T f x +=,0T >,则称为)(x f 的周期。 (5)有界性 若D x ∈?,M x f ≤)(,()0>M ,则称)(x f 在D 上有界。 常用有界函数:sin 1x ≤,cos 1x ≤,(,)-∞+∞;

微积分2习题答案

一、填空题 1.设)(x P 是x 的多项式,且26)(lim 23=-∞→x x x P x ,3) (lim 0=→x x P x ,则=)(x P 2.=-++∞ →))(arcsin(lim 2 x x x x 6 π x x x 3262 3++↑ 3.=?? ? ??-∞ →3 21lim x x x 32 -e 4.设A x x ax x x =-+--→1 4 lim 31,则有=a ,=A 4,-2 5.设x x x x x f sin 2sin )(+=,则=∞→)(lim x f x 2 6.=?+→2 32031 sin sin lim x x x x x 31 7.函数) 2)(1(1+-+=x x x y 的间断点是 1=x 8.为使函数()x x x f tan 1 ?=在点0=x 处连续,应补充定义()=0f 1 9.设函数?????=≠-=00)1(3 x K x x y x 在0=x 处连续,则参数=K 3-e 10.函数???>+≤+=0 10 )(x e x a x x f x 在点0=x 处连续,则=a 2 二、单项选择题 1.设0>n x ,且n n x ∞→lim 存在,则n n x ∞ →lim ② ①0> ②0≥ ③0= ④0< 2.极限=-→1 11 lim x e x ③ ①∞ ②1 ③不存在 ④0 3.=++∞→- →x x x x x x 1 sin lim ) 1(lim 10 ④ ①e ; ②1e -; ③1e +; ④1 1e -+ 4.()() 213 ++-= x x x y 的连续区间是__________________ ② ①()()()+∞----∞-,11,22, ②[)+∞,3 ③()()+∞--∞-,22, ④()()+∞--∞-,11, 5.函数1 2 111 11+----=x x x x y 的不连续点有 ③ ①2个 ②3个 ③4个 ④4个以上 6.下列函数中,.当0→x 时,与无穷小量x 相比是高阶无穷小量的是___________;是等价无穷小量的是__________________ ①,② ①x cos 1- ②2 x x + ③x ④x 2sin

7.微积分基本定理练习题

7、微积分基本定理 一、选择题 1.??0 1(x 2 +2x )d x 等于( ) A.13 B.23 C .1 D.43 2.∫2π π(sin x -cos x )d x 等于( ) A .-3 B .-2 C .-1 D .0 3.自由落体的速率v =gt ,则落体从t =0到t =t 0所走的路程为( ) A.13gt 20 B .gt 2 0 C.12gt 20 D.16gt 20 4.曲线y =cos x ? ????0≤x ≤3π2与坐标轴所围图形的面积是( ) A .4 B .2 C.5 2 D .3 5.如图,阴影部分的面积是( ) A .2 3 B .2- 3 C.323 D.35 3 6.??0 3|x 2-4|d x =( ) A.213 B.223 C.233 D.25 3 7.??241 x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 8.若??1a ? ?? ??2x +1x d x =3+ln2,则a 等于( ) A .6 B .4 C .3 D .2 9.(2010·山东理,7)由曲线y =x 2 ,y =x 3 围成的封闭图形面积为( ) A.112 B.14 C.13 D.7 12 10.设f (x )=??? ?? x 2 0≤x <12-x 1

11.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________. 12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 13.求曲线y =sin x 与直线x =-π2,x =5 4π,y =0所围图形的面积为________. 14.若a =??02x 2 d x ,b =??02x 3 d x ,c =??0 2sin x d x ,则a 、b 、c 大小关系是________. 三、解答题 15.求下列定积分: ①??0 2(3x 2+4x 3 )d x ; ② sin 2 x 2 d x . 17.求直线y =2x +3与抛物线y =x 2 所围成的图形的面积. 18.(1)已知f (a )=??0 1(2ax 2 -a 2 x )d x ,求f (a )的最大值; (2)已知f (x )=ax 2 +bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0 1f (x )d x =-2,求a ,b ,c 的值. DBCDCCDDAC 11. 13 12. 23(1132-1) 13.4-2 2 [解析] 所求面积为 =1+2+? ?? ?? 1-22=4-22. 14.[答案] c

(微积分)第一章

第一章 习题1-1 1. 用区间表示下列不等式的解. ⑴ x%9; (2) x — 1 1; (3) (x-1)(x 2) :0; (4) 0 . x 1:: 0.01 解(1)原不等式可化为(x —3)(x+3)苴0 ,其解为—3苴x<3,用区间表示是[-3,3]. (2) 原不等式可化为x—1》1或x—1<—1 ,其解为x》2或x<0 ,用区间表示是 (-8 ,0^(2,+ 8 ). (3) 原不等式的解为—2 e x <1,用区间表示是(-2,1). -0.01 :x 1 :0.01 口-1.0 V: x :-0.99 (4) 原不等式可化为4 即/ x 1=0 x=1 用区间表示是(-1.01,-1) U (-1,-0.99). 2. 用区间表示下列函数的定义域: (1) y =[ - .1 -x2;(2) y = arcsin(1 - x) ig(ig x); x (3) y = . 6 -5x -x2 ---------- - --- . ln(2 -x) a - x=0 r x = 0 解⑴要使函数有意义,必须{… 即4 1-x2-0 -1%&1 所以函数的定义域为[-1,0) U (0,1]. (2)要使函数有意义,必须J lg x A 0 即< x A1 x 0 x 0

所以函数的定义域是1

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求∞ ∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限;

⑻利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章导数与微分 一、本章提要 1.基本概念 瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线.

大一上微积分知识点重点(供参考)

大一(上) 微积分 知识点 第一章 函数 一、A ?B=?,则A 、B 是分离的。 二、设有集合A 、B ,属于A 而不属于B 的所有元素构成的集合,称为A 与B 的差。 A-B={x|x ∈A 且x ?B}(属于前者,不属于后者) 三、集合运算律:①交换律、结合律、分配律与数的这三定律一致; ②摩根律:交的补等于补的并。 四、笛卡尔乘积:设有集合A 和B ,对?x ∈A,?y ∈B ,所有二元有序数组(x,,y )构成的集合。 五、相同函数的要求:①定义域相同②对应法则相同 六、求反函数:反解互换 七、关于函数的奇偶性,要注意: 1、函数的奇偶性是就函数的定义域关于原点对称时而言的,若函数的定义域关于原点不对称,则函数无奇偶性可言,那么函数既不是奇函数也不是偶函数; 2、判断函数的奇偶性一般是用函数奇偶性的定义:若对所有的)(f D x ∈,)()(x f x f =-成立,则)(x f 为偶函数;若对所有的)(f D x ∈,)()(x f x f -=-成立,则)(x f 为奇函数;若)()(x f x f =-或)()(x f x f -=-不能对所有的)(f D x ∈成立,则)(x f 既不是奇函数也不是偶函数; 3、奇偶函数的运算性质:两偶函数之和是偶函数;两奇函数之和是奇函数;一奇一偶函数之和是非奇非偶函数(两函数均不恒等于零);两奇(或两偶)函数之积是偶函数;一奇一偶函数之积是奇函数。 第二章 极限与连续 一、一个数列有极限,就称这个数列是收敛的,否则就称它是发散的。 二、极限存在定理:左、右极限都存在,且相等。 三、无穷小量的几个性质: 1、limf(x)=0,则 2、若limf(x)=)(lim x g =0,则0)()(lim =+x g x f 3、若limf(x)=)(lim x g =0,则lim )(x f ·)(x g 0= 4、若g(x)有界(|g(x)|<M ),且limf(x)=0,则limf(x)·g(x )=0 四、无穷小量与无穷大量的关系: ①若 y 是无穷大量,则y 1是无穷小量; ②若y (y ≠0)是无穷小量,则y 1是无穷大量。

微积分习题集带参考答案(2)

微积分习题集带参考答案 一、填空题(每小题4分,本题共20分) ⒈函数x x x f -++=4) 2ln(1 )(的定义域是]4,1()1,2(-?--. ⒉若24sin lim 0=→kx x x ,则=k 2 . ⒊曲线x y e =在点)1,0(处的切线方程是1+=x y . ⒋ =+?e 1 2 d )1ln(d d x x x 0 . ⒌微分方程1)0(,=='y y y 的特解为x y e =. 6函数24)2(2 -+=+x x x f ,则=)(x f 62 -x . 7.当→x 0时,x x x f 1 sin )(=为无穷小量. 8.若y = x (x – 1)(x – 2)(x – 3),则y '(1) = 2-. 9. =+-? -x x x d )135(1 1 32. 10.微分方程1)0(,=='y y y 的特解为x y e =. 11.函数x x x f 2)1(2 +=+,则=)(x f 12 -x . 1⒉=∞ →x x x 1 sin lim 1 . 1⒊曲线x y =在点)1,1(处的切线方程是2 121+= x y . 1⒋若 ?+=c x x x f 2sin d )(,则=')(x f in2x 4s -. 1⒌微分方程x y xy y cos 4)(7) 5(3 =+''的阶数为 5 . 16.函数74)2(2 ++=+x x x f ,则=)(x f 32 +x . 17.若函数???=≠+=0, ,2)(2x k x x x f ,在0=x 处连续,则=k 2 . 18.函数2 )1(2+=x y 的单调增加区间是).1[∞+-. 19. = ? ∞ -dx e x 0 22 1 . 20.微分方程x y xy y sin 4)(5) 4(3 =+''的阶数为 4 . 21.设函数54)2(2 ++=+x x x f ,则=)(x f 12 +x . 22.设函数????? =-≠+=0, 10 ,2sin )(x x k x x x f 在x = 0处连续,则k =1-.

微积分基本定理 教案

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基 本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-?? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差

大学数学微积分第1章练习题

2018-2019 大学数学(B1) 练习题 第一章 一、选择题 1. 下列函数中不是基本初等函数的是…………………………………………( ) A. 反三角函数 B. 符号函数 C. 对数函数 D. 幂函数 2. 下列函数是无界函数的是……………………………………………………( ) A.x y sin = B.x y arctan = C.x y 1 sin = D.3x y = 3. 下列各组函数中相等的是……………………………………………………( ) A.2 ln )(,ln 2)(x x g x x f == B.0 )(,1)(x x g x f == C.1)(,11)(2-=-?+= x x g x x x f D.2)(|,|)(x x g x x f == 4. 下列函数中为奇函数的是……………………………………………………( ) A.)1ln()(2++=x x x f B.||)(x e x f = C.x x f cos )(= D.1 sin )1()(2--= x x x x f 5. 下列说法中正确的是…………………………………………………………( ) A. 有界数列必定收敛 B. 收敛数列必定有界 C. 单调数列必定收敛 D. 收敛数列必定单调 6. 极限x x x x sin lim +∞ →的值为……………………………………………………( ) A .0 B .1 C .2 D .∞ 7. 极限)21( lim 2 22n n n n n +++∞→ 的值为………………………………………( ) A .0 B .1 C .2 1 D .∞ 8. 极限x x x 10 ) 1(lim -→-的值为 ……………………………………………………( ) A .1 B .e - C .e 1 D .e 9. 极限x x x x 2)1( lim +∞ →的值为 ……………………………………………………( )

微积分知识点归纳

知识点归纳 1. 求极限 2.1函数极限的性质P35 唯一性、局部有界性、保号性 P34 A x f x x =→)(lim 0 的充分必要条件是 :A x f x f x f x f x x x x == +==-+-→→)()0()()0(lim lim 0 000 2.2 利用无穷小的性质P37: 定理1有限个无穷小的代数和仍是无穷小。 0)sin 2(30 lim =+→x x x 定理2有界函数与无穷小的乘积是无穷小。 0)1 sin (20 lim =→x x x 定理3无穷大的倒数是无穷小。反之,无穷小的倒数是无穷大。 例如:lim ∞→x 12132335-++-x x x x ∞= , lim ∞→x 131 23523+--+x x x x 0= 2.3利用极限运算法则P41 2.4利用复合函数的极限运算法则P45 2.4利用极限存在准则与两个重要极限P47 夹逼准则与单调有界准则,

lim 0→x x x tan 1=,lim 0→x x x arctan 1=,lim 0→x x x arcsin 1=, lim )(∞→x ?)())(11(x x ??+e =,lim 0 )(→x ?) (1 ))(1(x x ??+e = 2.6利用等价无穷小P55 当0→x 时, x x ~sin ,x x ~tan , x x ~arcsin ,x x ~arctan ,x x ~)1ln(+, x e x ~,221 ~cos 1x x -,x x αα++1~)1(,≠α0 为常数 2.7利用连续函数的算术运算性质及初等函数的连续性P64 如何求幂指函数)()(x v x u 的极限?P66 )(ln )()()(x u x v x v e x u =,)(ln )()(lim )(lim x u x v x v a x a x e x u →=→ 2.8洛必达法则P120 lim a x →)() (x g x f )() (lim x g x f a x ''=→ 基本未定式:00,∞∞ , 其它未定式 ∞?0,∞-∞,00,∞1,0∞(后三个皆为幂指函数) 2. 求导数的方法 2.1导数的定义P77: lim 00|)(→?==='='x x x dx dy x f y x x f x x f x y x ?-?+ =??→?) ()(000lim h x f h x f h ) ()(000lim -+=→

微分学的基本定理

微分学的基本定理 【费马(Fermat)定理】 若(i)函数)(x f 在0x 点得某一邻域),(0δx O 内有定义,并且在此邻域内恒有 )(x f )(0x f ≤, 或者)(x f )(0x f ≥; (ii)函数)(x f 在0x 点可导, 则有 0)(0='x f 证明我们对)(x f 的情形给出假设证明.由于假设)(0x f '存在,按定义,也就是 +'f (0x )=-'f (0x )=f '(0x ), 另一方面,由于)(x f )(0x f ≤,所以对(δ+00,x x )内的各点x ,有 ≤--0 0)()(x f x f 0;而对(00,x x δ-)内的各点x ,有 0)()(0 0≥--x f x f .再由极限性质得 )(0x f '=+'f (0x )=lim 0+→o x x ≤--00)()(x x x f x f 0,)(0x f '=-'f (0x )=lim 0 -→o x x 0)()(00≥--x x x f x f .而)(0x f '是一个定数,因此它必须等于零,即)(0x f '=0. 对于)(x f )(0x f ≥的情形,也可相仿证明. 这个定理的几何意义是:如果曲线)(x f y =在0x 点具有极大值(也就是函数)(x f 在0x 点的值不小于)(x f 在0x 点近旁的其他点上的值)或者曲线)(x f y =在0x 点具有极小值(也就是函数)(x f 在0x 点的值不大于)(x f 在0x 点近旁的其他点上的值),并且曲线

)(x f y =在0x 点具有切线l ,那么,费马定理就表明了切线l 必为水平线. 【拉格朗日(Lagrange)中值定理】 这个定理也称为微分学的中值定理,它是微分学中的一个很重要的定理. 若函数)(x f 满足 (i) 在[]b a ,连续;(ii)在(b a ,)可导, 则在(b a ,)内至少存在一点ξ,使 )(ξf '=a b a f b f --)()(.这个定理从几何图形上看是很明显的.画出[]b a ,上的一条曲线)(x f y =,连接A,B 两点,作弦AB,它的斜率是 = ?tan a b a f b f --)()(.下面对此定理给以证明. 证明不妨假设)(x f 在[]b a ,上不恒为常数.因为如果)(x f 恒为常数,则0)(='x f 在(b a ,)上处处成立,这时定理的结论是明显的. 由于)(x f 在[]b a ,连续,由闭区间连续函数的性质,)(x f 必在[]b a ,上达到其最大值M 和最小值m,我们分两种情形来证明. (1)考虑特殊情形,)()(b f a f =.由于)(x f 不恒为常数,所以此时必有M >m,且M 和m 中至少有一个不等式.这时根据闭区间上连续函数的性质,在(b a ,)内至少有一点ξ,使得))(()(m f M f ==ξξ或者,于是对(b a ,)内任一点x ,必有 )) ()()(()(ξξf x f f x f ≥≤或于是由费马定理,即得 0)(='ξf . 而此时0)()(=-a f b f ,这就证明了定理成立. 对于这样特殊情况的中值定理,也叫【罗尔(Rolle)定理】. (2)考虑一般情形,)()(b f a f ≠.此时,作辅助函数[] 1

最新大学微积分(常见问题与解答)

大学微积分(常见问题 与解答)

辅导答疑 第一章微积分的基础和研究对象 1. 问:如何理解微积分(大学数学)的发展历史?微积分与初等数学的主要区别是什么? 答:微积分的基础是---集合、实数和极限,微积分的发展历史可追溯到17世纪,在物理力学等实际问题中出现大量的(与面积、体积、极值有关的)问题,用微积分得到了很好的解决。到19世纪,经过无数数学家的努力,微积分的理论基础才得以奠定。可以说,经过300多年的发展,微积分课程的基本内容已经定型,并且已经有了为数众多的优秀教材。但是,人们仍然感到微积分的教与学都不是一件容易的事,这与微积分学科本身的历史进程有关。微积分这座大厦是从上往下施工建造起来的。微积分从诞生之初就显示了强大的威力,解决了许多过去认为高不可攀的困难问题,取得了辉煌的胜利,创始微积分数学的大师们着眼于发展强有力的方法,解决各式各样的问题,他们没来得及为这门学科建立起严格的理论基础。在以后的发展中,后继者才对逻辑细节作了逐一的修补。重建基础的细致工作当然是非常重要的,但也给后世的学习者带来了不利的影响,今日的初学者在很长一段时间内只见树木不见森林。 微积分重用极限的思想,重用连续的概念,主要是在研究函数,属于变量数学的范畴。而初等数学研究不变的数和形,属于常量数学的范畴。 2.问:大学数学中研究的函数与初等数学研究的函数有何不同之处? 答:在自然科学,工程技术甚至社会科学中,函数是被广泛应用的数学概念之一,其意义远远超过了数学范围,在数学中函数处于基础核心地位。函数不

仅是贯穿中学《代数》的一条主线,它也是《大学数学》这门课程的研究对象。 《大学数学》课程中,将在原有初等数学的基础上,对函数的概念、性质进行重点复习和深入的讨论,并采用极限为工具研究函数的各种分析性质,进而应用函数的性质去解决实际问题。 第二章微积分的直接基础-极限 1.问:阿基里斯追赶乌龟的悖论到底如何解决的? 答:阿基里斯追赶乌龟的悖论是一个很有趣的悖论。如果芝诺的结论是正确的,则追赶者无论跑得多么快也追不上在前面跑的人,这显然与我们在生活中经常见到的现象相违背。 芝诺的说法中有合理的成分:阿基里斯追赶乌龟的过程确实是一个无穷的过程--一个无穷的位置变化过程。芝诺的说法中的错误在于:他把阿基里斯追赶乌龟的无穷的位置变化过程与无穷的时间变化过程混为一谈了。 芝诺的结论"阿基里斯永远也追不上乌龟"中的"永远"一词,指的当然是"时间"。条件中谈的是"位置"的变化,结论却谈"时间",这是芝诺悖论偷梁换柱之所在。 事实上,阿基里斯追赶乌龟的悖论的解决借助于高等数学的一部分重要内容---无穷级数,在那里,我们将会看到,尽管是无穷多个数相加,却可以等于一个有限的数。虽然芝诺将追赶时间一段一段叙述,造成无穷多个时间的迷惑,实际上,这无穷多个时间的和是个有限的数。从而,阿基里斯在有限的时间内就可以追赶上乌龟了,这与我们的生活常识一致。

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

微积分(曹定华)(修订版)课后题答案第一章习题详解

第一章 习题1-1 1.用区间表示下列不等式的解 2(1)9;(2)1;1(3)(1)(2)0;(4)00.01 1 x x x x x ≤>--+<<<+ 解 (1)原不等式可化为(3)(3)0x x -+≤,其解为33x -≤≤,用区间表示是[-3,3]. (2)原不等式可化为11x ->或11x -<-,其解为2x >或0x <,用区间表示是(-∞,0)∪(2,+ ∞). (3)原不等式的解为21x -<<,用区间表示是(-2,1). (4)原不等式可化为0.0110.0110x x -<+??>?即0210x x x ≤≤??>??>? 所以函数的定义域是12x <≤,用区间表示就是(1,2]. (3)要使函数有意义,必须2650ln(2)020x x x x ?--≥?-≠??->?即6112x x x -≤≤??≠??

(微积分)第一章

第一章 习题1-1 1.用区间表示下列不等式的解. 2(1)9;(2) 1; 1(3)(1)(2)0;(4)00.01 1x x x x x ≤>--+<<<+ 解 (1)原不等式可化为(3)(3)0x x -+≤,其解为33x -≤≤,用区间表示是[-3,3]. (2)原不等式可化为11x ->或11x -<-,其解为2x >或0x <,用区间表示是(-∞,0)∪(2,+ ∞). (3)原不等式的解为21x -<<,用区间表示是(-2,1). (4)原不等式可化为0.0110.0110x x -<+??>?即02 10x x x ≤≤?? >??>? 所以函数的定义域是12x <≤,用区间表示就是(1,2]. (3)要使函数有意义,必须2650ln(2)020x x x x ?--≥?-≠??->? 即6112 x x x -≤≤?? ≠??

相关主题
文本预览
相关文档 最新文档