当前位置:文档之家› 初中数学反比例函数知识点整理

初中数学反比例函数知识点整理

初中数学反比例函数知识点整理
初中数学反比例函数知识点整理

反比例函数知识点整理

一、反比例函数的概念

1、解析式:y = -(k ≠ 0)其他形式:①xy = k②y = kx~1

X

例1.下列等式中,哪些是反比例函数

(1) y - —(2) y = (3) xy = 21 (4) y = —-— (5~) y =(6)尹二丄+ 3

3 X X + 2 IX X

例2.当m取什么值时,函数尹=(m-2)√^m2是反比例函数?

例3.函数y = (2m-l)x m2~2是反比例函数,且它的图像在第二、四象限,加的值是 ________ 例4.已知函数y =y1+y2, yι与X成正比例,y2与X成反比例,且当x=l时,y=4;

当x=2 时,y = 5

(1) 求y与X的函数关系式(2)当x=-2时,求函数y的值

2.反比例函数图像上的点的坐标满足:xy = k

例1.已知反比例函数的图象经过点(m, 2)和(-2, 3)则加的值为______________________

例2.下列函数中,图像过点M (-2, 1)的反比例函数解析式是( )

. 2 D 2 厂 1 八1

ΛX 2x 2x

例3.如果点(3, -4)在反比例函数y =-的图象上,那么下列各点中,在此图象上的X

是( )A. (3,4) B. (一2, —6) C. (一2, 6) D. (—3, —4)

例4.如果反比例函数y =-的图象经过点(3, —1),那么函数的图象应在( )

X

A.第一、三象限

B.第二、四象限

C.第一、二象限

D.第三、四象限

二、反比例函数的图像与性质

1、基础知识

幺>0时,图像在一、三象限,在每一个象限内,y随着X的增大而减小;

幺<0时,图像在二、四象限,在每一个象限内,y随着X的增大而增大;

例1.己知反比例函数y = {a-2)x a -6当χ>0时,y随X的增大而增大,求函数关系式

9? +1

例2.已知反比例函数尹= -------- 的图象在每个象限内函数值y随自变量X的增大而减

Λ

小,且k的值还满足9-2(2^-1) ≥2k-b若k为整数,求反比例函数的解析式

2、面积问题(1)三角形面积:SZe =^?k?

例1?如图,过反比例函数y = - (x>0)的图象上任意两点A、B分别X

作X轴的垂线,垂足分别为C、D,连接OA、OB,设AAOC和ABOD

的面积分别是Si、S2,比较它们的大小,可得( )

(B) Si = S2(C) Sι

(A) Sι>S2

例2.如图,点P是反比例函数丿=丄的图象上任一点,PA垂直在X轴,垂足为A,设

X

△Q4P的面积为S,则S的值为________________

例3.直线OA与反比例函数y = -(k≠O')的图象在第一象限交于A点,AB丄X轴于点E,若ZxOAB的面积为2,则£= ____________________ .

例4.如图,若点/在反比例函数y = -(k≠O)的图象上,AM丄X轴于点M, AAMO X

7

4、&、&、A4> 4分别作X轴的垂线与反比例函数的J = -(X≠o)的图象相交于点

P\、马、PyP4、匕,得直角三角形0/4、A p2A2> A2p3A&阳4、并设其

面积分别为&、S2、S3、S4、?≡55的值为___________ .

2

例6.如图,A. B是函数丿=—的图象上关于原点对称的任意两点,BC//X轴,AC// y X 轴,MBC的面积记为S,则()A. S = I B. S = 4 C. 2<5<4 D. S>4

(2)矩形面积:S矩形如C = I k l

例1.如图,P是反比例函数y = -Qk < 0)图象上的一点,由P分别

向X轴和y轴引垂线,阴影部分面积为3,则P ___________ O

例2.如图,已知点C为反比例函数y = --h的一点,过点C向坐标轴引垂线,垂足

X

分别为B,那么四边形AOBC的面积为 __________________ .

3 例3.如图,点/、占是双曲线y =-上的点,分别经过/、占两点向兀轴、尹轴作

X

垂线段,若S阴影=1,则S1+ S2= _________ .

20 例4、如图,矩形AOCB的两边OC, OA分别位于X轴,y轴上,点B的坐标为E( —— ,

3 5), D是AE边上的一点,将AADO沿直线OD翻折,使A点恰好落在对角线OE上

的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是________ ?

例5.两个反比例函数y二土和y二丄在第一象限内的图像如图3所示,点P在y=-的图像

上,PC丄X轴于点C,交y=丄的图像于点A, PD丄y轴于点D,交y=丄的图像于点B,当

点P在y=±的图像上运动时,以下结论:

X

①AODB与AOCA的面积相等;

②②四边形PAoB的面积不会发生变化;③PA与PB始终相等

④当点A是PC的中点时,点B—定是PD的中点.

其中一定正确的是________ (把你认为正确结论的序号都填上,?少填或错填不给分)?

3.利用图像比较大小问题

(1)比较点的坐标大小

Ar? + ] 例1.已知点(一1, yi)、(2, y2)、(兀,y3)在双曲线丿二 --------------------------------- 上,则下列关系式

X 正确的是()(A) y1>y2>y3 (B) yι>y3>y2 (C) y2>y1>y3 (D) y3>y1>y2 k 例2.己知三点£(勺H), PEΛ),目⑴―2)都在反比例函数V X的图象上,若西<0,吃>°,则下列式子正确的是( )

A. Ji<Λ<0b. Ji<θ<Λ c. ??>%>°D. y1>0>y2

2

例3.反比例函数丿二——,当x=—2时,y= ___________ ;当x<—2时;y的取值范围

X

是____ ; ____ 当x>-2时;y的取值范围是 _______

例4.点A(2, 1)在反比例函数y =夕的图像上,l

例5. A(X l , y l )> 5( x2,必)在函数y = ~~的图象上,旺、£满足___________ 时,必>必.

^ 「2x^ 「

例6.在反比例函数J=I 2m的图象上有两点A(x1,J∕1) ,B(X2,J∕2),当X] < O < X2 Bt, X

有?? m < 0 >0 C、加D、加>£

例7、己知反比例函数y = -(k

X

则y i-y2的值是( )A、正数氏负数c、非正数D、不能确定

(2)比较函数值大小

例1.如图是一次函数yι=kx+b和反比例函数y2=-的图象,观察图象写出yι>y2时, X

兀的取值范围.

9

—的图像交于点水2, 1),M-1, -2),

X

A. X >2

B. X >2 或一1 VXVO

C. —K X

<2 D. X >2 或XV

三、反比例函数与一次函数的综合题

(1) 在同一坐标系中的图像问题)

-1第19题I

例2.如图,一次函数y I=X —1与反比例函数y 则使y 1〉y 2的X的取值范围是(

(2)其他类型

O

例1.如图,已知一次函数y = kx-^b 的图象与反比例函数J/ = --的图象交于A 、E 两点,且点A 的横坐标和点B 的纵坐标都是-2,求: (1) 一次函数的解析式; (2) ZXAOB 的面积.

4

例2.如图,在直角坐标系中,直线y=6-χ与函数y=- (x>0)的图象相交于点A 、B, X 设点A 的坐标为(X 】,,y 1),那么长为X 】,宽为y 】的矩形面积和周长分别为()

A. 4, 12

B. 8, 12

C. 4, 6

D. & 6

例3.如图:已知一次函数y = kx + b(k≠O)的图象与兀轴、尹轴分别交于/、占两点, 且与反比例函数y = -(m≠O)的图象在第一象限交于C 点,CZ)丄工轴,垂足为D,

JC 若 OA = OB = OD — 1

(1)求点/、B 、Q 的坐标;

(2)求一次函数与反比例函数的解析式;;

X

B(n,-1)两点.

(1)求反比例函数与一次函数的解析式;

(2)根据图象回答:当工取何值时,反比例函数的值大于一次函数的值

例4:如图,反比例函数y =-的图象与一次函数y = mx + b 的图象交于A(1,3) 例1. 一次函数y = kx-k 与反比例函数y =-在同一直角坐标系内的大致图象是(

2

例5.如图,A、B是反比例函数y=—的图象上的两点。AC、BD都垂直于X轴,垂足分X 别为C、D o AB的延长线交X轴于点E。若C、D的坐标分别为(1, 0)、(4, 0),则厶

例1.己知甲、乙两地相s(千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a (升),那么从甲地到乙地汽车的总耗油量y (升)与汽车的行驶速度V (千米/时)的函数图象大致是()

(C)

升)

I『千米/时

(D)

例2. —张正方形的纸片,剪去两个一样的小矩形得到一个图案,如图所示,设小矩形的长和宽分别为兀、y,剪去部分的面积为20,若2≤x≤10,则尹与工的函

BDE的面积与Δ ACE的面积的比值是()

1 1 1

A. 2

B. 4

C. 8

D. 16

四、反比例函数的应用

初三数学反比例函数知识点归纳

反比例函数知识点归纳 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为, 在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解 析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限; 在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限; 在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上, 则(,)在双曲线的另一支上. 图象关于直线对称,即若(a,b)在双曲线的一支上, 则(,)和(,)在双曲线的另一支上.

4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面 积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点; 当时,两图象必有两个交点,且这两个交点关于原点成中心对称. (3)反比例函数与一次函数的联系. (四)实际问题与反比例函数 1.求函数解析式的方法: (1)待定系数法;(2)根据实际意 义列函数解析式. (五)充分利用数形结合的思想解决问 题.

反比例函数知识点归纳重点

反比例函数知识点归纳 重点 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

.人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构 (二) (三)(二)学习目标 (四)1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反 比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数. (五)2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点. (六)3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.

(七)4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型. (八)5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法. (九)(三)重点难点 (十)1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用. (十一)2.难点是反比例函数及其图象的性质的理解和掌握. (十二)二、基础知识 (十三)(一)反比例函数的概念 (十四)1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; (十五)2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;

(十六)3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (十七)(二)反比例函数的图象 (十八)在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (十九)(三)反比例函数及其图象的性质 (二十)1.函数解析式:() (二十一)2.自变量的取值范围: (二十二)3.图象: (二十三)(1)图象的形状:双曲线. (二十四)越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (二十五)(2)图象的位置和性质: (二十六)与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. (二十七)当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;

(完整word版)反比例函数知识点总结

反比例函数知识点总结 李苗 知识点1 反比例函数的定义 一般地,形如x k y =(k 为常数,0k ≠)的函数称为反比 例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数; ⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y =(0k ≠), ②1kx y -=(0k ≠), ③k y x =?(定值)(0k ≠); ⑸函数x k y =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。 (k 为常数,0k ≠)是反比例函数的一部分,当k=0时, x k y =,就不是反比例函数了,由于反比例函数x k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点2用待定系数法求反比例函数的解析式 由于反比例函数x k y =(0k ≠)中,只有一个待定系 数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取; ②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。 知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:

反比例函数知识点总复习

反比例函数知识点总复习 一、选择题 1.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()2 0y x x =- <交于点(),1A m ,则AOB V 的面积为( ) A .6 B .5 C .3 D .1.5 【答案】C 【解析】 【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解. 【详解】 解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()2 0y x x =-<交于点(),1A m ∴2 1m =- 则m=-2 把A (-2,1)代入到2y x n =-+,得 ()122n =-?-+ ∴n=-3 ∴23y x =-- 则点B (0,-3) ∴AOB V 的面积为1 32=32 ?? 故应选:C 【点睛】 本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想. 2.如图, 在同一坐标系中(水平方向是x 轴),函数k y x =和3y kx =+的图象大致是( )

A.B. C. D. 【答案】A 【解析】 【分析】 根据一次函数及反比例函数的图象与系数的关系作答.【详解】 解:A、由函数y=k x 的图象可知k>0与y=kx+3的图象k>0一致,正确; B、由函数y=k x 的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误; C、由函数y=k x 的图象可知k<0与y=kx+3的图象k<0矛盾,错误; D、由函数y=k x 的图象可知k>0与y=kx+3的图象k<0矛盾,错误. 故选A. 【点睛】 本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题. 3.已知反比例函数 2 y x - =,下列结论不正确的是() A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>2

反比例函数知识点归纳

反比例函数知识点归纳

九年级数学反比例函数知识点归纳和典型例题 一、基础知识 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象:

则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当

时,两图象必有两个交点,且这两个交点关于原点成中心对称. (3)反比例函数与一次函数的联系.(四)实际问题与反比例函数 1.求函数解析式的方法: (1)待定系数法;(2)根据实际意义列函数解析式. 2.注意学科间知识的综合,但重点放在对数学知识的研究上. (五)充分利用数形结合的思想解决问题.三、例题分析 1.反比例函数的概念 (1)下列函数中,y是x的反比例函数的是(). A.y=3x B. C.3xy=1 D. (2)下列函数中,y是x的反比例函数的是(). A.B.C.D.

反比例函数知识点归纳(重点)

反比例函数知识点归纳和典型例题 (一)知识结构 (二)学习目标 1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数. 2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点. 3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题. 4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型. 5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点 1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用. 2.难点是反比例函数及其图象的性质的理解和掌握. 二、基础知识 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;

2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴 PBO的面积都是). 于B点,则矩形PBOA的面积是(三角形PAO和三角形 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA 的延长线于C,则有三角形PQC的面积为.

反比例函数知识点总结

反比例函数知识点总结 知识点1 反比例函数的定义 一般地,形如x k y = (k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数; ⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y = (0k ≠), ②1 kx y -=(0k ≠), ③k y x =?(定值)(0k ≠); ⑸函数x k y = (0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。 (k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x k y =,就不是反比例函数了,由于反比例函数x k y = (0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点2用待定系数法求反比例函数的解析式 由于反比例函数x k y = (0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值 0y ≠,所以它的图像与x轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永 远达不到坐标轴。 反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取; ②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。 知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题 知识点归纳 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限; 在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限; 在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上, 则(,)在双曲线的另一支上.

图象关于直线对称,即若(a,b)在双曲线的一支上, 则(,)和(,)在双曲线的另一支上.4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称 点Q也在双曲线上,作QC⊥PA的延长线于C,则有三 角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线 与双曲线的关系: 当 时,两图象没有交点; 当 时,两图象必有两个交点,且这两个交点关于原点成中心对称.

反比例函数知识点归纳(精品文档)_共4页

反比例函数知识点归纳 一、知识结构 二、基础知识 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的 指数为 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围:

3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则( ,)在双曲线的另一支上. 图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点, PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积 都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.

图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称. (四)实际问题与反比例函数 1.求函数解析式的方法: (1)待定系数法;(2)根据实际意义列函数解析式. 2.注意学科间知识的综合,但重点放在对数学知识的研究上. (五)充分利用数形结合的思想解决问题.

初中数学反比例函数知识点整理

反比例函数知识点整理 一、 反比例函数的概念 1、解析式:() 0≠= k x k y 其他形式:①k xy = ②1 -=kx y 例1.下列等式中,哪些是反比例函数 (1)3x y = (2)x y 2-=(3)xy =21(4)25+=x y (5)x y 23-=(6)31 +=x y 例2.当m 取什么值时,函数2 3)2(m x m y --=是反比例函数? 例3.函数2 2 )12(--=m x m y 是反比例函数,且它的图像在第二、四象限, m 的值是_____ 例4.已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 (1) 求y 与x 的函数关系式 (2)当x =-2时,求函数y 的值 2.反比例函数图像上的点的坐标满足:k xy = 例1.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 例2.下列函数中,图像过点M (-2,1)的反比例函数解析式是( ) x y A 2.= 2 .B y x =- x y C 21.= x y D 21.-= 例3.如果点(3,-4)在反比例函数k y x =的图象上,那么下列各点中,在此图象上的 是( )A .(3,4) B . (-2,-6) C .(-2,6) D .(-3,-4) 例4.如果反比例函数x k y =的图象经过点(3,-1),那么函数的图象应在( ) A . 第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限 二、反比例函数的图像与性质 1、基础知识 0>k 时,图像在一、三象限,在每一个象限内,y 随着x 的增大而减小; 00时,y 随x 的增大而增大,求函数关系式 例2.已知反比例函数x k y 1 2+= 的图象在每个象限内函数值y 随自变量x 的增大而减小,且k 的值还满足)12(29--k ≥2k -1,若k 为整数,求反比例函数的解析式 2、面积问题(1)三角形面积:k S AOB 2 1 =? 例1.如图,过反比例函数x y 1 = (x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定 例2.如图,点P 是反比例函数1 y x = 的图象上任一点,PA 垂直在x 轴,垂足为A ,设OAP ?的面积为S ,则S 的值为 例3.直线OA 与反比例函数 的图象在第一象限交于A 点,AB ⊥x 轴于 点B ,若△OAB 的面积为2,则k = . 例4.如图,若点A 在反比例函数(0)k y k x =≠的图象上, AM x ⊥轴于点M ,AMO △的面积为3,则k = . 例5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点 12345A A A A A 、、、、分别作x 轴的垂线与反比例函数的()2 0y x x = ≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、, 并设其面积分别为12345S S S S S 、、、、,则5S 的值为 . p y A x O 第4题

一次函数和反比例函数知识点总结55836

一次函数知识点总结: 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k≠0) 当x增加m,k(x+m)+b=y+km, km/m=k。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3.当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.一次函数的图像:直线 5.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数 图像性质 1.作法与图形:通过如下3个步骤: (1)列表. (2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。 一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。 (3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b). 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 4.k,b与函数图像所在象限: y=kx时(即b等于0,y与x成正比例): 当k>0时,直线必通过第一、三象限,y随x的增大而增大; 当k<0时,直线必通过第二、四象限,y随x的增大而减小。 y=kx+b时: 当k>0,b>0, 这时此函数的图象经过第一、二、三象限; 当k>0,b<0, 这时此函数的图象经过第一、三、四象限; 当k<0,b>0, 这时此函数的图象经过第一、二、四象限; 当k<0,b<0, 这时此函数的图象经过第二、三、四象限; 当b>0时,直线必通过第一、二象限; 当b<0时,直线必通过第三、四象限。 特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。 当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

反比例函数知识点总结典型例题大全

反比例函数 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA 的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称 (3)反比例函数与一次函数的联系.

最新新人教版八年级数学下册反比例函数知识点归纳和典型例题

新人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构 (二)学习目标 1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式 (k为常数,),能判断一个给定函数是否为反比例函数. 2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点. 3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题. 4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型. 5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法. (三)重点难点 1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用. 2.难点是反比例函数及其图象的性质的理解和掌握. 二、基础知识

(一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.

反比例函数知识点及经典例题

第十七章 反比例函数 一、基础知识 1. 定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。x k y = 还可以写成kx y =1- 2. 反比例函数解析式的特征: ⑴等号左边是函数y ,等号右边是一个分式。分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k ⑶自变量x 的取值为一切非零实数。 ⑷函数y 的取值是一切非零实数。 3. 反比例函数的图像 ⑴图像的画法:描点法 ① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,x k y =(k 为常数,0≠k )中自变量0≠x ,函 数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。 ⑷反比例函数x k y = (0≠k )中比例系数k 的几何意义是:过双曲线x k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。 4 5. 点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数, 但是反比例函数x k y =中的两个变量必成反比例关系。 7. 反比例函数的应用二、例题 【例1】如果函数2 22 -+=k k kx y 的图像是双曲线,且在第二,四象限内,那么的值 是多少?【解析】有函数图像为双曲线则此函数为反比例函数x k y = ,(0≠k )

即kx y =1-(0≠k )又在第二,四象限内,则0>>则下列各式正确的是( ) A .213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> 【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。 解法一:由题意得111x y - =,221x y -=,3 31x y -= 3210x x x >>>Θ,213y y y >>∴所以选A 解法二:用图像法,在直角坐标系中作出x y 1 -=的图像 描出三个点,满足3210x x x >>>观察图像直接得到213y y y >>选A 解法三:用特殊值法 213321321321,1,1,2 1 1,1,2,0y y y y y y x x x x x x >>∴=-=-=∴-===∴>>>令Θ 【例3】如果一次函数()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点 (22 1,),那么该直线与双曲线的另一个交点为( ) 【解析】 ???==?? ???=-=+∴??? ??-=+=12132 212213n m m n n m x x m n y n mx y 解得,,相交于与双曲线直线Θ ?????== ???-=-=?? ? ? ?=+==+=∴2 21111121,122211y x y x x y x y x y x y 得解方程组双曲线为直线为 ()11--∴, 另一个点为 【例4】 如图,在AOB Rt ?中,点A 是直线m x y +=与双曲线x m y =在第一象限的交点,且2=?AOB S ,则m 的值是_____.

(完整版)反比例函数知识点归纳总结与典型例题

反比例函数知识点归纳总结与典型例题 (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11+= x y ③21x y = ④.x y 21 -=⑤2 x y =-⑥13y x = ;其中是y 关 于x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)反比例函数(0k y k x = ≠) 的图象经过(—2,5, n ), 求1)n 的值; 2)判断点B (24, (二)反比例函数的图象和性质: 知识要点: 1、形状:图象是双曲线。 2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。 3、增减性:(1)当k>0时,_________________,y 随x 的增大而________; (2)当k<0时,_________________,y 随x 的增大而______。 4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交 5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k 取互为相反数的两个反比例函数(如:y = x 6 和y = x 6 -)来说,它们是关于x 轴,y 轴___________。 例题讲解: 反比例函数的图象和性质: (1)写出一个反比例函数,使它的图象经过第二、四象限 . (2)若反比例函数 2 2 )12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (3)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =. (4)已知反比例函数2 y x -= 的图象上有两点A (1x ,1y ),B (2x ,2y ),且12x x <,

人教版初中数学反比例函数知识点

人教版初中数学反比例函数知识点 一、选择题 1.如图,一次函数1y ax b =+和反比例函数2k y x = 的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( ) A .20x -<<或04x << B .2x <-或04x << C .2x <-或4x > D .20x -<<或4x > 【答案】B 【解析】 【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可. 【详解】 观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<, 故选B . 【点睛】 本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键. 2.如图,直线l 与x 轴、y 轴分别交于A 、B 两点,与反比例函数y =k x 的图象在第一象限相交于点C .若AB =BC ,△AOB 的面积为3,则k 的值为( ) A .6 B .9 C .12 D .18 【答案】C 【解析】 【分析】 设OB =a ,根据相似三角形性质即可表示出点C ,把点C 代入反比例函数即可求得k .

【详解】 作CD⊥x轴于D, 设OB=a,(a>0) ∵△AOB的面积为3, ∴1 2 OA?OB=3, ∴OA=6 a , ∵CD∥OB, ∴OD=OA=6 a ,CD=2OB=2a, ∴C(6 a ,2a), ∵反比例函数y=k x 经过点C, ∴k=6 a ×2a=12, 故选C. 【点睛】 本题考查直线和反比例函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键. 3.已知点A(﹣2,y1),B(a,y2),C(3,y3)都在反比例函数 4 y x 的图象上,且﹣ 2<a<0,则() A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 【答案】D 【解析】 【分析】 根据k>0,在图象的每一支上,y随x的增大而减小,双曲线在第一三象限,逐一分析即可. 【详解】 ∵反比例函数y=4 x 中的k=4>0,

(整理)反比例函数知识点梳理一

反比例函数知识点梳理一 一、基础知识 1. 定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。x k y =还可以写成kx y =1- 2. 反比例函数解析式的特征: ⑴等号左边是函数y ,等号右边是一个分式。分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k ⑶自变量x 的取值为一切非零实数。 ⑷函数y 的取值是一切非零实数。 3. 4. 反比例函数的图像 ⑴图像的画法:描点法 ① ② 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ③ ④ 描点(有小到大的顺序) ⑤ ⑥ 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,x k y =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。

⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线x k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。 4.反比例函数性质如下表: k 的取值 图像所在象限 函数的增减性 o k > 一、三象限 在每个象限内,y 值随x 的增大而减小 o k < 二、四象限 在每个象限内,y 值随x 的增大而增大 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个 点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数, 但是反比例函数x k y =中的两个变量必成反比例关系。 7. 反比例函数的应用

人教版八年级数学下册反比例函数知识点归纳(重点)

人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构 (二)学习目标 1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式 (k为常数,),能判断一个给定函数是否为反比例函数. 2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点. 3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题. 4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型. 5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法. (三)重点难点 1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用. 2.难点是反比例函数及其图象的性质的理解和掌握. 二、基础知识 (一)反比例函数的概念

1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上. 图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)

反比例函数知识点总结典型例题大全

. 反比例函数 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA 的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称 (3)反比例函数与一次函数的联系.

相关主题
文本预览
相关文档 最新文档