例谈高中数学中常见的构造法
- 格式:pdf
- 大小:36.64 KB
- 文档页数:1
㊀㊀解题技巧与方法㊀㊀116㊀例析构造法在高中数学解题中的应用例析构造法在高中数学解题中的应用Һ张文琴1㊀许零筝2㊀(1.台州市第一中学,浙江㊀台州㊀318000;2.三门第二高级中学,浙江㊀台州㊀317199)㊀㊀ʌ摘要ɔ构造法是指依据题设条件㊁结论特征和性质,构造辅助内容,使其成为全新的方程㊁函数㊁图像㊁代数式等.构造法在数学解题中的应用,彻底打破了定向思维的束缚,开辟了全新的解题视角,有效提升了学生的数学解题能力.基于此,文章分析了构造法在高中数学解题中的应用价值,并针对构造法在高中数学解题中的具体应用进行了详细探究.ʌ关键词ɔ高中数学;解题能力;构造法;核心素养常规的解题思路基本上都是从已知条件向所求结论展开定向思考.但针对部分题目来说,常规的解题思路已经无法满足解题要求.此时,学生可以借助创造性的思维,根据题目中所给出的已知条件㊁结论特征等,构造辅助内容,使其成为全新的方程㊁函数㊁图像㊁代数式等,进而将已知条件和结论联系起来,形成解题思路.从构造法的内涵上来说,其中也蕴含了大量的数学思想,如:类比㊁归纳㊁转化.学生在创造性解答问题的过程中,不仅促进了数学知识的内化㊁迁移,也实现了数学思维的发展,这与数学核心素养的要求不谋而合.鉴于此,强化学生利用构造法解题,已经成为当前高中数学教学的重中之重.一㊁构造法与高中数学解题教学(一)构造法的内涵构造法在高中数学解题中尤为常见,主要思路是运用所学数学知识,以题目中的已知条件㊁所求结论作为解题出发点,通过综合性分析,构造出能够满足题目已知条件和所求结论的新形式,进而促进原有数学问题转化,使原本繁杂的数学问题变得简单㊁清晰,以便于学生迅速形成新的解题思路.鉴于构造法的内涵,其在解题中呈现出五个显著的特点:其一,构造性,主要是借助创新思维构造模型,立足于数学问题的本质,促进数学问题的简单化;其二,直观性,主要是借助已有数学知识,结合数学题目构建新的模型,形成解题思路;其三,可行性,构造法在高中数学解题中应用范围比较广,具备极强的实用性;其四,灵活性,在运用构造法解答数学问题时,学生必须具备丰厚的知识储备量,并结合自身的解题习惯,自行选择构造数学模型的类型;其五,多样性,构造法在应用时没有定式,学生可结合具体的题目要求,构造不同的解题模型.(二)构造法的应用价值首先,提高了学生的数学解题能力.构造法作为一种创造性解决问题的方法,可以使得题目中的隐藏条件变得可视化.因此,构造法的应用有效地消除了学生在解题过程中的畏难情绪,有助于强化学生的数学解题思路,使其逐渐强化解题能力.其次,提高了学生的数学思维能力.数学学科对学生的思维能力要求比较高,而学生的思维能力和解题能力之间息息相关.构造法的应用不仅促进了学生归纳㊁类比㊁转化数学思想的发展,也促进了学生数学思维能力的发展,这为学生更好地解决数学问题奠定了坚实的基础.最后,提高了学生的知识转化能力.高中数学题目极具综合性,学生在解题时,只有将各个部分的数学知识点整合起来,通过数学知识的迁移和转化,才能完成数学题目的解答.构造法的应用将代数㊁几何㊁函数等知识点整合起来,促进了数学知识的转化,使学生能灵活运用数学知识,从不同的角度思考问题㊁解决问题.二㊁构造法在高中数学解题中的具体应用(一)构造方程,解答数学问题构造方程在高中数学解题中尤为常见,主要是立足于方程与函数之间的关系,结合题目已知条件,构造方程,解答相关的数学问题.例1㊀已知(m-n)x2-4(n-x)(x-m)=0,求证:参数m,x,n所构成的数列为等差数列.解析㊀这一数学题目与数列相关.如果按照传统的解题思路,那么学生所面临的求解难度比较大,甚㊀㊀㊀解题技巧与方法117㊀㊀至还需要大量的运算,极易出现错解的现象.鉴于此,可通过构造方程,从题目中所求结论出发,将其与题目中的已知条件结合起来,进而形成明确的证明思路:构造二次方程(n-x)t2-(m-n)t+(x-m)=0.观察其各项系数特点,可发现各项系数之和为零,故方程必有一根为1.又恰好该二次方程的根的判别式Δ=0,故该二次方程有两个等根,即由根与系数的关系,得t1t2=x-mn-x=1,即2x=m+n,所以得证.由此可见,借助构造方程的思想,从新的角度思考和分析问题,使得原本复杂的数学问题简单化,真正提升了学生的数学解题效率.(二)构造数列,解答数学问题在高中数学教学中,数列知识尤为重要.解答这一类型数学问题时,可灵活运用构造数列的方式,结合题目中相关信息和条件要求,通过替换等方式,构建新的数列,旨在简化数学问题,提升解题效率.例2㊀已知n为正整数,求证:1n+1+1n+2+1n+3+ +13n+1>1.解析㊀在这一题目中,已知条件非常简单,只有n为正整数.鉴于此,可运用构建数列的方式寻求证明思路:令1n+1+1n+2+1n+3+ +13n+1=an,则:an+1-an=13n+4+13n+3+13n+2-1n+1=13n+4+13n+2-23n+3=2(3n+2)(3n+3)(3n+4).因为n为正整数,所以an+1-an>0,因此数列{an}为递增数列,根据a1>1可得出该不等式成立.由此可见,按照常规思路很难求解此题,甚至还会在解题的过程中,由于步骤多㊁计算复杂等,导致出现错误.鉴于此,可通过构造数列,使复杂问题简单化,帮助学生顺利解题.(三)构建函数,求解数学问题在高中数学解题中,构造函数也尤为常见,其与构造方程本质相同.在解题中,可结合具体题目,构造函数,以此分析并解决数学问题.例3㊀已知a<b,a,b,c均为正实数,求证:ab<a+cb+c.解析㊀对于这一题目,如果按照传统思路和方法进行证明,则极易陷入解题误区.鉴于此,可融入构造法,通过分析题目中已知条件,构建函数模型,形成证明思路:假设c=x,将a+cb+c构造成函数,即f(x)=a+xb+x,将f(x)=a+xb+x进行转化,即f(x)=a+xb+x=a-bb+x+1.该函数为增函数,递增区间为(0,+ɕ).又因为a,b,c均为正实数,因此ab<a+cb+c.例4㊀已知关于x的方程x2-(2a+1)sin(cosx)+1-4a2=0存在唯一的实数解,求实数a的值.解析㊀该题目为二次方程问题.因为题目中含有参数,所以学生在解题时常常毫无头绪.鉴于此,可结合已知条件和未知参数,通过构造函数的方式,形成解题思路:构造函数f(x)=x2-(2a+1)sin(cosx)+1-4a2.因为f(-x)=f(x),所以该函数为偶函数.假设x0为f(x)=0的解,则-x0也为函数f(x)=0的解,即-x0=x0,因此,x0=0.所以f(0)=02-(2a+1)sin(cos0)+1-4a2,即(2a+1)(1-2a-sin1)=0,解得a=-12或a=1+sin12.由此可见,在遇到这一类型的问题时,学生可通过对已知条件㊁所求结论的分析,构造一个新的函数关系,将所求的问题转化为函数问题,进而运用函数的相关性质进行解答.(四)构造几何图形,解答数学问题在解答数学问题时,由于部分题目难度非常大,并且已知条件复杂,因此学生在分析题目时,常常难以理清思路,导致解题陷入困境.鉴于此,可运用构造法,结合题目中已知条件,构造出直观的几何图形,进而打开解题思路.例5㊀求函数f(x)=x2-4x+13+x2-10x+26的最小值.㊀㊀解题技巧与方法㊀㊀118㊀解析㊀这一题目已知条件简单,但如果按照常规思路进行解题,学生则难以形成清晰的解题思路.鉴于此,可通过构造图形的方式,将题目中的已知条件直观地呈现出来.㊀f(x)=x2-4x+13+x2-10x+26=(x-2)2+(0-3)2+(x-5)2+[0-(-1)]2.㊀图1构造平面几何图形(如图1所示),假设平面上有一点P(x,0),定点M(2,3),N(5,-1).如此,所求问题转化为求P到M,N距离的最小值.结合所学知识可知,当三点共线时,f(x)存在最小值,即f(x)min=MN=(2-5)2+(3+1)2=5.由此可见,借助构造平面图形的方式,可将原本繁杂的数学问题简单化.学生通过观察,构建已知条件和所求结论之间的关系,并运用所学知识灵活解答问题.(五)构造向量,解答数学问题在高中阶段,构造向量是一种非常重要的解题方式.在具体的高中数学解题中,可运用构造法,将不等式问题㊁函数问题等构造成向量问题,进而运用向量的相关知识进行解答.例6㊀假设函数y=2x+1+4-x,求该函数的最大值.解析㊀这是一道经典的函数问题,如果按照传统的解题思路解答问题,则会产生大量的计算步骤,极易出现计算错误.鉴于此,可借助构造法,运用向量的相关知识㊁性质进行解答.假设向量m=(2,1),向量n=(x+1,4-x).由于m㊃nɤm㊃n,因此y=m㊃nɤ5.故当x=3时,函数y=2x+1+4-x存在最大值,为5.例7㊀在әABC中,øBCA=θ,CB=a,CA=b,AB=c,试对әABC的余弦定理进行证明.解析㊀可结合题目中的已知条件,构造向量:向量CBң=a,向量CAң=b,向量ABң=c.已知c=a-b,则c2=c㊃c=(a-b)㊃(a-b)=a㊃a+b㊃b-2a㊃b=a2+b2-2|a||b|cosθ.即c2=a2+b2-2abcosθ.由此可见,借助构造向量的方法,可将原本繁杂的数学问题简单化.学生从新的视角出发,根据新的思维模式,运用所学的知识思考问题㊁分析问题㊁解答问题.三㊁基于构造法解答数学问题的教学启示课堂教学实践证明,通过构造法在高中数学解题中的应用,真正实现了 化繁为简㊁由难到易 的目的.学生结合题目中的已知条件和所求问题,构造新的关系,促进所求问题的转化.可以这样说,构造法在解题中的应用不仅提升了学生的数学解题能力,也发展了学生的思维能力,更加强了学生的数学综合素养.鉴于此,教师在日常教学中,应有意识地渗透构造法,加深学生对构造法的理解,使其能掌握构造法.一方面,学生的构造意识并不是在短时间内形成的,唯有通过潜移默化地渗透,才能达到预期的目标;另一方面,虽然构造法在解题中占据一定的优势,但并不意味着构造法适用于每一道题目,因此教师在日常解题中要带领学生积极开展一题多解训练,帮助学生掌握多种解题方法,便于学生在对比中了解构造法的解题优势和具体应用,使其在日后解题中能够合理利用这一方法.结㊀语构造法在高中数学解题中尤为常见,通过构造函数㊁构造方程㊁构造数列㊁构造平面图形等手段,可将原本复杂的数学问题简单化,便于学生形成新的解题思路,从新的视角分析问题㊁解答问题.鉴于此,教师在日常教学中,应结合实际情况,有意识地渗透构造法,不断提升学生的解题能力.ʌ参考文献ɔ[1]庄素慧.基于 构造法 的高中数学解题思路探索[J].数理化解题研究,2022(31):55-57.[2]张宏敏.应用构造法在高中数学中的解题策略[J].数理天地(高中版),2022(18):49-51.[3]刘海杰.构造法在高中数学解题中的运用措施分析[J].数理化解题研究,2022(12):14-16.[4]丁爱年.高中数学解题教学中构造法运用分析[J].数学之友,2022(04):25-27.[5]张焕生.解析构造法在高中数学解题中的运用[J].数理天地(高中版),2022(02):14-15.[6]刘晓妮.高中数学解题中应用构造法的总结[J].数理化解题研究,2021(31):65-66.。
解题方法系列⑦——构造法在导数中的应用素养解读:此类涉及到已知f (x )与f ′(x )的一些关系式,比较有关函数式大小的问题,可通过构造新的函数,创造条件,从而利用单调性求解. 类型一:f ′(x )g (x )±f (x )g ′(x )型 常用构造形式为F (x )=f (x )·g (x )或F (x )=f (x )g (x ),这类形式是对u ·v ,uv 型函数导数计算的推广及应用,u ·v 型导函数中体现的是“+”法,uv 型导函数中体现的是“-”法.因此当导函数形式中出现“+”法形式时,优先考虑构造u ·v 型,出现“-”法形式时,优先考虑构造uv 型.【典例1】 (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________.[切入点] (1)由f ′(x )-12<0,构造函数g (x )=f (x )-12x ;(2)由f ′(x )g (x )+f (x )g ′(x )构造函数F (x )=f (x )g (x ). [解析] (1)设g (x )=f (x )-12x , ∵f ′(x )<12,∴g ′(x )=f ′(x )-12<0, ∴g (x )为R 上的减函数,又f (1)=1, ∴f (lg x )>lg x +12=12lg x +12,即g (lg x )=f (lg x )-12lg x >12=g (1)=f (1)-12=g (lg10), ∴lg x <lg10,又y =lg x 为增函数, ∴0<x <10,则不等式的解集为(0,10). (2)设F (x )=f (x )g (x ),∵f ′(x )g (x )+f (x )g ′(x )>0,即F ′(x )>0.∴F(x)在(-∞,0)上递增,又∵f(x),g(x)分别是定义R上的奇函数和偶函数,∴F(x)为奇函数,关于原点对称,∴F(x)在(0,+∞)上也是增函数,∵f(-3)g(-3)=0,∴f(3)g(3)=0,∴F(x)=f(x)g(x)<0的解集为{x|x<-3或0<x<3}.[答案](1)(0,10)(2){x|x<-3或0<x<3}(1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx. (3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0).类型二:xf′(x)±nf(x)型(n为常数)在类型一中若g(x)=x或g(x)=x n,则F′(x)即为此种类型,我们可以思考形如此类函数的一般形式.F(x)=x n f(x),F′(x)=nx n-1f(x)+x n f′(x)=x n-1[nf(x)+xf′(x)];F(x)=f(x) x n,F′(x)=f′(x)·x n-nx n-1f(x)x2n=xf′(x)-nf(x)x n+1;结论:(1)出现nf(x)+xf′(x)形式,构造函数f(x)=x n f(x);(2)出现xf′(x)-nf(x)形式,构造函数F(x)=f(x) x n.我们根据得出的结论去解决典例2.【典例2】(1)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)(2)已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是()A.(-∞,1) B.(-1,1)C.(-∞,0)∪(0,1) D.(-1,0)∪(0,1)[切入点](1)由xf′(x)-f(x)<0构造函数F(x)=f(x)x;(2)由xf′(x)+2f(x)>0想到g(x)=x2f(x)的导数及单调性.[解析](1)令F(x)=f(x)x,因为f(x)为奇函数,所以F(x)为偶函数,由于F′(x)=xf′(x)-f(x)x2,当x>0时,xf′(x)-f(x)<0,所以F(x)=f(x)x在(0,+∞)上单调递减,根据对称性,F(x)=f(x)x在(-∞,0)上单调递增,又f(-1)=0,f(1)=0,数形结合可知,使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).故选A.(2)∵f(x)是定义域为{x|x≠0}的偶函数,∴f(-x)=f(x),对任意正实数x满足xf′(x)>-2f(x),即xf′(x)+2f(x)>0.∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0,∴函数g(x)在(0,+∞)上单调递增,在(-∞,0)单调递减;由不等式g(x)<g(1),∴|x|<1且x≠0,得-1<x<0或0<x<1,故选D.[答案](1)A(2)D(1)对于xf′(x)+nf(x)>0型,构造F(x)=x n f(x),则F′(x)=x n-1[xf′(x)+nf(x)](注意对x n-1的符号进行讨论),特别地,当n=1时,xf′(x)+f(x)>0,构造F(x)=xf(x),则F′(x)=xf′(x)+f(x)>0.(2)对于xf′(x)-nf(x)>0(x≠0)型,构造F(x)=f(x)x n,则F′(x)=xf′(x)-nf(x)x n+1(注意对x n+1的符号进行讨论),特别地,当n=1时,xf′(x)-f(x)>0,构造F(x)=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2>0.类型三:f ′(x )±λf (x )(λ为常数)型在类型一中若g (x )=e x ,那么在F ′(x )中会出现e x 量,这时可以考虑构造F (x )=f (x )·e x 或F (x )=f (x )e x 型,一般地F (x )=e nxf (x ), F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )]; F (x )=f (x )e nx ,F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx ;结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x ); (2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )e nx . 我们根据得出的结论去解决典例3.【典例3】 (1)f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( ) A .f (a )<e a f (0) B .f (a )>e a f (0) C .f (a )<f (0)e aD .f (a )>f (0)e a(2)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( ) A .f (1)<f (0) B .f (2)>e 2f (0) C .f (3)>e 3f (0)D .f (4)<e 4f (0)[切入点] (1)由f ′(x )-f (x )>0构造函数g (x )=f (x )e x ;(2)由(x -1)[f ′(x )-f (x )]>0构造函数g (x )=f (x )e x . [解析] (1)令g (x )=f (x )e x ,∴g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x >0.∴g (x )在R 上为增函数.又∵a >0,∴g (a )>g (0),即f (a )e a >f (0)e 0,即f (a )>e a f (0).故选B. (2)令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x ,∵(x -1)[f ′(x )-f (x )]>0,∴当x <1时,f ′(x )-f (x )<0,∴g ′(x )<0, ∴g (x )在(-∞,1)上为减函数, ∴g (-1)>g (0),即f (-1)e -1>f (0)e 0=f (0), ∵f (2-x )=f (x )e 2-2x ,∴f (3)=f (-1)e 4>e -1f (0)·e 4=e 3f (0),故选C. [答案] (1)B (2)C(1)对于f ′(x )+nf (x )型构造F (x )=e nx f (x ),F ′(x )=e nx [f ′(x )+nf (x )]. 特别地n =1时,F (x )=e x f (x ),F ′(x )=e x [f ′(x )+f (x )]. (2)对于f ′(x )-nf (x )型构造F (x )=f (x )e nx ,F ′(x )=f ′(x )-nf (x )e nx .特别地n =1时,F (x )=f (x )e x ,F ′(x )=f ′(x )-f (x )e x .类型四:f ′(x )与sin x 、cos x 组合型类型一中当g (x )=sin x 或g (x )=cos x 时,F ′(x )会出现f ′(x )与sin x 、cos x 的结合形式,我们一起看看常考的几种形式. F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x +f (x )cos x ; F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x -f (x )cos x sin 2x ;F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x -f (x )sin x ; F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x +f (x )sin x cos 2x我们根据得出的结论去解决典例4.【典例4】 (2019·湖南益阳调研)定义在⎝ ⎛⎭⎪⎫0,π2上的函数f (x ),f ′(x )是它的导函数,恒有f ′(x )>f (x )·tan x 成立,则有( ) A.3f ⎝ ⎛⎭⎪⎫π6<f ⎝ ⎛⎭⎪⎫π3B.3f ⎝ ⎛⎭⎪⎫π6>2cos1·f (1)C .2f ⎝ ⎛⎭⎪⎫π4<6f ⎝ ⎛⎭⎪⎫π6D.2f ⎝ ⎛⎭⎪⎫π4>f ⎝ ⎛⎭⎪⎫π3[切入点] 由f ′(x )>f (x )tan x ,构造函数g (x )=f (x )·cos x .[解析] 由于f ′(x )>f (x )tan x 且x ∈⎝ ⎛⎭⎪⎫0,π2,则f ′(x )cos x -f (x )sin x >0.设g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )sin x >0,所以g (x )在⎝ ⎛⎭⎪⎫0,π2上是增函数,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π6,即f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π6cos π6,即f ⎝ ⎛⎭⎪⎫π3>3f ⎝ ⎛⎭⎪⎫π6.故A 正确.同理可得B ,C ,D 错误.故选A. [答案] A若导函数中出现了sin x 、cos x 、tan x 与f ′(x )的组合形式,根据F ′(x )的结构特点可考虑构造F (x )=f (x )sin x ,F (x )=f (x )cos x 等形式.1.(2020·太原十二中月考)设a >0,b >0,e 是自然对数的底数,则( ) A .若e a +2a =e b +3b ,则a >b B .若e a +2a =e b +3b ,则a <b C .若e a -2a =e b -3b ,则a >b D .若e a -2a =e b -3b ,则a <b[解析] 因为a >0,b >0,所以e a +2a =e b +3b =e b +2b +b >e b +2b .对于函数y =e x +2x (x >0),因为y ′=e x +2>0,所以y =e x +2x 在(0,+∞)上单调递增,因而a >b 成立.故选A. [答案] A2.若函数f (x )的定义域为R ,且满足f (2)=2,f ′(x )>1,则不等式f (x )-x >0的解集为________.[解析] 令g (x )=f (x )-x , ∴g ′(x )=f ′(x )-1.由题意知g ′(x )>0,∴g (x )为增函数. ∵g (2)=f (2)-2=0, ∴g (x )>0的解集为(2,+∞). [答案] (2,+∞)。
高中数学6种构造函数法1、几何体构造法:几何体构造法是高中数学中常见的构造函数,即根据给定的条件,从原点出发,通过叠加若干条定义运算,利用实际工具画出题目要求构造的图形或者要求构造的几何体。
例如:根据给定的定义三角形ABC,在其外接圆上构造一个直角,使得构造出的四边形的一条边和三角形的一条边等长。
2、用线段构造法:用线段构造法是高中数学中常见的构造函数,是根据给定的条件,几何体和直线的位置,及题目要求的其他条件,按照一定的步骤和规律来画出要构造的几何体或其他东西。
例如:依据给定的线段AB,在其上端点A处构造一个半径等于原线段AB一半长度的圆,使得线段AB的端点A和圆的交点坐标相同;并在构造出的圆上构造一个到线段AB 端点B距离等于原线段AB一半长度的直线段。
3、从原点构造法:从原点构造法是高中数学中常见的构造函数,是指从某一原点出发,根据给定的情况,经过若干步的构造,建立若干定义关系,确定一个几何体的形状和大小,并与给定的几何体完全相同或满足给定条件的几何体。
例如:在原点构造一个半径等于原点O到给定点A的距离的圆,从这个圆上构造与 OA 相等的直线段,在这个直线段依次画上给定的点B、C。
4、标准图形构造法:标准图形构造法是在高中数学中学习的构造函数,即根据给定的它定义的图形和要求画出的图形之间的规律,采用实际的工具画出要求的图形。
例如:构造出与正方形相等的长方形(15cm×20cm),方法为:在一根边长15cm的尺子上划分出4等分点,然后再在另一根尺子上划分出5等分点,将它们相互链接,即可构造出长方形。
5、参数方程构造法:参数方程构造法是高中数学中学习的构造函数,即根据给定的参数条件所决定的几何体的特征,可利用参数方程的技巧,根据参数条件用参数方程来求出构造出几何体的函数,并且利用函数求出相应的构造过程,或者利用参数方程既定的几何图形,求出给定点的位置。
例如:求出构造出半径为 2 的半圆的函数,可以用参数方程 x = 2cos t,其中x 为构造出的半圆的横坐标,t 为角度参数。
例谈 构造法 在高中数学解题中的应用曾㊀智(光泽县第一中学ꎬ福建南平354100)摘㊀要:高中数学新课程提出ꎬ高中数学的教学重点之一就是空间形式与数量关系ꎬ这两点数学知识是探讨研究自然规律与社会规律的基础工具.构造法ꎬ一方面ꎬ它是高中数学学习的一种重要方法ꎬ能够有效帮助学生理解空间形式与数量关系ꎻ另一方面ꎬ它也是培养学生 构造思维 的重要基础ꎬ是高中数学教育的关键之一.本文在此背景下ꎬ总结了在高中数学解题中应用 构造法 的原则ꎬ又进一步分类总结了具体应用 构造法 的解题案例ꎬ以期为我国高中数学教师开展 构造法 教学提供参考.关键词:构造法ꎻ高中数学ꎻ应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)03-0060-03收稿日期:2023-10-25作者简介:曾智(1984.1-)ꎬ男ꎬ福建省光泽人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀高中数学知识相对于初中而言难度更高ꎬ高中生在学习中不免会面临许多难以解决的问题ꎬ尤其是高中生本身解题经验较少ꎬ解题时常常会出现无法找到题目提供的各项条件与问题间的联系的情况ꎬ进而使解题变得十分艰难[1].这种情况一方面会导致学生解题效率降低ꎬ数学考试成绩下降ꎬ另一方面也会使学生长期承受较大的学习压力ꎬ导致对数学学习的兴趣降低ꎬ甚至抵触数学学习[2].此时ꎬ若学生掌握了 构造法 ꎬ则能够以新的角度审视难题ꎬ通过分析问题条件构造与题目本不相关的知识或模型ꎬ间接地解决难题[3].在这一过程中ꎬ高中生的数学思维能力与逻辑推理能力也得到了提高.因此ꎬ对 构造法 在高中数学解题中的应用进行研究ꎬ是具有一定的理论与现实价值的.1在高中数学解题中应用 构造法 的原则在高中数学解题中应用 构造法 是具有一定的原则的ꎬ其具体内容包括:相似性原则㊀在实际应用 构造法 进行解题时ꎬ需要仔细分析题目中提供的条件或题目本身特征ꎬ展开具有相似性的联想ꎬ进而构造出合理的数学对象ꎬ最终通过该数学对象完成数学解题[4].直观性原则㊀高中生在以 构造法 解题时ꎬ应遵循直观性原则ꎬ通过构造某种辅助解题的数学形式ꎬ使得题目中的条件与结论间形成直观的联系ꎬ进而快速地完成解题.熟悉化原则㊀这一原则指的是高中生在解题时应仔细分析题目的结构特征ꎬ并将其与自身熟悉的某种数学式㊁形㊁方程等进行对比ꎬ进而构造出能够与题目相对应的数学形式ꎬ从而解决问题[5].2应用 构造法 进行高中数学解题的案例应用 构造法 进行高中数学解题的重点在于:(1)应用 构造法 的目的ꎬ即想要通过该方法得到的结论是什么ꎻ(2)构造哪种数学形式才能实现应用 构造法 的目的.只有有效实现上述两个重点ꎬ高中生才能够应用 构造法 解决问题[6].本文通过展示几类高中数学常见问题的 构造法 解法ꎬ展示 构造法 的具体应用方法ꎬ如下所示.2.1 函数构造法 解题案例在高中数学学习中ꎬ函数是重点学习的内容之一ꎬ而在实际题目中ꎬ包含函数的题目往往还会与方06程㊁数列㊁图形等其他数学知识结合ꎬ使高中生解题难度增大.在这一类问题中应用 构造法 能够有效降低解题难度ꎬ进而加快学生解题速度[7].具体案例如下.案例1㊀求函数f(x)=lnx-x+1x-1ꎬ讨论f(x)的单调性ꎬ并证明f(x)有且仅有两个零点.解㊀f(x)的定义域为(0ꎬ1)ɣ(1ꎬ+¥)ꎬ因为fᶄ(x)=1x+2(x-1)2>0ꎬ则f(x)在0ꎬ1()和(1ꎬ+ɕ)这两个区间上单调递增.通过分析题意发现该函数有两个零点ꎬ因为f(e)=1-e+1e-1<0ꎬf(e2)=2-e2+1e2-1=e2-3e2-1>0ꎬ则f(x)在(1ꎬ+¥)有唯一零点x1ꎬ即f(x1)=0.又因为0<1x1<1ꎬ则f(1x1)=-lnx1+x1+1x1-1=-f(x1)=0.故f(x)在0ꎬ1()有唯一零点1x1.综上所述ꎬf(x)有且仅有两个零点.2.2 方程构造法 解题案例在 构造法 中ꎬ方程是一种较为常见的数学形式. 方程构造法 是高中数学解题中的常用方法之一ꎬ尤其是在函数相关题目的解题中.这种方法主要是通过分析题目中的数量关系或特征结构ꎬ构造出一组等量的关系式ꎬ并通过解析关系式找到题目中几个未知量间的关系ꎬ进而得到方程中包含的等量关系[8].具体案例如下.案例2㊀若a1ꎬa2ꎬa3ꎬa4均为非零的实数ꎬ且(a21+a22)a24-2a2(a1+a3)a4+a22+a23=0ꎬ证明四个非零实数中a1ꎬa2ꎬa3能够形成一个等比数列ꎬ且该数列的公比为a4.证明㊀分析题目可推导得出ꎬ在四个非零实数中ꎬa4这一非零实数是一元二次方程(a21+a22)x2-2a2(a1+a3)x+(a22+a23)=0的实数根ꎬ则可以推出关系式:ә=4a22(a1+a3)2-4(a21+a22)(a22+a23)=4(2a1a22a3-a21a23-a42)=-4(a22-a1a3)2ȡ0ꎬ因此ꎬ只有当a22-a1a3=0时ꎬ关系式才能成立ꎬ则可推导出a22=a1a3ꎬ同时由于题中表明a1ꎬa2ꎬa3均为非零实数.则可得出a1ꎬa2ꎬa3能够形成等比数列.且通过构造的求根公式可知a4=2a2(a1+a3)2(a21+a22)=a2(a1+a3)a21+a1a3=a2a1ꎬ则a4为该等比数列的公比.综上所述可以证明a1ꎬa2ꎬa3能够形成一个等比数列ꎬ且该数列的公比为a4.2.3 向量构造法 解题案例在高中数学的所有知识点中ꎬ向量的相关知识是教学与学习的重难点之一.在高中数学考试中ꎬ与这一知识点相关的题目大多相对简单ꎬ以选择题或填空题为主ꎬ但当这一知识点出现在解答题中时ꎬ常常与立体几何相联系ꎬ解题难度增加许多ꎬ对学生的数学能力要求也相对较高[9].应用 向量构造法 进行解题ꎬ能够引导高中生将日常学习的向量知识点与三角函数㊁复数㊁函数等知识点联系起来ꎬ进而更加轻松地解决问题ꎬ案例如下.案例3㊀已知cosA+cosB+cosC=sinA+sinB+sinC=0ꎬ求sin2A+sin2B+sin2C的值.解㊀设P(cosAꎬsinA)ꎬQ(cosBꎬsinB)ꎬR(cosCꎬsinC)为单位圆上的三个点ꎬ则根据题意可以推导得出O是әPQR的外心.由此可以得到关系式:OPң=(cosAꎬsinA)ꎬOQң=(cosBꎬsinB)ꎬORң=(cosCꎬsinC).因为cosA+cosB+cosC=sinA+sinB+sinC=0ꎬ则OPң+OQң+ORң=(cosA+cosB+cosCꎬsinA+sinB+sinC)=0ꎬ可以推导得出O是әPQR重心ꎬ也是әPQR的外心ꎬ则әPQR为正三角形.由此可得出关系式B=A+2π3+2kπꎬC=A-2π3+2kπꎬ则sin2A+sin2B+sin2C=sin2A+sin2A+2π3æèçöø÷+sin2A-2π3æèçöø÷=sin2A+sinAcos2π3+cosAsin2π3æèçöø÷2+sinAcos2π3-cosAsin2π3æèçöø÷216=sin2A+12sin2A+32cos2A=32综上所述可得ꎬsin2A+sin2B+sin2C=32.2.4 复数构造法 解题案例复数构造法 的应用ꎬ简单来说可以主要分为两类ꎬ一类题目本身就是复数问题ꎬ通过应用复数本身的性质就可以完成解题ꎻ另一类则是非复数问题ꎬ需要间接构造复数形式来完成解题[10].案例如下.案例4㊀求函数f(x)=(x-5)2+16+(x-1)2+4的最小值.证明:构造复数z1=5-x+4iꎬz2=x-1+2iꎬ则f(x)=z1+z2ȡz1+z2=4+6i=213.当z1=kz2ꎬ即5-x+4i=k(x-1)+2i[]时取等号ꎬ解得x=73ꎬ即x=73时ꎬf(x)有最小值213.2.5 图形构造法 解题案例数形结合思维是高中数学思维培养中的关键ꎬ这一思维的形成与 图形构造法 的应用有着密不可分的关系.应用 图形构造法 进行解题的案例具体如下所示.案例5㊀证明正弦两角和公式sin(α+β)=sinαcosβ+cosαsinβ.证明:如图1所示ꎬ在线段CD上任取一点Aꎬ以A为圆心ꎬ1为半径做圆弧分别过C点和D点ꎬ且和CD垂直的直线相交于点B与点Eꎬ令øBAC=αꎬøEAD=βꎬ则øBAE=π-(α+β)ꎬBC=sinαꎬAC=cosαꎬDE=sinβꎬAD=cosβ.图1㊀案例5证明示意图梯形BCDE=әABC+әADE+әABEꎬ考虑面积相等可得:12(sinα+sinβ)(cosα+cosβ)=12sinαcosα+12sinβcosβ+12ˑ12ˑsin(π-α-β)即(sinα+sinβ)(cosα+cosβ)=sinαcosα+sinβcosβ+sin(α+β)ꎬ展开整理得sin(α+β)=sinαcosβ+cosαsinβ即可得证.3结束语«普通高中数学课程标准»中提出ꎬ数学核心素养包含具有数学基本特征的思维品格和关键能力ꎬ是数学知识㊁技能㊁思想㊁经验及情感㊁态度㊁价值观的综合体现. 构造法 作为高中最常使用的数学思想方法之一ꎬ能够有效培养高中生的创造思维与创新意识ꎬ综合提升其数学学科思维ꎬ但目前我国高中生对于 构造法 的了解大多有限.本文探讨了 构造法 在高中数学解题中的应用ꎬ为 构造法 在我国高中的推广应用贡献力量.㊀参考文献:[1]吴玉辉.构造法在高中数学圆锥曲线解题中的应用[J].华夏教师ꎬ2021(35):31-32.[2]顾建华.基于 构造法 的高中数学解题思路探索[J].科学咨询(教育科研)ꎬ2020(10):166.[3]吴建文.构造法在高中数学教学中的应用[J].华夏教师ꎬ2019(19):40.[4]袁胜蓝ꎬ袁野.高中数学数列通项公式的几种求法[J].六盘水师范学院学报ꎬ2019ꎬ31(03):117-120.[5]杨丽菲.高中数学解题中应用构造法的实践尝试[J].科学大众(科学教育)ꎬ2018(12):7.[6]何婷.构造函数求解高中数学问题[J].科学咨询(科技 管理)ꎬ2018(06):144.[7]李正臣.高中数学解题中应用构造法之实践[J].科学大众(科学教育)ꎬ2018(02):34.[8]罗杰.分析高中数学三角函数的解题技巧[J].中国高新区ꎬ2017(22):102.[9]洪云松.高中数学圆锥曲线解题中构造法的使用[J].农家参谋ꎬ2017(13):160.[10]刘米可.构造函数法在高中数学解题中的应用[J].经贸实践ꎬ2016(23):226.[责任编辑:李㊀璟]26。
在几何中,构造法是使用规则或原则来绘制几何图形的方法。
下面是几个常见的构造法例子。
1 垂线构造法:在平面内给定一点和一条直线,从该点作垂线与该
直线的交点,就是所求的点。
2 垂足构造法:在平面内给定一点和一条直线,从该点作垂线与该
直线的交点,这个交点称作该点的垂足。
3 垂直平分线构造法:在平面内给定一点和一条直线,从该点作垂
线,并做该垂线的中垂线,这条中垂线称作该点的垂直平分线。
4 垂直于直线的平分线构造法:在平面内给定一点和一条直线,从
该点作垂线,并做该垂线的中垂线,这条中垂线垂直于给定的直线,称作该点的垂直于直线的平分线。
5 直线平分线构造法:在平面内给定一条直线和一个点,从该点作
该直线的平分线,并做该直线的中垂线,这条中垂线称作该点的直线平分线。
6 对称构造法:在平面内给定两点或两条直线,建立一条对称轴,
使得对称轴上的一侧和对称轴的对侧关于对称轴对称,这样就可以使用对称构造法来构造出许多几何图形。
7 图形复制构造法:在平面内给定一个图形,通过将图形复制并移
动到另一个位置来构造出新的图形。
8 线段构造法:在平面内给定两个点,连接这两个点就是所求的线
段。
9 圆构造法:在平面内给定一个点和一条直线,以该点为圆心,该
直线为圆的直径,连接两端点即为圆。
这些只是几何图形构造法的一小部分例子,在几何学中还有许多其他的构造法。
高中数学中的常用几何模型及构造方法大全一、全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转1、对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
2、对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
3、旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题4、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
5、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称6、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
二、模型变换说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
1、中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
二轮复习关于三角函数解题中常用数学模型构造构造数学模型是一种比较重要、灵活的思维方式,它没有固定的模式。
在解题中要想用好它,需要有敏锐的观察、丰富的联想、灵活的构思、创造性的思维等能力。
应用好构造思想解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是弄清条件的本质特点和背景,以便重新进行逻辑组合。
常用的有构造命题、构造表达式、构造几何体等,本文拟就通过介绍几种解三角函数的具体问题,对构造的各种思维方式作一些探讨。
1 构造直角三角形例1 设x ∈[4π,2π],求证:cscx -ctgx ≥2-1 思路分析:由2、1联想等腰直角三角形,不仿构造一个等腰直角三角形来研究。
作Rt ⊿ABC ,令∠C=900,AC=1,在AC上取一点D ,记∠CDB=x ,则BD=cscx ,CD=ctgx ,AD=1-ctgx ,利用AD+DB≥AB=2,可得cscx -ctgx ≥2-1,等号仅在x =4π时成立。
2 构造单位圆例 2若0<β<α<2π,求证:α-β<tg α-tg β 思路分析:构造单位圆,借助三角函数线与三角函数式的关系,把数的比较转化为几何图形面积的比较。
作单位圆O ,AP 1=β,AP 2=α,∴ P 1P 2=α-β,AT 1=tg β,AT 2=tg α,S ⊿AT O =21tg α,S ⊿AP O =21tg β,由于S 扇形OAP=21α,S 扇形OAP =21β。
∴S 扇形OP P =21(α-β),S ⊿OT T=21tg α-21tg β。
则S ⊿OT T>S 扇形OP P即 21(α-β)<21(tg α-tg β) 所以 α-β<tg α-tg β3 构造函数表达式例3已知x 、y ∈[-4π,4π],a ∈R ,且⎩⎨⎧=++=-+0cos sin 402sin 33a y y y a x x ,求cos (x+2y )思路分析:由x 3+sinx 与2(4y 3+sinycosy ),这两部分形式完全类似,由此可构造函数形式。
构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如a n +1=ca n k ,a n =ca n -1k或者a n +b =c (a n -1+b )k ,b 为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列a n 中, a 1=2,a n +1=a n 2,求数列a n 的通项公式.【解析】取以a 1=2为底的对数(不能取c 为底,因为c =1,不能作为对数的底数),得到log a n +12=log an22,log a n +12=2log a n2,设b n =log a n2,则有b n +1=2b n ,所以b n 是以b 1=log a 12=1为首项,2为公比的等比数列,所以b n =2n -1,所以log a n2=2n -1,a n =22n -1.【经典例题2】数列a n 中,a 1=1,a n +1=2a n 2,求数列a n 的通项公式.【解析】取以2为底的对数(这里知道为什么不能取a 1=1为底数的对数了吧),得到log a n +12=log 2a n22,log an +12=log 22+2log a n2,log a n +12=1+2log a n2设b n =log an2,则有b n +1=1+2b n ,这又回归到构造二的情况,接下来的步骤大家应该都记得吧,由于这道题较为简单,所以直接可看出b n +1+1=2(b n +1),所以b n +1 是以b 1+1=1为首项,2为公比的等比数列,所以b n +1=2n -1,所以b n =2n -1-1,log a n2=2n -1-1,a n =22n -1-1.【经典例题3】已知a 1=2,点a n ,a n +1 在函数f x =x 2+2x 的图像上,其中n ∈N *,求数列a n 的通项公式.【解析】将a n ,a n +1 代入函数得a n +1=a n 2+2a n ,a n +1+1=a n 2+2a n +1=a n +1 2,即a n +1+1=a n +1 2两边同时取以3为底的对数,得log a n +1+13=log a n+123⇒log a n +1+13=2log a n+13(为什么此题取以3为底的对数呢,大家思考下,新构造的数列首项为log a 1+13,a 1+1=3,所以应当取以3为底,这样计算会简单很多,当然如果你计算能力较强,也可以取其他数作为底数).所以log a n+1 3 是以1为首项,2为公比的等比数列,即log a n+1 3=1×2n -1,a n +1=32n -1,a n =32n -1-1.【经典例题4】在数列a n 中, a 1=1,当n ≥2时,有a n +1=a n 2+4a n +2,求数列a n 的通项公式.【解析】由a n +1=a n 2+4a n +2,得a n +1+2=a n 2+4a n +4,即a n +1+2=a n +2 2,两边同取以3为底的对数,得log a n +1+23=log a n+223,即log a n +1+23=2log a n+2 3,所以数列log a n+2 3是以1为首项,2为公比的等比数列,log a n+23=2n -1,a n +2=32n -1,即a n =32n -1-2.◆构造七:二阶整体构造等比简单的二阶整体等比:关于a n +1=Aa n +Ba n -1的模型,可通过构造二阶等比数列求解,大部分题型可转化为a n +1-a n =(A -1)a n -a n -1 ,利用a n +1-a n 成等比数列,以及叠加法求出a n .还有一小部分题型可转化为a n +1+a n =(A +1)a n +a n -1 ,利用a n +1+a n 成等比数列求出a n .【经典例题1】已知数列a n 满足a 1=1,a 2=3,a n +2=3a n +1-2a n n ∈N * ,求数列a n 的通项公式.【解析】由a n +1=3a n -2a n -1⇒a n +1-a n =2a n -a n -1 ,故a n +1-a n 是以a 2-a 1=2为首项,2为公比的等比数列,即a n +1-a n =a 2-a 1 2n -1=2n ,接下来就是叠加法啦,a n -a n -1=2n -1...a 2-a 1=2全部相加得:a n -a 1=2n-2,所以a n =2n -1.【经典例题2】已知数列a n 中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列a n 的通项公式。
构造法在高中数学解题中的应用方法
构造法是一种常用的数学解题方法,特别适用于几何问题的解决。
下面我们将介绍在
高中数学解题中构造法的应用方法。
一、构造辅助线:
1. 构造线段、角的等分线:通过构造等分线可以将原先复杂的形状简化为几个简单
的相等的部分,便于解题。
2. 构造三角形的高线、中线、角平分线:通过利用三角形的性质,可以确定三角形
的一些特殊线段,从而解题。
3. 构造平行线、垂直线:通过构造平行线和垂直线,可以得到一些等角关系、相似
三角形等,从而解题。
二、构造形状:
1. 构造圆、三角形、四边形:通过构造几何形状,可以利用其性质来解题。
2. 构造相似形:通过构造相似形状,可以利用相似三角形等性质来解题。
三、构造特殊点:
1. 构造重心、垂心、外心、内心:通过构造特殊点,可以利用它们的性质来解题。
2. 构造交点、中点:通过构造交点和中点,可以得到一些等分线段、等角关系等,
从而解题。
四、构造长度关系:
1. 构造比例关系:通过构造长度的比例,可以利用这些比例关系来解题。
2. 构造勾股定理:通过构造特殊的长度关系,可以利用勾股定理来解题。
构造法是一种灵活但有效的解题方法,在高中数学解题中应用广泛。
通过构造辅助线、形状、特殊点和长度关系等,可以利用它们的性质来解决各种几何问题。
在解题过程中要
善于观察和发现,合理运用构造法,提高解题的效率和准确性。