聚焦中考专题8 综合型问题
- 格式:ppt
- 大小:1.37 MB
- 文档页数:41
中考数学难点:多种函数“混合”综合型问题
一次函数、反比例函数以及二次函数是初中数学需要掌握的函数知识内容,也是中考必考的热门知识板块。
纵观近几年全国各地中考试题,我们发现二次函数基本上与一次函数结合的综合问题较多;二次函数与反比例函数基本不会涉及;一次函数与反比例函数的综合问题时一个“冷门”中考考点。
经典例题1:
解题反思:
此题考查了反比例函数与一次函数的交点,涉及的知识有:一次函数与坐标系的交点,待定系数法确定反比例函数解析式,坐标与图形性质以及反比例函数的性质,熟练掌握函数的性质是解本题的关键.
经典例题2:
解题反思:
本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.
经典例题3:
解题反思:
本题主要考查了运用待定系数法求反比例函数及一次函数的解析式、求反比例函数及一次函数图象的交点、三角形的中线平分三角形的面积、相似三角形的判定与性质、三角形外角的性质、直角三角形两锐角互余等知识,在解决问题的过程中,用到了分类讨论、数形结合、割补法等重要的数学思想方法,应熟练掌握.
经典例题4:
解题反思:
此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.
经典例题5:
解题反思:
(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.
(2)此题还考查了函数解析式的求法,以及二次函数的最值的求法,要熟练掌握.(3)此题还考查了三角形的面积的求法,要熟练掌握.。
专题跟踪突破八 综合型问题一、选择题(每小题6分,共30分)1.(2013·荆州)如图,在平面直角坐标系中,直线y =-3x +3与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线y =kx(k ≠0)上.将正方形沿x 轴负方向平移a 个单位长度后,点C 恰好落在该双曲线上,则a 的值是( B )A .1B .2C .3D .42.(2013·桂林)如图,已知边长为4的正方形ABCD ,P 是BC 边上一动点(与B ,C 不重合),连接AP ,作PE ⊥AP 交∠BCD 的外角平分线于点E.设BP =x ,△PCE 面积为y ,则y 与x 的函数关系式是( C )A .y =2x +1B .y =12x -2x 2C .y =2x -12x 2 D .y =2x3.(2014·遵义)如图,边长为2的正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点F ,作△CPF 的外接圆⊙O ,连接BP 并延长交⊙O 于点E ,连接EF ,则EF 的长为( D )A .32B .53C .35 5D .455 4.(2014·呼和浩特)已知函数y =1|x|的图象在第一象限的一支曲线上有一点A(a ,c),点B(b ,c +1)在该函数图象的另外一支上,则关于一元二次方程ax 2+bx +c =0的两根x 1,x 2判断正确的是( C )A .x 1+x 2>1,x 1²x 2>0B .x 1+x 2<0,x 1²x 2>0C .0<x 1+x 2<1,x 1²x 2>0D .x 1+x 2与x 1²x 2的符号都不确定 5.(2013·烟台)如图①,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1 cm /s .若P ,Q 同时开始运动,设运动时间为t(s ),△BPQ 的面积为y(cm 2).已知y 与t 的函数图象如图②,则下列结论错误的是( D )A .AE =6 cmB .sin ∠EBC =45C .当0<t ≤10时,y =25t 2D .当t =12 s 时,△PBQ 是等腰三角形 二、填空题(每小题6分,共30分)6.(2014·孝感)如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y =kx(x >0)经过斜边OA 的中点C ,与另一直角边交于点D.若S △OCD =9,则S △OBD 的值为__6__.,第6题图) ,第7题图)7.(2013·盘锦)如图,在平面直角坐标系中,直线l 经过原点O ,且与x 轴正半轴的夹角为30°,点M 在x 轴上,⊙M 半径为2,⊙M 与直线l 相交于A ,B 两点,若△ABM 为等腰直角三角形,则点M 的坐标为.8.(2014·泰州)如图,A ,B ,C ,D 依次为一直线上4个点,BC =2,△BCE 为等边三角形,⊙O 过A ,D ,E 三点,且∠AOD =120°.设AB =x ,CD =y ,则y 与x 的函数关系式为__y =4x(x >0)__.,第8题图) ,第9题图)9.(2013·河北)如图,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2; 将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3; ……;如此进行下去,直至得C 13.若P(37,m)在第13段抛物线C 13上,则m =__2__.10.(2014·咸宁)如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C重合),∠ADE =∠B =α,DE 交AC 于点E ,且cos α=45.下列结论:①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8或252;④0<CE ≤6.4.其中正确的是__①②③④__.(把你认为正确结论的序号都填上)三、解答题(共40分) 11.(12分)(2013·绥化)如图,直线MN 与x 轴、y 轴分别相交于A ,C 两点,分别过A ,C 两点作x 轴、y 轴的垂线相交于B 点,且OA ,OC(OA >OC)的长分别是一元二次方程x 2-14x +48=0的两个实数根.(1)求C 点坐标;(2)求直线MN 的解析式;(3)在直线MN 上存在点P ,使以点P ,B ,C 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.解:(1)解方程x 2-14x +48=0得x 1=6,x 2=8.∵OA ,OC(OA >OC)的长分别是一元二次方程x 2-14x +48=0的两个实数根,∴OC =6,OA =8.∴C(0,6)(2)设直线MN 的解析式是y =kx +b(k ≠0).由(1)知,OA =8,则A(8,0).∵点A ,C都在直线MN 上,∴⎩⎨⎧8k +b =0,b =6,解得⎩⎪⎨⎪⎧k =-34,b =6,∴直线MN 的解析式为y =-34x +6(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P 在直线MN ∶y =-34x +6上,∴设P(a ,-34a +6),当以点P ,B ,C 三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC =PB 时,点P 是线段BC 的垂直平分线与直线MN 的交点,即P 1(4,3);②当PC =BC 时,a 2+(-34a +6-6)2=64,解得a =±325,则P 2(-325,545),P 3(325,65);③当PB =BC时,(a -8)2+(-34a +6-6)2=64,解得a =25625,则-34a +6=-4225,∴P 4(25625,-4225).综上所述,符合条件的点P 有P 1(4,3),P 2(-325,545),P 3(325,65),P 4(25625,-4225)12.(12分)(2013·梅州)如图,已知抛物线y =2x 2-2与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C.(1)写出以A ,B ,C 为顶点的三角形面积; (2)过点E(0,6)且与x 轴平行的直线l 1与抛物线相交于M ,N 两点(点M 在点N 的左侧),以MN 为一边,抛物线上的任一点P 为另一顶点作平行四边形,当平行四边形的面积为8时,求出点P 的坐标;(3)过点D(m ,0)(其中m >1)且与x 轴垂直的直线l 2上有一点Q(点Q 在第一象限),使得以Q ,D ,B 为顶点的三角形和以B ,C ,O 为顶点的三角形相似,求线段QD 的长.(用含m 的代数式表示)解:(1)∵y =2x 2-2,∴当y =0时,2x 2-2=0,x =±1,∴点A 的坐标为(-1,0),点B 的坐标为(1,0),AB =2,又当x =0时,y =-2,∴点C 的坐标为(0,-2),OC =2,∴S△ABC =12AB·OC =12³2³2=2 (2)将y =6代入y =2x 2-2,得2x 2-2=6,x =±2,∴点M 的坐标为(-2,6),点N 的坐标为(2,6),MN =4.∵平行四边形的面积为8,∴MN 边上的高为8÷4=2,∴P 点纵坐标为6±2.①当P 点纵坐标为6+2=8时,2x 2-2=8,x =±5,∴点P 的坐标为(5,8)或(-5,8);②当P 点纵坐标为6-2=4时,2x 2-2=4,x =±3,∴点P 的坐标为(3,4)或(-3,4)(3)∵点B 的坐标为(1,0),点C 的坐标为(0,-2),∴OB =1,OC =2.∵∠QDB =∠BOC =90°,∴以Q ,D ,B 为顶点的三角形和以B ,C ,O 为顶点的三角形相似时,分两种情况:①OB 与BD 边是对应边时,△OBC ∽△DBQ ,则OB DB =OC DQ ,即1m -1=2DQ,解得DQ =2(m-1)=2m -2;②OB 与QD 边是对应边时,△OBC ∽△DQB ,则OB DQ =OC DB ,即1DQ =2m -1,解得DQ =m -12.综上所述,线段QD 的长为2m -2或m -1213.(16分)(2014·泰安)二次函数y =ax 2+bx +c 的图象经过点(-1,4),且与直线y =-12x +1相交于A ,B 两点(如图),A 点在y 轴上,过点B 作BC ⊥x 轴,垂足为点C(-3,0).(1)求二次函数的表达式;(2)点N 是二次函数图象上一点(点N 在AB 上方),过N 作NP ⊥x 轴,垂足为点P ,交AB 于点M ,求MN 的最大值;(3)在(2)的条件下,点N 在何位置时,BM 与NC 相互垂直平分?并求出所有满足条件的N 点的坐标.解:(1)由题设可知A(0,1),B(-3,52),根据题意得⎩⎪⎨⎪⎧c =1,9a -3b +c =52,a -b +c =4,解得⎩⎨⎧a =-54,b =-174,c =1,则二次函数的解析式是y =-54x 2-174x +1(2)设N(x ,-54x 2-174x +1),则M ,P 点的坐标分别是(x ,-12x +1),(x ,0).∴MN =PN -PM =-54x 2-174x +1-(-12x +1)=-54x 2-154x =-54(x +32)2+4516,则当x =-32时,MN的最大值为4516(3)连接MC ,BN ,BM 与NC 互相垂直平分,即四边形BCMN 是菱形,由于BC ∥MN ,MN =BC ,且BC =MC ,即-54x 2-154x =52,且(-12x +1)2+(x +3)2=254,解得x =-1,故当N(-1,4)时,BM 和NC 互相垂直平分。
2021年中考语文综合性练习复习专题一、阅读下面某班黑板报上抄录的英雄材料,回答问题。
(4分)材料一邓稼先,在一次核试验发生事故时,明知道有遭受核辐射的危险,但为了取回破碎的部件,了解事故的原因,他坚决地说:“我进去吧。
”材料二电影《烈火英雄》原型桑武,身处火海8小时,连续转动阀门32000圈,他的手磨出了血泡。
可是,桑武说:“明知道进去可能就出不来了,但是还是要进去。
”材料三在驾驶舱挡风玻璃出现裂痕并脱落,驾驶舱失压的险情下,机长刘传健最终使飞机在成都安全迫降,确保了机上119名乘客和9名机组人员的生命财产安全。
他说:“应急处置能力源自对飞机的了解程度,进驾驶舱3秒钟就要知道飞机处于什么状态。
”材料四“只是因为你需要,而我刚好专业。
”出征前,支援湖北医疗队队员王一淋说。
1.探究以上四则材料,你发现英雄具有的主要特征有__________,_________。
(2分)2.这四则材料,对于你树立人生理想有什么启示?(2分)(二)2020年6月23日,第四届世界智能大会在天津开幕。
人工智能、大数据等数字技术的新成果在“云”上集中展示,让人大开眼界。
某班将开展以“人工智能与我们的生活”为主题的综合性学习活动,一位同学为活动搜集了四则材料。
请按照要求,回答20~21题。
【材料一】【材料二】在疫情防控和复工生产中,天津全面推广应用了“健康码”。
小小的“健康码”看似简单,背后的技术支撑系统却十分庞大。
每天百万级数量的“亮码”,均基于人工智能科技手段的支撑。
有了“健康码”,精准分类防控得以实现,城市得以科学有序运转起来。
【材料三】现在越来越多的人,已经习惯观看手机中的天气预测。
在天气预测中,人工智能专家系统通过手机的GPRS系统,定位到用户所处的位置,再利用科学算法,对覆盖全国的雷达图进行数据分析来预测天气。
这样,人们可以随时随地查询自己所在地的天气走势,收到的天气预报能精准到分钟和所在街道。
【材料四】人工智能在车联网的运用将提高人们的出行效率。
;;中考冲刺:几何综合问题—知识讲解及典型例题解析【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要 考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选 择题、填空题、几何推理计算题以及代数与几何的综合计算题 ,还有更注重考查学生分析问题和解决问 题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多, 题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有 实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能 力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等)2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等)3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图 1,在正方形 ABCD 中,点 E 、F 分别是边 BC 、AB 上的点,且 CE=BF ,连接 DE ,过点 E 作 EG ⊥DE,使 EG=DE ,连接 FG ,FC .(1)请判断:FG 与 CE 的数量关系和位置关系;(不要求证明)(2)如图 2,若点 E 、F 分别是 CB 、BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出 判断判断予以证明;(3)如图 3,若点 E 、F 分别是 BC 、AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直 接写出你的判断.【思路点拨】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(3)结论仍然成立.如图3中,设DE与FC的延长线交于点M,证明方法类似.【答案与解析】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(3)结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.【总结升华】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,注意这类题目的解题规律,图形变了,条件不变,证明的方法思路完全一样,属于中考常考题型.举一反三:【变式】已知:如图(1),射线AM//射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE⊥EC,且AD+DE=AB=a.(1)求证:∆ADE∽∆BEC;(2)如图(2),当点E为AB边的中点时,求证:AD+BC=CD;(3)设AE=m,请探究:∆BEC的周长是否与m值有关?若有关,请用含有m的代数式表示∴1∆BEC的周长;若无关,请说明理由.【答案】(1)证明:∵DE⊥EC,∴∠DEC=90︒.∴∠AED+∠BEC=90︒.又∵∠A=∠B=90︒,∴∠AED+∠EDA=90︒.∴∠BEC=∠EDA.∴∆ADE∽∆BEC.(2)证明:如图,过点E作EF//BC,交CD于点F,∵E是AB的中点,容易证明EF=1(AD+BC).2在Rt∆DEC中,∵DF=CF,∴EF=12 CD.1(A D+BC)=CD.22∴AD+BC=CD.(3)解:∆AED的周长=AE+AD+DE=a+m,BE=a-m.设AD=x,则DE=a-x.∵∠A=90︒,∴DE2=AE2+AD2.即a2-2ax+x2=m2+x2.a2-m2∴x=.2a由(1)知∆ADE∽∆BEC,∆ADE的周长AD a+m2a=∴a2-m2==∆BEC的周长BE a-m2a.∴∆BEC的周长=2a⋅∆ADE的周长=2a.a+m∴∆BEC的周长与m值无关.2.在△ABC中,∠ACB=45º.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=42,BC=3,CD=x,求线段CP的长.(用含x的式子表示)【思路点拨】(1)由题干可以发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解.(2)是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,和上题一样找AC的垂线,就可以变成第一问的条件,然后一样求解.(3)D在BC之间运动和它在BC延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X还是4-X.分类讨论之后利用相似三角形的比例关系即可求出CP.【答案与解析】(1)结论:CF⊥BD;证明如下:ΘAB=AC,∠ACB=45º,∴∠ABC=45º.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90º,∴∠DAB=∠FAC,∴△DAB≌△FAC,∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90º.即CF⊥BD.(2)CF⊥BD.(1)中结论仍成立.理由是:过点A作AG⊥AC交BC于点G,∴AC=AG可证:GAD≌CAF∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF=90º.即CF⊥BD(3)过点A作AQ⊥BC交CB的延长线于点Q,易证△AQD∽△DCP,∴ CP = CD ,∴ = , ∴CP = - + x . ∴ CP = CD , ∴ = , ∴CP = + x . ①点 D 在线段 BC 上运动时,∵∠BCA=45º,可求出 AQ= CQ=4.∴DQ=4-x ,CP x DQ AQ4 - x 4 x 2 4②点 D 在线段 BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x.过 A 作 AQ⊥BC,∴∠Q=∠FQC=90°,∠ADQ=∠AFC,则△AQD∽△ACF.∴CF⊥BD,∴△AQD∽△DCP,CP x DQ AQ4+x 4x 2 4【总结升华】此题综合性强,需要综合运用全等、相似、正方形等知识点,属能力拔高性的题目.3.如图,正方形ABCD 的边长为 6,点 E 是射线 BC 上的一个动点,连接 AE 并延长,交射线 DC 于点 F △,将 ABE 沿直线 AE 翻折,点 B 坐在点 B ′处.自主探究:(1)当=1 时,如图 1,延长 AB ′,交 CD 于点 M .①CF 的长为; ②判断 AM 与 FM 的数量关系,并证明你的结论.(2)当点 B ′恰好落在对角线 AC 上时,如图 2,此时 CF 的长为, 拓展运用:(3)当=2 时,求 sin ∠DAB ′的值.= .(【思路点拨】1)①利用相似三角形的判定与性质得出FC=AB即可得出答案;②利用翻折变换的性质得出∠BAF=∠MAF,进而得出AM=FM;(2)根据翻折变换的性质得出∠BAE=∠MAF,进而得出AM=MF,利用△ABE∽FCE得出答案即可;(3)根据①如图1,当点E在线段BC上时,延长AB′交DC边于点M,②如图3,当点E在线段BC 的延长线上时,延长AD交B′E于点N,分别利用勾股定理求出即可.【答案与解析】解:(1)①当=1时,∵AB∥FC,∴△ABE∽FCE,∴==1,∴FC=AB=6,②AM=FM,理由如下:∵四边形ABCD是正方形,∴AB∥DC,∴∠BAF=∠AFC,∵△ABE沿直线AE翻折得到△AB′E,∴∠BAF=∠MAF,∴∠MAF=∠AFC,∴AM=FM;(2)如图2,∵当点B′恰好落在对角线AC上时,∴∠1=∠2,∵AB∥FC,∴∠1=∠F,∴∠2=∠F,∴AC=FC,∵AB=BC=6,∴AC=FC=6,∵AB∥FC,∴△ABE∽FCE,∴===,(3)①如图1,当点E在线段BC上时,延长AB′交DC边于点M,∵AB∥CF,∴△ABE∽△FCE,∴==2,∵AB=6,∴CF=3,∴DF=CD+CF=9,由(1)知:AM=FM,∴AM=FM=9﹣DM,在△Rt ADM中,由勾股定理得:DM′2=(9﹣DM)2﹣62,解得:DM=,则MA=,∴sin∠DAB′==,②如图3,当点E在线段BC的延长线上时,延长AD交B′E于点N,由(1)知:AN=EN,又BE=B′E=12,点∴NA=NE=12﹣B′N,在△Rt AB′N中,由勾股定理得:B′N2=(12﹣B′N)2﹣62,解得:B′N=,AN=,∴sin∠DAB′=故答案为:6;6=.,.【总结升华】此题主要考查了翻折变换的性质以及相似三角形的判定与性质和勾股定理等知识,熟练利用相关性质和进行分类讨论得出是解题关键.类型二、几何计算型问题4.已知如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60︒保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中,当y取最小值时,判断△PQC的形状,并说明理由.【思路点拨】(1)属于纯静态问题,只要证两边的三角形全等就可以了.(2)是双动点问题,所以就需要研究在P,Q运动过程中什么东西是不变的.题目给定∠MPQ=60°,其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以很自然想到要通过相似三角形找比例关系.(3)条件又回归了当动点静止时的问题,由第二问所得的二次函数,很轻易就可以求出当x取对称轴的值时y有最小值,接下来就变成了“给定PC=2,求△PQC形状”的问题了,由已知的BC=4,自然看出P 是中点,于是问题轻松求解.【答案与解析】(1)证明:∵△MBC是等边三角形∴MB=MC,∠MBC=∠MCB=60︒∵M是AD中点∴AM=MD∵AD∥BC∴∠AMB=∠MBC=60︒,∠DMC=∠MCB=60︒∴△AMB≌△DMC∴AB=DC∴梯形ABCD是等腰梯形.∴ PC ∴ x 而(2)解:在等边 △MBC 中, MB = MC = BC = 4,∠MBC = ∠MCB = 60︒,∠MPQ = 60︒∴∠BMP + ∠BPM = ∠BPM + ∠QPC = 120︒∴∠BMP = ∠QPC∴ △BMP ∽△CQPCQ = BM BP∵ PC = x ,MQ = y ∴ BP = 4 - x ,QC = 4 - y4 - y 1 = ∴ y = x 2 - x + 4 4 4 - x4(3)解: △PQC 为直角三角形,∵ y = 1(x - 2)2 + 34 ∴当 y 取最小值时, x = PC = 2∴ P 是 BC 的中点, MP ⊥ BC , ∠MPQ = 60︒,∴∠CPQ = 30︒,∴∠PQC = 90︒∴ △PQC 为直角三角形.【总结升华】以上题目是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相 等,某角固定时,将动态问题化为静态问题去求解 .如果没有特殊条件,那么就需要研究在动点移动中 哪些条件是保持不变的.举一反三:【变式】已知:如图,N 、M 是以 O 为圆心,1 为半径的圆上的两点,B 是 MN 上一动点(B 不与点 M 、N 重合),∠MON=90°,BA⊥OM 于点 A ,BC⊥ON 于点 C ,点 D 、E 、F 、G 分别是线段 OA 、AB 、BC 、CO的中点,GF 与 CE 相交于点 P ,DE 与 AG 相交于点 Q .(1)四边形 EPGQ(填“是”或者“不是”)平行四边形;(2)若四边形 EPGQ 是矩形,求 OA 的值.【答案】(1)是.证明:连接OB,如图①,∵BA⊥OM,BC⊥ON,∴∠BAO=∠BCO=90°,∵∠AOC=90°,∴四边形OABC是矩形.∴AB∥OC,AB=OC,∵E、G分别是AB、CO的中点,∴AE∥GC,AE=GC,∴四边形AECG为平行四边形.∴CE∥AG,∵点D、E、F、G分别是线段OA、AB、BC、CO的中点,∴GF∥OB,DE∥OB,∴PG∥EQ,∴四边形EPGQ是平行四边形;(2)解:如图②,∴ AD ,AE=1,在①的条件下,设 CP 1= x ,S VP FC = y ,求 y 与 x 之间的函数关系式, 3 ∵口 EPGQ 是矩形.∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,AE= , BEBC x y y : = : x 设 OA=x ,AB=y ,则 2 2 2得 y 2=2x 2,又∵OA 2+AB 2=OB 2, 即 x 2+y 2=12.∴x 2+2x 2=1,解得:x=3 . 3即当四边形 EPGQ 是矩形时,OA 的长度为3 3 .5.在 Y ABCD 中,过点 C 作 CE⊥CD 交 AD 于点 E,将线段 EC 绕点 E 逆时针旋转 90o 得到线段 EF(如图 1)(1)在图 1 中画图探究:①当 P 为射线 CD 上任意一点(P 1 不与 C 重合)时,连结EP 1 绕点 E 逆时针旋转 90o 得到线段 EC 1.判断直线 FC 1 与直线 CD 的位置关系,并加以证明; ②当 P 2 为线段 DC 的延长线上任意一点时,连结 EP 2,将线段 EP 2 绕点 E 逆时针旋转 90o 得到线段 EC 2.判断直线 C 1C 2 与直线 CD 的位置关系,画出图形并直接写出你的结论.4 (2)若 AD=6,tanB=1 1 并写出自变量 x 的取值范围.图1 备用图【思路点拨】(1)本题在于如何把握这个旋转 90°的条件.旋转 90°自然就是垂直关系,于是出现了一 系列直角三角形,于是证角、证线就手到擒来了.(2)是利用平行关系建立函数式,但是不要忘记分类讨论.【答案与解析】(1)①直线 FG 与直线 CD 的位置关系为互相垂直. 112,- - . , , 证明:如图 1,设直线 FG 与直线 CD 的交点为 H .1 G 1AE F G 2 P H 1 DBCP 2图 1∵线段 EC 、EP 分别绕点 E 逆时针旋转 90°依次得到线段 EF 、EG , 1 1∴ ∠PEG = ∠CEF = 90° EG = EP ,EF = EC . 1 1 1 1∵ ∠G EF = 90° ∠PEF , ∠PEC = 90° ∠PEF ,1 1 1 1∴ ∠G EF = ∠PEC .1 1∴ △G EF ≌△PEC .1 1∴ ∠G FE = ∠PCE .1 1∵ EC ⊥ C D ,∴ ∠PCE = 90°, 1∴ ∠G FE = 90° 1∴ ∠EFH = 90°.∴ ∠FHC = 90°.∴ FG ⊥ CD . 1②按题目要求所画图形见图 1,直线 G G 与直线 CD 的位置关系为互相垂直.1 2(2)∵四边形 ABCD 是平行四边形,∴ ∠B = ∠ADC .∵ AD = 6,AE = 1 tan B = 4 3 , ∴ DE = 5 tan ∠EBC = tan B = 4 3. 可得 CE = 4 .由(1)可得四边形 EFCH 为正方形.∴ CH = CE = 4 .P 1 2 2 2 2 1 ①如图 2,当 P 点在线段 CH 的延长线上时,1 G 1A EFD H BC 图 2∵ FG = CP = x ,PH = x - 4 ,1 1 1 ∴ S△P FG 1 1 1 x( x - 4) = ⨯ FG ⨯ PH = 1 1 . ∴ y = 1 2x 2 - 2 x ( x > 4) . ②如图 3,当 P 点在线段 CH 上(不与 C 、H 两点重合)时, 1G 1 FB A ECD P 1 H图 3∵ FG = CP = x ,PH = x - 4 ,1 1 1 ∴ S △P FG 1 = 1 x(4 - x) FG ⨯ PH = 1 1 . 1 ∴ y = - x2 + 2 x (0 < x < 4) . 2③当 P 点与 H 点重合时,即 x = 4 时, △PFG 不存在. 1 1 1综上所述, y 与 x 之间的函数关系式及自变量 x 的取值范围是 y =1 2 x 2 - 2 x ( x > 4) 或 1 y = - x 2 + 2 x (0 < x < 4) . 2【总结升华】本题着重考查了二次函数的解析式、图形的旋转变换、三角形全等、探究垂直的构成情况 等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法.举一反三: 【变式】已知,点 P 是∠MON 的平分线上的一动点,射线 PA 交射线 OM 于点 A ,将射线 PA 绕点 P 逆时针 旋转交射线 ON 于点 B ,且使∠APB+∠MON=180°.(1)利用图 1,求证:PA=PB ;(2)如图2,若点C是AB与OP的交点,当△SPOB=3S△PCB时,求PB与PC的比值;(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.【答案】(1)作PE⊥OM,PF⊥ON,垂足为E、F∵四边形OEPF中,∠OEP=∠OFP=90°,∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB,即∠EPA+∠APF=∠APF+∠FPB,∴∠EPA=∠FPB,由角平分线的性质,得PE=PF,∴△EPA≌△FPB,即PA=PB;(2)∵S△POB=3S△PCB,∴PO=3PC,由(1)可知△PAB为等腰三角形,则∠PBC=又∵∠BPC=∠OPB(公共角),∴△PBC∽△POB,11(180°-∠APB)=∠MON=∠BOP,22∴PB PC=PO PB,即PB2=PO•PC=3PC2,∴PB=3PC(3)作BH⊥OT,垂足为H,当∠MON=60°时,∠APB=120°,由PA=PB,得∠PBA=∠PAB=12(180°-∠APB)=30°,又∵∠PBD=∠ABO,∠PBD+∠PBA+∠ABO=180°,∴∠ABO=12(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°,在△OBP中,∵∠BOP=30°,∴∠BPO=45°,在Rt△OBH中,BH=1OB=1,OH=3,2在Rt△PBH中,PH=BH=1,∴OP=OH+PH=3+1.。
初中数学江苏省南京市中考综合型问题解答策略与秘籍本文档旨在深入研究江苏省南京市中考数学综合型问题的特点,并总结出一套有效的解答策略和技巧,以帮助同学们更好地备战中考。
一、综合型问题的特点南京市中考数学综合型问题具有以下特点:1. 涉及知识点广泛:综合型问题通常涉及多个数学知识点,包括代数、几何、概率等。
2. 逻辑性强:综合型问题往往要求考生在解答过程中运用严密的逻辑思维,将不同知识点有机地结合在一起。
3. 信息量大:综合型问题给出的信息往往较多,考生需要从中提取关键信息,进行合理的分析与处理。
4. 解答过程复杂:综合型问题的解答过程往往不是一步到位的,需要考生逐步推理、运算,得出最终答案。
二、解答策略与秘籍针对综合型问题的特点,我们可以总结出以下解答策略与秘籍:1. 审题要仔细解答综合型问题首先要注意仔细审题,把握问题的本质,理解题目所给出的信息,明确题目要求解决的问题。
2. 构建知识框架对于涉及多个知识点的综合型问题,考生需要构建知识框架,将各个知识点联系起来,形成一个完整的解答思路。
3. 逐步推理综合型问题的解答过程往往是逐步推理的过程,考生需要耐心地分析问题,逐步进行推理,得出结论。
4. 合理运用公式与定理在解答综合型问题时,考生需要合理运用数学公式与定理,简化问题,提高解答效率。
5. 练与总结解答综合型问题的技巧需要在实践中不断锻炼和提高。
考生可以通过大量练,总结经验,形成自己的解答方法。
三、总结解答初中数学综合型问题需要考生具备扎实的数学基础、严密的逻辑思维和良好的解题技巧。
通过仔细审题、构建知识框架、逐步推理、合理运用公式与定理以及大量的练与总结,考生可以有效地提高解答综合型问题的能力,为中考数学取得优异成绩奠定基础。
中考易错题系列之综合篇常见综合题型解题方法详解综合题是中考常见的题型之一,它综合了多个知识点,需要学生综合运用所学的知识进行解答。
同学们在解答综合题时,常常容易犯错。
本文将为大家详细介绍几种常见综合题型的解题方法,希望能够帮助同学们在中考中取得好成绩。
一、图表分析题图表分析题通常以图表的形式呈现,要求学生通过观察图表中的信息,回答相应的问题。
解答这类题目时,同学们需要掌握以下几个步骤:1.观察图表:仔细阅读图表,并理解图表中的信息。
可以通过查看图表的标题、坐标轴、单位等来获取相关信息。
2.分析数据:根据图表中的数据进行分析,并与问题进行对比。
可以利用数据的增减趋势、大小关系等来得出结论。
3.合理推理:根据问题中的提示和图表中的数据,进行合理推理。
同学们可以根据已有的数据进行推测,并给出合理的解释。
二、阅读理解题阅读理解题是中考中常见的综合题型之一,要求学生通过阅读文章,回答相应的问题。
解答这类题目时,同学们需要注意以下几点:1.仔细阅读:认真阅读文章,并理解文章的主旨、作者的观点以及文章中的细节信息。
2.划重点:在阅读过程中,将重要的信息进行标记,方便后续查找和回答问题。
3.找答案:根据问题的要求,在文章中找到相关的信息进行回答。
可以根据信息的顺序、关键词等快速定位答案。
三、实际问题应用题实际问题应用题侧重于将所学的知识应用于实际生活中,要求学生综合运用多个知识点进行解答。
解答这类题目时,同学们需要注意以下几个方面:1.问题分析:仔细读懂问题,理解问题的意思和要求。
可以将问题进行拆解,将复杂问题分解为简单的小问题。
2.知识运用:根据问题所涉及到的知识点,将所学的知识应用到解答中。
可以运用公式、定理、规律等进行计算和推理。
3.合理解释:在解答问题时,要记得给出合理的解释和计算过程。
解答过程清晰明了,可以使阅卷老师更好地理解和评估你的答案。
综合题的解题方法因题目类型的不同而有所变化,但掌握了以上提到的基本解题步骤和技巧,就能在解答综合题时更加得心应手。