第8章 随机数生成与序列密码
- 格式:ppt
- 大小:2.66 MB
- 文档页数:55
随机数的产生原理随机数的产生原理是计算机科学领域中非常重要的一个概念。
在计算机程序开发、密码学、模拟实验等领域都广泛应用着随机数。
首先,我们需要明确随机数的概念。
所谓随机数是指其具有不可预测性和不相关性的数值序列。
也就是说,随机数的产生是不受特定规律、模式或者输入的影响。
在计算机中,由于计算机的运算是通过确定性算法进行的,所以计算机无法自主产生完全随机的数值序列,而只能通过一定的算法来模拟随机数的产生。
常见的随机数生成方法有伪随机数产生器和真随机数产生器。
其中,伪随机数产生器是利用已知的确定性算法生成的数字序列,这些数字序列在某种程度上具有类似随机的性质。
而真随机数产生器则利用物理现象来产生真正的随机数。
首先,我们来介绍一下伪随机数的产生方法。
伪随机数的产生是通过确定性的算法进行的,这个算法需要一个种子作为输入来产生一系列看似随机的数字。
在同一个种子的情况下,这个算法每次产生的数字都是相同的。
因此,为了产生不同的伪随机数序列,通常会使用系统时间等随机的种子。
常见的伪随机数产生算法有线性同余法、梅森旋转算法等。
线性同余法是最常见的伪随机数生成算法之一。
它的原理是通过不断迭代一个初始值(种子)来产生随机数序列。
具体的计算公式为:X(n+1) = (a * X(n) + c) mod m其中,X(n)表示第n个随机数,X(n+1)表示第n+1个随机数,a、c、m为一组给定的常数,mod表示取余操作。
在梅森旋转算法中,使用了一个非常大的2的幂次数作为种子,通过一系列的位操作或异或操作来产生伪随机数。
这种算法的优点是速度快且产生的随机数质量高。
然而,伪随机数产生器是基于已知的算法进行的,其产生的随机数序列是可预测和重现的。
因此,在某些应用场景(如密码学)中,需要使用更加安全和随机的随机数。
那么如何产生真随机数呢?真随机数的产生是利用物理现象的随机性来产生的。
常用的真随机数产生方法包括噪声源、热噪声和量子现象。
随机数讲解随机数是一种随机生成数字的算法,可以用于各种不同的应用中。
在现代科技中,随机数已经成为了许多应用不可或缺的一部分,例如密码学、数据加密、人工智能、金融等等。
本文将介绍随机数的生成原理、应用场景以及如何使用随机数。
一、随机数生成原理随机数生成算法最基本的原则是“生成一个序列唯一的数字”。
为了实现这个目标,随机数生成器会通过多种算法生成一个序列数字。
现在我们来介绍几种常见的随机数生成算法。
1.Pseudo Random Number Generator(PRNG)PRNG是一种基于伪随机数生成的随机数生成器。
它使用的是一个序列伪随机数种子,通过这个种子来计算出其他的伪随机数。
每次生成的随机数都应该是不同的,并且可以通过简单的加法、减法、乘法等操作与之前的随机数进行区分。
2.True Random Number Generator(TRNG)TRNG是一种真正的随机数生成器,它使用的是一个物理随机数种子。
这个种子可以随着时间的推移而改变,因此生成的随机数可以保证是不同的。
TRNG通过一系列的数学运算来生成真正的随机数,并且这些随机数可以精确地表示任何种子。
3.Secure Random Number Generator(SRNG)SRNG是一种安全的随机数生成器,主要用于金融和密码学等领域。
它使用的是一个安全的随机数种子,并且可以生成同时满足NIST GG 88-1和FIPS140-2标准的随机数。
为了保证随机性,SRNG在生成随机数之前会对种子进行一个非线性变换,以消除种子对随机性造成的微小影响。
二、随机数应用场景随机数在许多应用中都可以使用,下面列举了其中的一些应用场景。
1.密码学随机数在密码学中有着重要的应用,主要用于生成加密密钥、随机密码以及数字签名等。
这些数字都是基于随机数生成的,可以确保密码的复杂度和安全性。
2.数据加密随机数也可以用于数据加密中。
通过使用随机数作为密钥,数据加密算法可以确保密钥的复杂度和安全性,以保护数据的安全。
(整数值)随机数(randomnumbers)的产生3.2.2(整数值)随机数(randomnumbers)的产生1.了解随机数的意义.2.会用模拟方法(包括计算器产生的随机数进行模拟)估计概率.(重点)3.理解用模拟方法估计概率的实质.(难点)[基础·初探]教材整理1随机数与伪随机数阅读教材P130的内容,完成下列问题.1.随机数要产生1~n(n∈N*)之间的随机整数,把n个大小形状相同的小球分别标上1,2,3,…,n,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数.2.伪随机数计算机或计算器产生的随机数是依照确定算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质.因此,计算机或计算器产生的并不是真正的随机数,我们称它们为伪随机数.教材整理2整数值随机数的产生及应用阅读教材P131~P132“例6”以上的部分,完成下列问题.1.产生整数值随机数的方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数;也可用计算机中的Excel软件产生随机数.用计算机或计算器模拟试验的方法称为随机模拟方法.2.整数值的随机数的应用利用计算器或计算机产生的随机数来做模拟试验,通过模拟试验得到的频率来估计概率,这种用计算器或计算机模拟试验的方法称为随机模拟方法或蒙特卡罗方法.1.判断(正确的打“√”,错误的打“×”)(1)随机模拟方法只适用于试验结果有限的试验.()(2)计算机或计算器产生的随机数是伪随机数,因此取得的概率不可信.()(3)随机数的抽取就是简单随机抽样.()【答案】(1)√(2)×(3)√2.用随机模拟方法得到的频率()A.大于概率B.小于概率C.等于概率D.是概率的近似值【解析】用随机模拟方法得到的频率是概率的近似值.【答案】 D3.随机函数RANDBETWEEN(0,7)不可能产生的随机数是()A.0 B.2C.3 D.9【解析】由随机函数RANDBETWEEN(a,b)的含义知,选D.【答案】 D4.从含有3个元素的集合的所有子集中任取一个,所取的子集是含有2个元素的集合的概率为________.【解析】所有子集共8个,?,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c},含两个元素的子集共3个,故所求概率为3 8.【答案】3 8[小组合作型]产生【精彩点拨】用计算器的随机函数RAND(a,b)产生.【尝试解答】方法如下:反复按ENTER键10次,就可以产生10个1~25之间的随机数.1.产生随机数可以采用抽签法或用计算机(器)产生随机数.2.利用计算机或计算器产生随机数时,需切实保证操作步骤与顺序的正确性.并且注意不同型号的计算器产生随机数的方法可能会不同,具体操作可参照其说明书.[再练一题]1.某校高一年级共20个班,1 200名学生,期中考试时如何把学生分配到40个考场中去?【解】要把1 200人分到40个考场,每个考场30人,可用计算机完成.(1)按班级、学号顺序把学生档案输入计算机;(2)用随机函数按顺序给每个学生一个随机数(每人都不相同);(3)使用计算机的排序功能按随机数从小到大排列,可得到1 200名学生的考。
数字的随机数生成在计算机编程中,生成随机数是一项常见的任务。
随机数在很多应用中起到重要作用,比如模拟实验、密码生成、游戏设计等。
在这篇文章中,我们将介绍一些常见的方法来生成数字的随机数。
1. 伪随机数生成器伪随机数生成器是计算机程序中常用的一种随机数生成方法。
它是基于一个初始种子值,通过特定的算法生成随机序列。
这个序列看起来是随机的,但实际上是可以复现的。
在许多应用中,并不需要真正的随机性,伪随机数就足够满足需求。
常用的伪随机数生成算法有线性同余法和梅森旋转算法。
线性同余法使用一个递推公式生成随机数,可以通过调整公式中的参数来改变随机数的分布。
而梅森旋转算法是一种更复杂的算法,它利用位运算和异或操作生成高质量的随机数。
2. 真随机数生成器与伪随机数生成器不同,真随机数生成器利用物理过程来产生真正的随机数。
这些物理过程可以是不可预测的,比如测量大气噪声、宇宙射线或者衰变等。
真随机数生成器的随机性是无法通过算法复现的,因此在一些安全性要求比较高的领域,如密码学,真随机数是必不可少的。
3. 随机数的分布生成随机数不仅仅要考虑随机性的问题,还需要考虑随机数的分布情况。
在一些应用中,需要生成符合特定概率分布的随机数。
常见的概率分布包括均匀分布、正态分布、指数分布等。
为了满足这些要求,可以使用一些特定的算法来生成相应分布的随机数。
4. 随机数生成的应用随机数生成在许多领域中都有广泛的应用。
在模拟实验中,随机数能够模拟真实世界中的不确定性,从而提供更准确的结果。
在密码学中,随机数被用于生成密钥、初始化向量等关键参数,以增强密码的安全性。
在游戏设计中,随机数能够增加游戏的可玩性和挑战性,使游戏变得更加有趣。
5. 小结无论是伪随机数生成还是真随机数生成,生成数字的随机数在计算机编程中都是一项重要的任务。
通过合适的算法,我们可以获得满足需求的随机数。
同时,我们还需要考虑随机数的分布情况,以及随机数生成的应用场景。
只有深入理解随机数的特性和相关算法,我们才能更好地应用它们,满足实际需求。
python随机数生成原理Python随机数生成原理随机数在计算机科学中是一个非常重要的概念,它被广泛应用于密码学、模拟实验、游戏开发等领域。
在Python中,生成随机数可以通过random模块来实现。
本文将介绍Python随机数生成的原理及其背后的算法。
一、随机数的概念和应用随机数是指在一定范围内没有规律可循的数值。
它的特点是无法预测,具有不确定性。
在计算机科学中,随机数可以用于生成随机密码、模拟随机事件、生成随机样本等。
二、伪随机数生成器计算机无法生成真正的随机数,因为计算机是基于确定性的逻辑运算的。
因此,计算机生成的随机数实际上是伪随机数,也就是一系列看似随机的数字序列。
这些数字序列是通过伪随机数生成器生成的。
Python中的random模块提供了伪随机数生成器,可以生成服从特定分布的随机数。
三、随机数生成的算法Python的random模块基于Mersenne Twister算法实现了伪随机数生成器。
Mersenne Twister算法是一种非常高效且具有良好统计特性的随机数生成算法。
Mersenne Twister算法的原理是使用一个非常长的周期为2^19937-1的Mersenne素数作为随机数生成的种子。
通过对这个种子进行一系列复杂的数学运算,可以生成一组看似随机的数值序列。
这个序列的周期非常长,因此生成的随机数具有很好的随机性。
四、随机数生成的应用1. 生成随机密码随机数可以用于生成随机密码。
通过随机选择字母、数字和特殊字符,可以生成强度较高的密码,提高账户的安全性。
2. 模拟随机事件随机数可以用于模拟随机事件。
例如,在游戏开发中,可以使用随机数生成器来模拟敌人的行动、掉落物品的概率等。
3. 生成随机样本随机数可以用于生成随机样本。
在数据分析和统计学中,随机样本是进行统计推断的重要基础。
通过随机数生成器,可以生成符合特定分布的随机样本,用于进行统计分析。
五、小结本文介绍了Python随机数生成的原理及其背后的算法。
随机数生成器原理随机数生成器是计算机科学中一个非常重要的概念,它在密码学、模拟实验、统计学等领域都有着广泛的应用。
随机数生成器的原理是如何产生一系列看似无规律、不可预测的数字序列,这些数字序列被认为是随机的。
在现代计算机系统中,随机数生成器是一个至关重要的组成部分,它为计算机提供了随机性,使得计算机能够执行各种复杂的任务。
本文将介绍随机数生成器的原理及其在计算机科学中的应用。
随机数生成器的原理可以分为伪随机数生成器和真随机数生成器两种。
伪随机数生成器是通过一定的算法产生一系列近似随机的数字序列,这些数字序列在一定程度上具有随机性,但是其实质是确定性的。
真随机数生成器则是通过一些物理过程产生真正的随机性,比如利用量子力学的原理来产生随机数。
在实际应用中,由于真随机数生成器的成本较高,大部分情况下我们使用的是伪随机数生成器。
伪随机数生成器的原理是基于一个种子(seed)和一个确定性的算法来产生随机数序列。
种子是一个初始值,通过对种子进行一系列的数学运算,比如加法、乘法、取模等,就可以产生一系列的伪随机数。
在计算机中,通常使用当前的系统时间作为种子,以保证每次生成的随机数序列都是不同的。
当然,在一些特定的应用中,我们也可以自己指定种子来产生确定的随机数序列。
随机数生成器在计算机科学中有着广泛的应用。
在密码学中,随机数生成器被用来产生加密密钥,以保证数据的安全性。
在模拟实验中,随机数生成器可以用来模拟各种随机事件,比如赌博游戏、天气模拟等。
在统计学中,随机数生成器可以用来进行抽样调查,以获取一定的样本数据。
总的来说,随机数生成器在计算机科学中扮演着非常重要的角色。
在实际应用中,我们需要注意随机数生成器的质量。
一个好的随机数生成器应该具有均匀性、独立性和周期性。
均匀性是指随机数生成器产生的随机数应该服从均匀分布,即每个数值的概率应该是相同的。
独立性是指随机数生成器产生的随机数应该是相互独立的,一个随机数不应该受到其他随机数的影响。
一维均匀分布随机数序列的产生方法引言:随机数序列主要应用于序列密码(流密码)。
序列密码的强度完全依赖于序列的随机性与不可预测性。
随机数在密码学中也是非常重要的,主要应用于数字签名(如美国数字签名标准中的数字签名算法)、消息认证码(如初始向量)、加密算法(如密钥)、零知识证明、身份认证(如一次性nonce)和众多的密码学协议。
关键词:随机数、随机数序列、均匀分布一、随机数及随机数序列的简介在统计学的不同技术中需要使用随机数,比如在从统计总体中抽取有代表性的样本的时候,或者在将实验动物分配到不同的试验组的过程中,或者在进行蒙特卡罗模拟法计算的时候等等。
产生随机数有多种不同的方法。
这些方法被称为随机数发生器。
随机数最重要的特性是:它所产生的后面的那个数与前面的那个数毫无关系。
随机数序列分为真随机数序列与伪随机数序列,随机数分为真随机数和伪随机数。
真随机数序列从真实世界的自然随机性源产生,办法是找出似乎是随机的事件然后从中提取随机性,如自然界中的抛币。
在计算机中噪音可以选取真实世界的自然随机性,如从计算机时钟寄存器中取得本机的当前系统时间到秒(或微秒)级的数值,测量两次击键的时间间隔,相邻两次鼠标移动的时间间隔以及由计算机硬件报告的鼠标实际位置等。
伪随机数序列用确定的算法产生,不是真正的随机数序列。
伪随机数序列发生器指使用短的真随机数序列(称为种子)x扩展成较长的伪随机数序列y。
在密码学中伪随机数序列的使用大大减少了真随机数序列的使用,但不能完全取代真随机数序列的使用(如种子)。
通常,我们需要的随机数序列应具有非退化性、周期长、相关系数小等优点。
二、一维均匀分布的简介设连续型随机变量X 的分布函数为 F(x)=(x-a)/(b-a),a ≤x≤b,则称随机变量X 服从[a,b]上的均匀分布,记为X ~U[a ,b]。
若[x1,x2]是[a,b]的任一子区间,则 P{x1≤x≤x2}=(x2-x1)/(b-a),这表明X 落在[a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关,因此X 落在[a,b]的长度相等的子区间内的可能性是相等的,所谓的均匀指的就是这种等可能性。