武汉理工大学----数值分析实验报告
- 格式:docx
- 大小:174.99 KB
- 文档页数:10
一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
武汉理工大学计算机学院数值分析实验报告武汉理工大学计算机学院数值分析实验报告篇一:数值分析实验报告学生实验报告书实验课程名称开课学院指导教师姓名学生姓名学生专业班级数值分析计算机科学与技术学院熊盛武 201X—— 201X学年第二学期实验课程名称:数值分析篇二:数值分析实验报告武汉理工大学学生实验报告书实验课程名称:数值分析开课名学生姓名:201X1—— 201X学年第二学期第一次试验(1)二分法计算流程图:简单迭代法算法流程图:(2)(3)牛顿迭代法流程图:(4)弦截法算法程序流程图:篇三:数值分析实验报告湖北民族学院理学院《数值分析》课程实验报告(一)湖北民族学院理学院《数值分析》课程实验报告(二) xn?)篇四:数值分析实验报告数值分析实验报告姓名:学号:学院:老师: XXX XXXX实验一一、实验内容用雅克比迭代法和高斯塞德尔迭代法求解课本例3.1,设置精度为10-6。
?8-32??x1??20???411?1??x233??6312??x??36? ??3??二、实验公式 ?? 雅克比迭代法的基本思想:设方程组Ax?b的系数矩阵的对角线元素 ??aii?0(i?1,2,...,n),根据方程组A x?b推导出一个迭代公式,然后将任意选取的?(0)?(1)?(1)?(2) xxx x一初始向量代入迭代公式,求出,再以代入同一迭代公式,求出,1、雅克比迭代法 ?(k)?(k) {x}{x}收敛时,如此反复进行,得到向量序列。
当其极限即为原方程组的解。
2、高斯塞德尔迭代法:在雅可比(Jacbi)迭代法中,如果当新的分量求出后,马上用它来代替旧的分量,则可能会更快地接近方程组的准确解。
基于这种设想构造的迭代公式称为高斯-塞德尔(Ga uss-Seidel)迭代法。
一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。
对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。
二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。
2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。
对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。
牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。
3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。
对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。
(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。
数值分析实验报告实验目的:通过对数值分析实验的进行,掌握牛顿法解方程的根的求解过程和方法,通过编程实现牛顿法。
实验原理:牛顿法是一种迭代法,通过不断迭代逼近根的过程来求解方程的根。
假设f(x)在[x_0,x]中连续且有一阶连续导数,则根据泰勒展开公式,有下面的公式成立:f(x)=f(x_0)+f'(x_0)(x-x_0)+R(x)其中f(x)是方程的函数,f'(x_0)是f(x)在x_0处的导数,R(x)是无穷小量。
当x接近于x_0时,可以忽略R(x)的影响,即认为R(x)足够小可以忽略。
假设x_0是方程的一个近似根,可以得到如下的迭代公式:x_1=x_0-f(x_0)/f'(x_0)x_2=x_1-f(x_1)/f'(x_1)...在迭代的过程中,如果迭代的结果与上一次迭代的结果的误差小于设定的阈值,则可以认为找到了方程的根。
实验步骤:1.确定方程和初始近似根x_0。
2.计算f(x_0)和f'(x_0)。
3.使用迭代公式计算x的近似值x_i,直到满足终止条件(比如误差小于设定的阈值)。
4.输出计算得到的方程的根。
实验结果和分析:在实验中,我们选择了方程f(x)=x^2-2作为实验对象,初始近似根选择为x_0=1根据上述的迭代公式,可以依次计算得到x_1=1.5,x_2=1.4167,x_3=1.4142,直到满足终止条件。
通过实验计算,可以得到方程f(x)=x^2-2的两个根为x=-1.4142和x=1.4142,与理论解x=±√2比较接近,说明牛顿法可以有效地求解方程的根。
总结:通过本次实验,掌握了牛顿法解方程根的原理和实现方法,实验结果与理论解相近,验证了牛顿法的有效性。
在实际应用中,牛顿法常用于求解非线性方程和优化问题,具有较高的精度和收敛速度,但在选择初始近似根时需要谨慎,否则可能会导致迭代结果发散。
学生实验报告书
实验课程名称
开课学院
指导教师姓名
学生姓名
学生专业班级
选择课题:
为了提高化工厂的产品质量, 需要寻求最优反应温度和反应压力的配合, 为此选择如下水平,
A: 反应温度(℃)60 70 80
B: 反应压力(kg) 2 2.5 3
在每个AiBj条件下
做2次试验, 其产量
为
A1 A2 A3
B1 B2 B3 4.6 4.3
6.3 6.7
4.7 4.3
6.1 6.5
3.4 3.8
3.9 3.5
6.8 6.4
4.0 3.8
6.5
7.0
(1)对数据作方差分析
(2)求最优条件下平均产量的点估计和区间估计
六、实验结果与讨论
可见在显著性水平a=0.05下, 反应压力(B)效应是高度显著的, 反应温度的效应(A)及交互效应并不显著。
可看见区间估计为[3.573449,9.926551]
点估计为6.75
七、实验报告成绩(请按优, 良, 中, 及格, 不及格五级评定)。
《数值分析》课程实验报告数值分析实验报告《数值分析》课程实验报告姓名:学号:学院:机电学院日期:20__ 年 _ 月_ 日目录实验一函数插值方法 1 实验二函数逼近与曲线拟合 5 实验三数值积分与数值微分 7 实验四线方程组的直接解法 9 实验五解线性方程组的迭代法 15 实验六非线性方程求根 19 实验七矩阵特征值问题计算 21 实验八常微分方程初值问题数值解法 24 实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。
试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。
数据如下:(1) 0.4 0.55 0.65 0.80 0.95 1.05 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange多项式,和分段三次插值多项式,计算, 的值。
(提示:结果为, )(2) 1 2 3 4 5 6 7 0.368 0.135 0.050 0.018 0.007 0.002 0.001 试构造Lagrange多项式,计算的,值。
(提示:结果为, )二、要求 1、利用Lagrange插值公式编写出插值多项式程序;2、给出插值多项式或分段三次插值多项式的表达式;3、根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何;4、对此插值问题用Newton插值多项式其结果如何。
Newton 插值多项式如下:其中:三、目的和意义 1、学会常用的插值方法,求函数的近似表达式,以解决其它实际问题;2、明确插值多项式和分段插值多项式各自的优缺点;3、熟悉插值方法的程序编制;4、如果绘出插值函数的曲线,观察其光滑性。
四、实验步骤(1) 0.4 0.55 0.65 0.80 0.951.05 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange多项式,和分段三次插值多项式,计算, 的值。
数值分析的实验报告实验目的本实验旨在通过数值分析方法,探讨数学问题的近似解法,并通过实际案例进行验证和分析。
具体目的包括: 1. 理解和掌握数值分析的基本原理和方法; 2. 学会使用计算机编程语言实现数值分析算法; 3. 分析数值分析算法的精确性和稳定性; 4. 根据实验结果对数值分析算法进行优化和改进。
实验步骤1. 问题描述首先,我们选择一个数学问题作为实验的对象。
在本次实验中,我们选取了求解非线性方程的问题。
具体而言,我们希望找到方程 f(x) = 0 的解。
2. 数值方法选择根据非线性方程求解的特点,我们选择了牛顿迭代法作为数值方法。
该方法通过不断迭代逼近方程的解,并具有较好的收敛性和精确性。
3. 程序设计与实现为了实现牛顿迭代法,我们使用了Python编程语言,并使用了相应的数值计算库。
具体的程序实现包括定义方程 f(x) 和其导数f’(x),以及实现牛顿迭代法的迭代过程。
4. 实验案例与结果分析我们选择了一个具体的方程,例如 x^3 - 2x - 5 = 0,并通过程序运行得到了方程的解。
通过比较实际解与数值解的差异,我们可以分析数值方法的精确性和稳定性。
5. 优化与改进基于实验结果的分析,我们可以对数值分析算法进行优化和改进。
例如,通过调整迭代的初始值、增加迭代次数或修改算法公式等方式,改进算法的收敛性和精确性。
实验结论通过本次实验,我们深入理解了数值分析的基本原理和方法,并通过具体案例验证了牛顿迭代法的有效性。
同时,我们也意识到数值分析算法的局限性,并提出了一些改进的建议。
在今后的数学问题求解中,我们可以运用数值分析的方法,通过计算机编程实现更精确的近似解。