无损检测技术
- 格式:docx
- 大小:19.46 KB
- 文档页数:2
介绍几种常见的无损检测技术及其优缺点无损检测技术是一种在不破坏被检物理性能的情况下,对物体的内部或表面进行检测、评价和控制质量的方法。
它被广泛应用于工程、制造业、航空航天、能源、交通运输等各个领域。
本文将介绍几种常见的无损检测技术及其优缺点。
首先,超声波检测是一种常见的无损检测技术。
这种技术通过将超声波的脉冲传递到被检测物体中,然后测量超声波反射或传播速度的变化来检测物体的内部缺陷。
超声波检测具有检测深度大、分辨率高、对不同材料具有良好适应性等优点。
然而,它也存在着检测速度慢、对被检材料有一定要求等缺点。
其次,射线检测是另一种常见的无损检测技术。
射线检测主要利用X射线或γ射线穿透被检材料,通过感光材料或电子束探测器来测量射线的衰减情况,以检测物体的缺陷。
射线检测具有检测速度快、可以检测多种材料、对内部缺陷有较高的分辨率等优点。
但是,由于射线具有辐射危害,对操作人员保护要求较高。
电磁检测是第三种常见的无损检测技术。
电磁检测基于电磁感应原理,通过改变磁场来检测被测物体的内部缺陷。
这种技术具有非接触性、检测速度快、对复杂几何形状具有良好适应性的优点。
然而,电磁检测也存在着对导电材料的限制、对操作环境的电磁干扰敏感等缺点。
另外,磁粉检测是一种常用的无损检测技术。
这种技术通过在被检测物体表面涂覆磁粉或将磁粉溶解在液体中,在外部施加磁场的作用下,通过观察或测量磁粉在缺陷区域的积聚情况来检测缺陷。
磁粉检测具有对各种材料适用、操作简便、成本低等优点。
然而,它只能检测表面缺陷,对缺陷深度的评估能力较弱。
最后,涡流检测是一种常用的无损检测技术。
涡流检测基于涡流感应原理,通过感应导体中的涡流来检测被检测物体的缺陷。
这种技术具有对导电和磁性材料适用、对小缺陷具有高灵敏度、无需接触被检材料等优点。
然而,涡流检测也受到导体材料和几何形状的限制,对操作人员的技术要求较高。
总而言之,无损检测技术在各个领域中发挥着重要的作用。
超声波检测、射线检测、电磁检测、磁粉检测和涡流检测是常见的无损检测技术,每种技术都有其独特的优点和缺点。
无损检测技术及其应用无损检测技术(Non-destructive testing, NDT)是一种应用物理学原理与工程技术方法,在不破坏被检测物体的前提下对其进行缺陷探测、评价和监测的技术。
该技术在工业制造、交通运输、航空航天、医疗卫生等领域有广泛的应用。
一、无损检测技术的分类1.物理检测法物理检测法主要是利用物质的物理特性,如电、磁、声等作为探测手段,检测物品内部缺陷的存在状态。
典型的物理检测法包括雷达检测、红外检测、X射线检测、超声波检测等。
2.化学检测法化学检测法主要是通过化学反应或化学物质的物理性质的变化,来确定物品内部是否存在缺陷,检测手段包括磁粉检测、渗透检测等。
二、无损检测技术的应用1.工业制造领域无损检测技术在工业制造领域被广泛应用,例如在金属材料、石油、化工、能源等行业,无损检测技术可以用于监测设备的疲劳损伤、裂缝及其它材料缺陷,以保证产品质量和安全性。
2.交通运输领域在交通运输领域,无损检测技术被应用于轨道交通系统、水陆交通系统等。
例如,在铁路轨道检测方面,无损检测技术可以检测铁轨的轨底、磨耗、裂缝等问题,对铁路交通的安全和稳定性具有重要意义。
3.航空航天领域无损检测技术在航空航天领域被广泛应用。
例如,在航空器制造过程中,无损检测技术可以用于被检测部件的质量控制,检测其是否存在缺陷,以保证飞行安全。
4.医疗卫生领域除了工业和交通运输,在医疗卫生领域也应用了无损检测技术。
例如,在对筛查胸部疾病方面,X射线检测技术可以发现乳腺增生、肺炎、结核等疾病,对及时发现和治疗疾病起到了重要作用。
三、无损检测技术的优点和局限性无损检测技术的优点主要包括:1.实现了无破坏性检测,避免了因检测而带来的二次污染和环境压力。
2.能够在设备运行过程中进行检测,降低了因停机检修带来的生产成本和生产效率损失。
3.能够大幅度提高检测精度,保障产品质量和安全性。
但无损检测技术也存在着一定的局限性:1.无法检测极小或紧贴被检测物表面的缺陷。
无损检测技术无损检测技术是一种用于评估材料或构件内部缺陷和结构完整性的技术,它通过非破坏性方法来检测材料中的裂纹、孔洞、夹杂等缺陷,以及评估材料的力学性能、热性能和化学性能等。
无损检测技术广泛应用于工业、航空、航天、核能、交通运输等领域,对于确保产品和设备的安全性和可靠性具有重要意义。
无损检测技术可以分为多个类别,包括射线检测、超声波检测、磁粉检测、渗透检测、涡流检测等。
每种技术都有其独特的原理和应用范围,但它们都遵循着相同的基本原则:通过物理原理来探测材料内部的缺陷和结构特征。
射线检测是利用高能射线(如X射线、伽马射线)穿透材料,并通过检测射线在材料中的衰减和散射来评估材料内部的缺陷。
超声波检测则是利用超声波在材料中的传播和反射特性来检测材料内部的缺陷。
磁粉检测是利用磁场和磁粉的相互作用来检测铁磁性材料中的裂纹和夹杂。
渗透检测则是利用渗透剂渗透到材料表面的缺陷中,并通过显色剂显色来检测缺陷。
涡流检测则是利用涡流在材料中的产生和传播特性来检测材料表面的缺陷和裂纹。
无损检测技术的发展离不开先进的技术设备和专业的技术人员。
随着科技的进步,无损检测设备越来越智能化、自动化,能够更快速、准确地检测出材料中的缺陷。
同时,专业的技术人员需要具备丰富的经验和知识,能够根据不同的材料和检测要求选择合适的检测方法和参数,并进行准确的数据分析和评估。
无损检测技术是一种重要的技术手段,它能够有效地评估材料或构件的内部缺陷和结构完整性,为产品的安全性和可靠性提供保障。
随着科技的不断发展,无损检测技术将会在更多的领域得到应用,为人们的生活和工作带来更多的便利和保障。
在工业生产过程中,无损检测技术不仅可以用于产品制造阶段的检测,还可以用于产品使用过程中的定期检测和维护。
通过对产品进行定期检测,可以及时发现潜在的缺陷和问题,避免事故的发生,延长产品的使用寿命。
同时,无损检测技术还可以用于评估产品的性能和可靠性,为产品的改进和优化提供依据。
介绍几种常见的无损检测技术及其优缺点无损检测技术是一种非破坏性检测方法,可用于检测工件内部和表面缺陷,而无需破坏工件的结构完整性。
它在工业、航空航天、汽车、建筑等领域广泛应用,以确保产品质量和安全性。
以下是几种常见的无损检测技术及其优缺点的介绍。
1. 超声波检测(Ultrasonic Testing):超声波检测是一种利用超声波传播和反射原理检测和评估材料内部缺陷的技术。
它通过发送超声波脉冲到被测物体,根据超声波在材料中传播的速度和反射情况来确定缺陷的位置和形状。
优点包括高灵敏度、无损伤、能检测小缺陷和定位准确。
缺点是对材料的声波传播特性敏感,受材料密度和纹理等因素影响。
2. 磁粉检测(Magnetic Particle Testing):磁粉检测是一种利用磁场和铁磁材料的磁性特性检测表面和近表面缺陷的方法。
它通过在被检测物体表面施加磁场,并在其上涂敷磁性颗粒,当有磁场漏磁或磁场被打断时,磁性颗粒会聚集在缺陷处,从而可视化缺陷的位置和形态。
优点包括简单易行、高灵敏度、能检测细小缺陷和形状多样化。
缺点是只能检测铁磁材料,灵敏度受表面状态和磁场均匀性影响。
3. 射线检测(Radiographic Testing):射线检测是一种利用X射线或γ射线穿透物体并投射到感光介质上的方法,从而检测物体内部缺陷的技术。
它通过感光介质上的黑化程度来评估缺陷的大小和位置。
优点包括能检测较深的缺陷,适用于各种材料。
缺点是设备昂贵,对操作人员和环境安全要求高。
4. 渗透检测(Dye Penetrant Testing):渗透检测是一种利用润湿性液体浸渍到表面开裂或孔隙处,然后涂覆上显色剂来检测这些表面缺陷的方法。
它通过液体的渗透和表面张力效应来展现缺陷的位置和形状。
优点包括简单易行、能够检测各种材料和形状的缺陷。
缺点是只能检测表面缺陷,对材料的清洁要求高。
5. 热红外检测(Thermal/Infrared Testing):热红外检测是一种利用热辐射和红外辐射原理检测表面和内部缺陷的技术。
无损检测技术(NDT--Nondestructive Testing)是在不损害材料的基础上进行检测,是保证材料质量和安全的前提下,延长材料使用寿命的一种检测技术。
随着科学技术的发展,无损检测技术应用于各个领域。
目前,无损检测技术已经演变发展出多种检测手段,如超声检测、渗透检测、磁粉检测、声发射检测等技术[3]。
声发射(Acoustic Emission,简称AE)现象是指材料或结构在外界条件(温度、应力、磁场等)的作用下,产生缺陷或发生异常,使构件因应力过度集中,导致断裂或变形,并随着能量快速释放产生瞬态的弹性波现象。
对记录到的信号进行处理分析寻找缺陷位置,发展规律的技术称为声发射技术。
因此,声发射也叫应力波发射[4]。
与其它无损检测技术相比,声发射检测的优点是[5]:1. 成本低,不需要声发射换能器,只需要接收探头。
在动态检测中,可以应用声发射技术对运行中的设备及受力状态下的部件实施动态检测、监控、报警。
这不但减少了检测设备的费用,而且对于重大事故的发生可以有效避免。
2. 适用面广,声发射现象普遍存在于物体中。
因此可以应用此技术检测大部分材料。
只要构件中有声发射现象,那么在监控范围内都能检测到。
从而使其在形状复杂的特大构件或结构体检测中有着不俗的表现。
通过对材料表征实验过程的声发射监视,建立声发射微观机制,力学特性之间的关系,通常可达到两个目的:1. 分析和评价变形,断裂机制与力学行为;2.为构件的无损评价建立广泛的声发射特性数据库。
随着超声技术的不断发展其应用范围也越来越广泛。
检测超声技术主要用于应力测试定位、局部放电和测厚等方面。
声发射技术作为一种检测超声技术,被越来越多的国家所重视。
五十年代初德国学者Kaiser 开始研究声发射现象;六十年代初美国通用动力公司应用声发射技术监控北极星导弹燃烧室及固体火箭发动机壳体的结构完整性;七十年代初我国开始研究和应用声发射技术。
至今,该技术的应用已覆盖航空、工业制造过程和质量监测航天、铁路、石油化工等方面。
无损检测技术手册无损检测技术是工业生产中用于检测材料和零件缺陷的一种非破坏性检测方法。
本手册主要介绍无损检测技术的相关内容,以及其在工业生产中的应用。
一、无损检测技术概述无损检测技术是一种基于物理学原理来检测材料内部或表面缺陷的方法,通过检测材料对电、磁、声、光、射线等不同波长和频率的信号的反应,来判断材料的缺陷情况。
无损检测技术可以不需要破坏检测对象,且不会对环境造成污染,同时还可以及时检测出材料中的缺陷和表面裂纹等问题,有助于提高生产效率和产品质量。
二、无损检测技术的分类无损检测技术主要分为以下几种:超声波检测、X射线检测、射线检测、涡流检测、磁颗粒检测、渗透检测等。
每种无损检测技术都有各自的适用范围和检测原理。
一般来说,不同的无损检测技术可以互相补充,用于对材料进行全面的检测。
三、无损检测技术在工业生产中的应用(一)航空和航天工业在航空和航天工业中,无损检测技术被广泛应用于飞机、导弹和航天器的材料检测,可以检测到材料的裂纹、氧化、变形等问题。
这对于确保飞行安全和零部件的可靠性至关重要。
(二)汽车制造业在汽车制造业中,无损检测技术也有广泛的应用,在汽车零部件的生产和质量控制中发挥着重要作用。
通过无损检测技术,可以及时检测出制造中的缺陷,提高产品质量,减少不必要的浪费。
(三)石油和天然气工业在石油和天然气开采过程中,无损检测技术也有着重要的应用。
可以及时检测出管道和设备的裂缝或腐蚀问题,提高设备的安全性和使用寿命。
四、无损检测技术的未来发展无损检测技术在应对工业生产中的质量控制和安全问题上发挥着不可替代的作用,也是工业发展过程中的重要一环。
未来,随着技术的不断革新和完善,无损检测技术的应用范围还将不断扩大,发挥更大的作用。
总结:本手册主要介绍了无损检测技术的概述,分类和应用,以及无损检测技术在工业生产中的作用。
随着技术不断的进步,无损检测技术将会在工业生产领域的应用中发挥更加重要的作用。
无损检测技术1.无损检测概述2.无损检测相关知识3.超声波探伤检测(UT)4.渗透探伤检测(PT)无损检测概述无损检测的定义和分类定义:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面结构、性质、状态进行检查和测试的方法。
分类: 1.射线检测(Radiographic,简称RT)2.超声波检测(Ultrasonic Testing,简称UT)3.磁粉检测(Magnetic Testing,简称MT)4.渗透检测(Penetrant Testing,简称PT)以上成为四大常规检测方法,其中RT和UT主要用于检测试件内部缺陷,MT和PT主要用于探测试件表面缺陷.其他无损检测方法有涡流检测(ET)、声发射检测(AE)等。
无损检测概述各类检测方法的定义:1. 射线检测(Radiographic,简称RT),射线检测是指用X射线或r射线穿透试件, 以胶片作为记录信息的检测方法.2. 超声波检测(Ultrasonic Testing,简称UT),在超声波探伤中,根据缺陷的回波和底面的回波进行判断的脉冲反射法,目前脉冲发射法用的最广泛.3. 磁粉检测(Magnetic Testing,简称MT),铁磁性材料被磁化后,其内部产生很强的磁感应强度,磁力线密度增大几百倍到几千倍.如果材料中存在不连续性(包括缺陷造成的不连续性和结构、形状、材质等原因造成的不连续),磁力线会发生畸变,部分磁力线有可能逸出材料表面,从空间穿过,形成漏磁场.漏磁场的局部磁极能够吸引铁磁物质.4. 渗透检测(Penetrant Testing,简称PT),零件表面被施涂含有荧光染料或着色燃料的渗透液以后,在毛细管作用下,经过一定时间,渗透液能够渗透进表面开口的缺陷中,经过去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管作用下,显相剂将吸引缺陷中保留的渗透液,渗透液回渗到显相剂中,在一定的光源下,缺陷中渗透液的痕迹被显示,从而探测出缺陷的形貌及分布状态.无损检测概述探伤工作者在认真的检查设备无损检测相关知识1.金属材料基本知识2.钢的分类和命名方法3.缺陷的种类及产生原因无损检测相关知识--材料力学基本知识1.材料力学基本知识1) 强度:金属的强度是指金属抵抗永久变形和断裂的能力,材料强度指标可以通过拉伸试验测出。
超声衍射时差法在船舶检验中的应用
李峰航运学院海事管理1102班 0121112740220
摘要:本文介绍了在我国正在兴起和应用的TOFD技术的基本概念、原理、特点,以及相关标准规定、应
用情况、技术对比及技术难点的突破等,并提出努力开创船舶焊接检测工作使用超声TOFD技术替代射线方
法的新局面。
关键词:焊缝检测超声检测时差法衍射波船舶检验
正文:由于航运的发展和军事上的需要,船舶趋于大型化和专业化,造船技术随之迅速发展,造船业已成为
世界上最主要的重工业部门之一。
然在船舶的建造中 焊接是其中的关键和支撑技术 焊接的总工时和成
本各占船体建造的总工时和成本的30-40% 。
因此焊接质量的高低直接关系着船舶质量。
焊缝的检验包含内容较多,包括焊缝的焊前检验、焊缝的焊接规格和表面质量检验、焊缝内部质量检验。
而焊前的检验一般都具有较高的检测手段确保检测结果的准确。
而焊后检测一般较困难。
传统的焊缝
内部检测手段往往无法满足实际的检测要求。
超声波衍射法TOFD成像技术在焊缝检测应用中具有自身独
特的优势, 在众多的无损检测方法中,超声无损检测方法以其穿透能力强、检测深度大、缺陷定位准确、
灵敏度高、速度快、成本低、使用方便以及对人体和检测对象无害的优点而倍受青睐,成为国内外应用最广、使用频率最高且发展较快的一种无损检测技术。
1 TOFD 技术概述
1.1 发展状况
20 世纪70 年代,衍射时差法超声检测(Time offlight diffraction,以下简称TOFD)技术问世于英国,最初应用于核反应堆的厚壁压力容器检测[1]。
20 世纪末,随着计算机技术的飞速发展,TOFD 技术与数
字化超声设备相结合,发展成为一种超声成像检测技术。
21 世纪初,TOFD 技术引入我国,先后在西气
东输和神华煤液化工程中应用成功,目前TOFD 技术被广泛应用于核工业、航空航天、电力、机械制造、
石油、化工等领域。
1.2 检测原理
TOFD 是1 种新型超声检测技术,它可通过超声波的尖端衍射来检测缺陷,通过波的传播时差测
量缺陷,通过信号的图像化处理来显示缺陷[1]。
进行TOFD 检测时,发射探头发射声脉冲。
一般情况下,
接收探头首先接收直通波,最后接收底面反射波。
如有缺陷存在,则在直通波和底面反射波之间还会接收
到缺陷端点(或边界)的衍射波,如图1 所示。
上述波信号最初表现为A 扫描信号,连同位置
编码器传出的坐标值被主机接收,经数字图像化处理,最终形成B、D 等二维图像扫描显示。
检测人员
主要根据这些显示进行缺陷的定性、定位及定量[2]。
优缺点与常规超声检测技术相比,TOFD 技术主要具有以下优点[3]:
(1)测量精度高(一般为±1 mm),并能测量缺陷的自身高度,但有一定的测量误差;常规超声检测
无法测量缺陷自身高度。
(2)可以检出有效区域内任意方向上的缺陷。
(3)借助B、D 扫描显示,有效提高了缺陷检出率及缺陷定性的准确性,降低了误判率。
(4)一次扫查即可得到整条焊缝的信息,并可离线分析。
但是,TOFD 技术是由超声检测技术发展而来
的分支,仍然存在超声检测固有的局限性,如不能精确检测近表面缺陷、难以检测各类粗晶材料等。
3 特种试块的设计加工
针对船舶上电站锅炉、压力容器、承压管道,钢板连接焊缝的结构
特点及焊接缺陷的类型和分布规律,设计了不同种试块,在试块的不同位置上制作了14 个缺陷,包括未
熔合、裂纹、气孔、夹渣、未焊透5 类缺陷。
试块焊缝的结构形式包括等厚对接、不等厚对接及根部错边。
6 缺陷的分析
对TOFD缺陷成像的图形进行分析,进而对缺陷定性、定量。
首先,依据缺陷成像的形状对缺陷进行定性分析,区分缺陷为何种形式。
例如,熔焊试件的主要缺陷
有气孔、夹渣、裂纹、未焊透及未熔合等,要求检测人员对缺陷的TOFD表现形式比较熟悉。
通常需要提
取D扫描图像中的A型显示的RF波形,通过其提供的相位信息
推断缺陷的种类和性质。
然后,对缺陷作定量分析,确定缺陷的位置、自身高度等信息。
缺陷的高度
和位置根据上下尖端衍射信号与直通波的时间差确定(直通波相位与上尖端衍射信号相反,与下尖端衍射
信号相同),对于取向平行于上表面或与上表面夹角较小的缺陷,往往需要采用B扫描或辅助脉冲回波法
进行检测。
比较常见的缺陷如下所示[2]。
(1)密集气孔。
(2)上表面开口缺陷。
(3)底面开口缺陷。
(4)
埋藏缺陷。
(5)横向缺陷。
超声波探伤作为钢结构焊接质量控制的主要手段,而由超声波探伤演变而来的超声衍射时差法在一定
程度上简化了检测工艺,提高了检测精度。
随着科学技术的不断发展,相信会有更好的检测技术出现,文
中只是简介了超声衍射时差法的一些内容和它在船舶检验中的应用。
我们只有不断地学习新技术,积累实
际经验,才能把工作做的更好。
李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社,2004.
[2] 郑晖.超声检测[M].北京:中国劳动社会保障出版社,2008.
ENV583—6:2000,无损检测超声检验第6部分:
衍射时差法探伤和定量[S].[2] BS7706:1993,超声衍射时差法探伤、定位和定量———
声检验取代射线照相[S].[4] NDIS2423:2001,TOFD法缺陷测高方法[S].[5] 李家伟,陈积懋,等.。