毛管压力曲线应用
- 格式:doc
- 大小:66.50 KB
- 文档页数:13
毛细管压力及相渗曲线在油水分布预测中的应用李振鹏;欧银华;刘建国;刘洪洲;李金蔓【摘要】运用毛细管压力及相对渗透率曲线资料,从微观孔喉结构角度将歧口凹陷歧南断阶带明化镇组下段储层分为两类,并结合岩心、测井及地震资料总结得到了两类储层的沉积相、测井相及地震相特征.在此基础上,根据相对渗透率曲线读取了两类储层纯油区及油水过渡带含水饱和度的界限值,并利用平均毛细管压力曲线求得地层条件下两类储层相应饱和度位置处毛细管压力值.在成藏动力学理论指导下,依据毛细管力与浮力平衡原理得到两类储层的纯油区与过渡带闭合高度下限,结合储层顶面构造图最终实现了油水层分布预测.【期刊名称】《复杂油气藏》【年(卷),期】2019(012)001【总页数】5页(P33-37)【关键词】油水分布;毛细管压力曲线;相对渗透率曲线;明化镇组下段;歧南断阶带【作者】李振鹏;欧银华;刘建国;刘洪洲;李金蔓【作者单位】中海石油(中国)有限公司天津分公司,天津300459;中海石油(中国)有限公司天津分公司,天津300459;中海石油(中国)有限公司天津分公司,天津300459;中海石油(中国)有限公司天津分公司,天津300459;中海石油(中国)有限公司天津分公司,天津300459【正文语种】中文【中图分类】TE122依据油层的电性特征,可将低阻油层分为两类[1-2]:①绝对低电阻率油层,该类油层电阻率绝对值较低,多低于5 Ω·m;②相对低电阻率油层,该类油层电阻率绝对值较高,多在5 Ω·m以上,但与水层电阻率值之间差别不明显。
前人对低阻油层的成因机理做过大量研究[3-5],主要包括8个方面:①黏土矿物附加导电性;②低幅构造发育;③复杂孔隙结构;④砂泥岩薄互层;⑤淡水水侵;⑥钻井液侵入;⑦导电矿物发育;⑧油品性质变化。
针对不同成因类型的低阻油层建立了相应的识别方法并取得了一定效果[6-7],主要包括双水模型法、地层测试法、深侧向电阻率与声波时差法、自然电位差异法、核磁共振测井法及灰色综合评判法等。
第二节储层岩石的毛管压力曲线(8学时)一、教学目的会计算任意曲面的附加压力,了解毛管压力曲线的测定与换算;了解毛管压力的滞后现象;分析毛管压力曲线;了解毛管压力曲线的应用。
二、教学重点、难点教学重点:1、任意曲面的附加压力的计算;2、毛管压力曲线的测定与换算;3、毛管压力的滞后现象;4、毛管压力曲线的分析及应用。
教学难点1、任意曲面的附加压力的计算;2、毛管压力曲线的测定与换算;3、毛管压力曲线的分析及应用。
三、教法说明课堂讲授并辅助以多媒体课件展示相关的数据和图表四、教学内容本节主要介绍五个方面的问题:一、任意曲面的附加压力二、毛管中液体的上升(与下降)三、毛管压力曲线的测定与换算四、毛管压力的滞后现象五、毛管压力曲线的分析及应用(一)、任意曲面的附加压力一、任意曲面的附加压力拉普拉斯方程:讨论: (1).毛管中弯液面为球面时毛管压力Pc:毛管中弯液面两侧非湿相压力与湿相压力之差 大小: 方向:指向弯液面内侧 分析讨论:Pc 与r 成反比, r 越小,Pc 越大Pc 与б成正比, б越大,Pc 越大Pc 与cos θ成正比, θ→0°或θ→180°,Pc 越大(2).毛管中弯液面为平面时)11(21R R P +=∆σrR P P c θσσcos 22==∆=rP c θσcos 2=(3).毛管中弯液面为柱面时(4).毛管断面渐变时(5).裂缝中的毛管压力(二)、毛管中液体的上升(与下降)气-液系统:式中:A ——附着张力=σcos θ,达因/cmr ——毛管半径,cmρ——液体密度,g/cm 3g ——重力加速度,cm/s 2σ——液体的表面张力,达因/cm=∆P rP P c σ=∆=rP P c )cos(2βθσ±=∆=WP P c θσcos 2=∆=gr h w ρθσcos 2=θ——接触角h ——液体上升高度,cm油-水系统:根据毛细管公式我们可以看到:1、毛管压力c P 和θcos 成正比,090 θ,极性大的那一相为润湿相,θcos 为正,c P 为正,此时润湿相沿毛管自发吸入上升。
第二章毛管压力曲线的应用第一节压汞法基本原理及应用一、基本原理由于表面张力的作用,任何弯曲液面都存在毛细管压力。
其方向总是指向非润湿相的一方。
储油岩石的孔隙系统由无数大小不等的孔隙组成,其间被一个或数个喉道所连结,构成复杂的孔隙网络。
对于一定流体,一定半径的孔隙喉道具有一定的毛管压力。
在驱替过程中,只有当外加压力(非润湿相压力)等于或者超过喉道的毛管压力时,非润湿相才能通过喉道进入孔隙,将润湿相从其中排出。
此时,外加压力就相当于喉道的毛细管力。
毛细管压力是饱和度的函数,随着压力升高,非润湿相饱和度增大,润湿相饱和度降低。
在排驱过程中起控制作用的是喉道的大小,而不是孔隙。
一旦排驱压力克服喉道的毛细管压力,非润湿相即可进入孔隙。
在一定压力下非润湿相能够进入的喉道的大小是很分散的,只要等于及大于该压力所对应的喉道均可以进入,至于孔隙,非润湿相能够进入与否,则完全取决于连结它的喉道。
以上是毛细管压力曲线分析的基础。
压汞法又称水银注入法,水银对岩石是一种非润湿相流体,通过施加压力使水银克服岩石孔隙喉道的毛细管阻力而进入喉道,从而通过测定毛细管力来间接测定岩石的孔隙喉道大小分布,得到一系列互相对应的毛管压力和饱和度数据,以此来研究油层物理特征。
在压汞实验中,连续地将水银注入被抽空的岩样孔隙系统中,注入水银的每一点压力就代表一个相应的孔喉大小下的毛细管压力。
在这个压力下进入孔隙系统的水银量就代表这个相应的孔喉大小所连通的孔隙体积。
随着注入压力的不断增加,水银不断进入更小的孔隙喉道,在每一个压力点,当岩样达到毛细管压力平衡时,同时记录注入压力(毛细管力)和注入岩样的水银量,用纵坐标表示毛管压力p c,横坐标表示润湿相或非润湿相饱和度,作毛管压力与饱和度关系曲线一毛管压力曲线,该曲线表示毛管压力与饱和度之间的实测函数关系。
通常把非润湿相排驱润湿相称为驱替过程,而把润湿相排驱非润湿相的反过程称之为吸入过程。
在毛细管压力测量中,加压用非润湿相排驱岩芯中的润湿相属于驱替过程,所得毛管压力与饱和度关系曲线称之为驱替毛管压力曲线,降压用润湿相排驱非润湿相属于吸入过程,所得毛管压力与饱和度关系曲线称之为吸入毛管压力曲线,在压汞法中,通常把驱替叫注入,把吸入叫退出。
何更生版《油层物理》--课后答案经典详细第一章 储层岩石的物理特性24、下图1-1为两岩样的粒度组成累积分布曲线,请画出与之对应的粒度组成分布曲线,标明坐标并对曲线加以定性分析。
ABLog d iWWi ∑图1-1 两岩样的粒度组成累积分布曲线答:粒度组成分布曲线表示了各种粒径的颗粒所占的百分数,可用它来确定任一粒级在岩石中的含量。
曲线尖峰越高,说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀;曲线尖峰越靠右,说明岩石颗粒越粗。
一般储油砂岩颗粒的大小均在1~0.01mm 之间。
粒度组成累积分布曲线也能较直观地表示出岩石粒度组成的均匀程度。
上升段直线越陡,则说明岩石越均匀。
该曲线最大的用处是可以根据曲线上的一些特征点来求得不同粒度属性的粒度参数,进而可定量描述岩石粒度组成的均匀性。
曲线A 基本成直线型,说明每种直径的颗粒相互持平,岩石颗粒分布不均匀;曲线B 上升段直线叫陡,则可看出曲线B 所代表的岩石颗粒分布较均匀。
30、度的一般变化范围是多少,Φa 、Φe 、Φf 的关系怎样?常用测定孔隙度的方法有哪些?影响孔隙度大小的因素有哪些?答:1)根据我国各油气田的统计资料,实际储油气层储集岩的孔隙度范围大致为:致密砂岩孔隙度自<1%~10%;致密碳酸盐岩孔隙度自<1%~5%;中等砂岩孔隙度自10%~20%;中等碳酸盐岩孔隙度自5%~10%;好的砂岩孔隙度自20%~35%;好的碳酸盐岩孔隙度自10%~20%。
2)由绝对孔隙度a φ、有效孔隙度e φ及流动孔隙度ff φ的定义可知:它们之间的关系应该是a φ>e φ>ff φ。
3)岩石孔隙度的测定方法有实验室内直接测定法和以各种测井方法为基础的间接测定法两类。
间接测定法影响因素多,误差较大。
实验室内通过常规岩心分析法可以较精确地测定岩心的孔隙度。
4)对于一般的碎屑岩 (如砂岩),由于它是由母岩经破碎、搬运、胶结和压实而成,因此碎屑颗粒的矿物成分、排列方式、分选程度、胶结物类型和数量以及成岩后的压实作用(即埋深)就成为影响这类岩石孔隙度的主要因素。
第二节储层岩石的毛管压力曲线(8学时)
一、教学目的
会计算任意曲面的附加压力,了解毛管压力曲线的测定与换算;了解毛管压力的滞后现象;分析毛管压力曲线;了解毛管压力曲线的应用。
二、教学重点、难点
教学重点:
1、任意曲面的附加压力的计算;
2、毛管压力曲线的测定与换算;
3、毛管压力的滞后现象;
4、毛管压力曲线的分析及应用。
教学难点
1、任意曲面的附加压力的计算;
2、毛管压力曲线的测定与换算;
3、毛管压力曲线的分析及应用。
三、教法说明
课堂讲授并辅助以多媒体课件展示相关的数据和图表
四、教学内容
本节主要介绍五个方面的问题:
一、任意曲面的附加压力
二、毛管中液体的上升(与下降)
三、毛管压力曲线的测定与换算
四、毛管压力的滞后现象
五、毛管压力曲线的分析及应用
(一)、任意曲面的附加压力
一、任意曲面的附加压力
拉普拉斯方程:
讨论:
(1).毛管中弯液面为球面时 毛管压力Pc:毛管中弯液面两侧非湿相压力与湿相压力之差
大小: 方向:指向弯液面内侧
分析讨论:Pc 与r 成反比, r 越小,Pc 越大
Pc 与б成正比, б越大,Pc 越大
Pc 与cos θ成正比, θ→0°或θ→180°,Pc 越大
(2).毛管中弯液面为平面时
(3).毛管中弯液面为柱面时
(4).毛管断面渐变时
(5).裂缝中的毛管压力 (二)、毛管中液体的上升(与下降)
气-液系统:
式中:
A ——附着张力=σcos θ,达因/cm
r ——毛管半径,cm
)11(2
1R R P +=∆σr
P c θ
σcos 2=0=∆P r
P P c )cos(2βθσ±=∆=
ρ——液体密度,g/cm 3
g ——重力加速度,cm/s 2
σ——液体的表面张力,达因/cm
θ——接触角
h ——液体上升高度,cm
油-水系统:
根据毛细管公式我们可以看到:
1、毛管压力c P 和θcos 成正比,090 θ,极性大的那一相为润湿相,θcos 为正,c P 为正,此时润湿相沿毛管自发吸入上升。
2、毛管压力和Pc 和毛管半径成反比,这就是说毛管半径越小,毛管力就越大,毛细管自发吸入湿相的能力就越强,润湿相沿毛细管上升的高度就越大。
3、毛管力实质上是润湿现象的一个特例,是自由表面能在毛细管内相互作用平衡的结果,因此,随着两流体界面张力的增大,即两种液体性质差别的增大,毛管力也应当增大,湿相在毛细管中上升就越高。
4、毛管力是发生在毛细管中的润湿现象,亦就是说:毛管力是润湿的结果,随着润湿相沿毛管的上升。
毛管中必然出现弯液面(如果不考虑重力的影响,则应该为球面),由引可知,只有在出现弯液面的条件下,才有毛细现象存在。
且润湿相和非润湿相的润湿能力相差越大,毛细管半径越小,那么,两相界面在毛细管中弯曲的越明显,即曲率半径越小,毛管力越大。