当前位置:文档之家› 驱动桥

驱动桥

驱动桥
驱动桥

载重汽车驱动桥设计

摘要

驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。本文首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。本文不是采用传统的双曲面锥齿轮作为载重汽车的主减速器而是采用弧齿锥齿轮,希望这能作为一个课题继续研究下去。

关键字:载重汽车驱动桥单级减速桥弧齿锥齿轮

前言

汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。

对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N·m以上,百公里油耗是一般都在34升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。

目前国内重型车桥生产企业也主要集中在中信车桥厂、东风襄樊车桥公司、济南桥箱厂、汉德车桥公司、重庆红岩桥厂和安凯车桥厂几家企业。这些企业几乎占到国内重卡车桥90%以上的市场。

设计驱动桥时应当满足如下基本要求:

1)选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。

2)外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。3)齿轮及其他传动件工作平稳,噪声小。4)在各种载荷和转速工况下有较高的传动效率。

5)具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。6)与悬架导向机构运动协调。

7)结构简单,加工工艺性好,制造容易,维修,调整方便。

在本设计中还采用了AutoCAD和Pro/E绘图软件分别进行了工程图的绘制和实体造型,运用AutoCAD绘制了、行星齿轮轴、左、右壳以及传动机构半轴的零件图,通过对AutoCAD 的编辑工具与命令的运用,掌握了从AutoCAD基础图形的绘制→基础零件的绘制→各类零件图的创建与绘制的方法,并且理解了机械图绘制的工作流程。另外还运用Pro/E绘图软件,运用初步的操作绘制出了主减速器的主、从动锥齿轮,差速器的行星齿轮、半轴齿轮等的实体造型,为今后更好的学习和掌握各种应用软件和技能打下坚实的基础。

第一章驱动桥结构方案分析

由于要求设计的是13吨级的后驱动桥,要设计这样一个级别的驱动桥,一般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。

驱动桥的结构形式有多种,基本形式有三种如下:

1)中央单级减速驱动桥。此是驱动桥结构中最为简单的一种,是驱动桥的基本形式,在载重汽车中占主导地位。一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承,有差速锁装置供选用。

2)中央双级驱动桥。在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装入圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制“三化”(即系列化,通用化,标准化)程度高,桥壳、主减速器等均可通用,锥齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用,锥齿轮有2个规格。

由于上述中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。

3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。

①圆锥行星齿轮式轮边减速桥。由圆锥行星齿轮式传动构成的轮边减速器,轮边减速比为固定值2,它一般均与中央单级桥组成为一系列。在该系列中,中央单级桥仍具有独立性,可单独使用,需要增大桥的输出转矩,使牵引力增大或速比增大时,可不改变中央主减速器而在两轴端加上圆锥行星齿轮式减速器即可变成双级桥。这类桥与中央双级减速桥的区别在于:降低半轴传递的转矩,把增大的转矩直接增加到两轴端的轮边减速器上,其“三化”

程度较高。但这类桥因轮边减速比为固定值2,因此,中央主减速器的尺寸仍较大,一般用于公路、非公路军用车。

②圆柱行星齿轮式轮边减速桥。单排、齿圈固定式圆柱行星齿轮减速桥,一般减速比在3至4.2之间。由于轮边减速比大,因此,中央主减速器的速比一般均小于3,这样大锥齿轮就可取较小的直径,以保证重型汽车对离地问隙的要求。这类桥比单级减速器的质量大,价格也要贵些,而且轮穀内具有齿轮传动,长时间在公路上行驶会产生大量的热量而引起过热;因此,作为公路车用驱动桥,它不如中央单级减速桥。

综上所述,由于设计的驱动桥的传动比为4.444,小于6。况且由于随着我国公路条件的改善和物流业对车辆性能要求的变化,重型汽车驱动桥技术已呈现出向单级化发展的趋势,主要是单级驱动桥还有以下几点优点:

(l) 单级减速驱动桥是驱动桥中结构最简单的一种,制造工艺简单,成本较低,是驱动桥的基本类型,在重型汽车上占有重要地位;

(2) 重型汽车发动机向低速大转矩发展的趋势,使得驱动桥的传动比向小速比发展;

(3) 随着公路状况的改善,特别是高速公路的迅猛发展,重型汽车使用条件对汽车通过性的要求降低。因此,重型汽车不必像过去一样,采用复杂的结构提高通过性;

(4) 与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性提高。

单级桥产品的优势为单级桥的发展拓展了广阔的前景。从产品设计的角度看,重型车产品在主减速比小于6的情况下,应尽量选用单级减速驱动桥。

所以此设计采用单级驱动桥再配

第二章主减速器设计

2.1 主减速器的结构形式

主减速器的结构形式主要是根据其齿轮的类型,主动齿轮和从动齿轮的安置方法以及减速形式的不同而异。

2.1.1 主减速器的齿轮类型

主减速器的齿轮有弧齿锥齿轮,双曲面齿轮,圆柱齿轮和蜗轮蜗杆等形式。在此选用弧齿锥齿轮传动,其特点是主、从动齿轮的轴线垂直交于一点。由于轮齿端面重叠的影响,至少有两个以上的轮齿同时啮合,因此可以承受较大的负荷,加之其轮齿不是在齿的全长上同时啮合,而是逐渐有齿的一端连续而平稳的地转向另一端,所以工作平稳,噪声和振动小。而弧齿锥齿轮还存在一些缺点,比如对啮合精度比较敏感,齿轮副的锥顶稍有不吻合就会使工作条件急剧变坏,并加剧齿轮的磨损和使噪声增大;但是当主传动比一定时,主动齿轮尺寸相同时,双曲面齿轮比相应的弧齿锥齿轮小,从而可以得到更大的离地间隙,有利于实现汽车的总体布置。另外,弧齿锥齿轮与双曲面锥齿轮相比,具有较高的传动效率,可达99%。

2.1.2 主减速器的减速形式

由于i=4.444<6,一般采用单级主减速器,单级减速驱动桥产品的优势:单级减速驱动车桥是驱动桥中结构最简单的一种,制造工艺较简单,成本较低,是驱动桥的基本型,在重型汽车上占有重要地位;

目前重型汽车发动机向低速大扭矩发展的趋势使得驱动桥的传动比向小速比发展;随着公路状况的改善,特别是高速公路的迅猛发展,许多重型汽车使用条件对汽车通过性的要求降低,因此,重型汽车产品不必像过去一样,采用复杂的结构提高其的通过性;与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加。

2.1.3 主减速器主,从动锥齿轮的支承形式

作为一个13吨级的驱动桥,传动的转矩较大,所以主动锥齿轮采用骑马式支承。装于轮齿大端一侧轴颈上的轴承,多采用两个可以预紧以增加支承刚度的圆锥滚子轴承,其中位于驱动桥前部的通常称为主动锥齿轮前轴承,其后部紧靠齿轮背面的那个齿轮称为主动锥齿轮后轴承;当采用骑马式支承时,装于齿轮小端一侧轴颈上的轴承一般称为导向轴承。导向

轴承都采用圆柱滚子式,并且内外圈可以分离(有时不带内圈),以利于拆装。

2.2主减速器的齿轮类型

设计采用单级减速驱动桥,再配以铸造整体式桥壳。

2.3主减速器主,从动锥齿轮的支承形式

2.4主减速器计算载荷的确定

1. 按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩Tce

从动锥齿轮计算转矩Tce

Tce=(2-1)

式中:

代入式(2-1),有:

Tce=14700.7

主动锥齿轮计算转矩T=2322.39 Nm

2. 按驱动轮打滑转矩确定从动锥齿轮的计算转矩

(2-2)式中——汽车满载时一个驱动桥给水平地面的最大负荷,后桥所承载69300N的负荷;

——轮胎对地面的附着系数,对于安装一般轮胎的公路用车,取=0.85;

对于越野汽车取 1.0;对于安装有专门的防滑宽轮胎的高级轿车,计算时可取1.25;

——车轮的滚动半径,在此选用轮胎型号为GB516-82 9.0~20,则车论的滚动半径为0.456m;

,——分别为所计算的主减速器从动锥齿轮到驱动车轮之间的传动效率和传动比,取0.9,由于没有轮边减速器取1.0

所以==29845.2

3. 按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩

对于公路车辆来说,使用条件较非公路车辆稳定,其正常持续的转矩根据所谓的平均牵引力的值来确定:

(2-3)所以

==38502.7

2.5主减速器基本参数的选择

1.主、从动锥齿轮齿数和

选择主、从动锥齿轮齿数时应考虑如下因素:

1)为了磨合均匀,,之间应避免有公约数。

2)为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于40。

3)为了啮合平稳,噪声小和具有高的疲劳强度对于商用车一般不小于6。

4)主传动比较大时,尽量取得小一些,以便得到满意的离地间隙。

5)对于不同的主传动比,和应有适宜的搭配。

根据以上要求,这里取=6 =38,能够满足条件:+=44〉40

1.从动锥齿轮大端分度圆直径和端面模数

对于单级主减速器,增大尺寸会影响驱动桥壳的离地间隙,减小又会影响跨置式主动齿轮的前支承座的安装空间和差速器的安装。

可根据经验公式初选,即

(2-4)——直径系数,一般取13.0~15.3;

——从动锥齿轮的计算转矩,,为Tce和Tcs中的较小者。

所以=(13.0~15.3)=(318.5~374.8)

初选=340

则=/=350/38=8.95

参考《机械设计手册》选取 9,则=342

根据=来校核=10选取的是否合适,其中=(0.3~0.4)

此处,=(0.3~0.4)=(7.35~9.80),因此满足校核条件。

第三章差速器设计

3.1 差速器齿轮的基本参数的选择

1.行星齿轮数目的选择

载货汽车采用4个行星齿轮。

2.行星齿轮球面半径的确定

球面半径可按如下的经验公式确定:

mm

(3-3) 式中:——行星齿轮球面半径系数,可取2.52~2.99,对于有4个行星齿

轮的载货汽车取小值2.6;

T——计算转矩,取Tce和Tcs的较小值,14700.7 .

根据上式=63.7mm 所以预选其节锥距A=63.7mm

3.行星齿轮与半轴齿轮的选择

为了获得较大的模数从而使齿轮有较高的强度,应使行星齿轮的齿数尽量少。

但一般不少于10。半轴齿轮的齿数采用14~25,大多数汽车的半轴齿轮与行星齿

轮的齿数比/在1.5~2.0的范围内。

4.差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定

首先初步求出行星齿轮与半轴齿轮的节锥角,

==29.05°=90°-=60.95°再按下式初步求出圆锥齿轮的大端端面模数m

m===

由于强度的要求在此取m=8mm

5.压力角α

3.2差速器齿轮的强度计算

MPa

所以,差速器齿轮满足弯曲强度要求。材料为20CrMnTi、20CrMoTi、22CrMnMo和20CrMo。

第四章驱动半轴的设计

4.1全浮式半轴计算载荷的确定

全浮式半轴只承受转矩,其计算转矩可有附着力矩求得,其中,的计算,可根据以下方法计算,并取两者中的较小者。

若按最大附着力计算,即

根据上式=36036 N ,

16432.42

若按发动机最大转矩计算,即

根据上式=23841.4 N

在此23841.4 N =10871.7 N·m

4.2、全浮式半轴的杆部直径的初选

全浮式半轴杆部直径的初选可按下式进行

(4-3)

取小值为10871.7,根据上式=(45.41~

48.29)mm

根据强度要求在此取48 mm。

4.3、全浮式半轴的强度计算

首先是验算其扭转应力:

MPa

(4-4)

根据上式==500.9 MPa< =(490~588) MPa

所以满足强度要求。

半轴的扭转角为

式中,为扭转角;为半轴长度,取;G为材料剪切

弹性模量,;为半轴截面极惯性矩,。

转角宜为每米长度~。计算较核得,满足条件范围。

4.4半轴花键的强度计算

在计算半轴在承受最大转矩时还应该校核其花键的剪切应力和挤压应力。

半轴花键的剪切应力为

(4-6)

半轴花键的挤压应力为

(4-7)式中T——半轴承受的最大转矩,T=10871.7 Nm;

D B ——半轴花键(轴)外径,D

B

=52mm;

d A ——相配的花键孔内径,d

A

=48mm;

z——花键齿数,在此取20;

L p ——花键工作长度,L

p

=70mm;

b——花键齿宽,b=3.77 mm;

——载荷分布的不均匀系数,取0.75。

将数据带入式(5-5)、(5-6)得:

=62.9 MPa

=142.6 MPa

根据要求当传递的转矩最大时,半轴花键的切应力[]不应超过71.05 MPa,挤压应力[]不应超过196 MPa,以上计算均满足要求。

驱动桥的工作原理

驱动桥的工作原理 驱动桥处于动力传动系的末端,其基本功能有如下三个方面: 1、增大由传动轴或变速器传来的转矩,并将动力传到驱动轮,产生牵引力。 2、通过差速器将动力合理的分配给左、右驱动轮,使左右驱动轮有合理的转速 差,使汽车在不同路况下行驶。 3、承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。 驱动桥的组成: 驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴;6-主减速器从动齿轮;7-主减速器主动锥齿轮 对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。 A、在主减速器内完成双级减速 为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿圆柱齿轮。 主动圆锥齿轮旋转,带动从动圆银齿轮旋转,从而完成一级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动 B、轮边减速: 将二级减速器设计在轮毂中,其结构是半轴的末端是小直径的外齿轮,周围有一组行星齿轮(一般5个),轮毂内有齿包围这组行星齿轮,以达到减速驱动的目的。 优点: a、由于半轴在轮边减速器之前,所承受扭矩减小,减速性能更好(驱动力加大); b、半轴、差速器等尺寸减小,车辆通过性能大大提高。 缺点: a、结构复杂,成本增加。 b、载质量大、平顺性小(故只用于重型车)。

汽车前驱动桥的结构设计

本科学生毕业设计 汽车前驱动桥的结构设计 系部名称:汽车与交通工程学院 专业班级:车辆工程 XX班 学生姓名:XXX 指导教师:XXX 职称:实验师 黑龙江工程学院 二○一三年六月

The Graduation Design for Bachelor's Degree The Structural Design of The Car Front Drive Axle Candidate:XXX Specialty:Vehicle Engineering Class:XX Supervisor:Experimentalist XX Heilongjiang Institute of Technology 2013-06·Harbin

摘要 随着现代车型的发展,普通汽车已经逐渐走进每个人的生活中。车桥设计是汽车设计中重要的环节之一,国产驱动桥在国内市场占据了绝大部分份额,但仍有一定数量的车桥依赖进口,国产车桥与国际先进水平仍有一定差距。 本次设计首先通过查阅近几年来有关国内外前驱动桥设计的文献资料,综合所学专业知识,了解并掌握了汽车前驱动桥结构及工作原理,根据所给的汽车参数制定了相应的设计方案。 然后通过查阅相关标准、手册资料,确定了驱动桥的主要零部件的主要设计参数,完成转向器、万向节、主减速器、差速器、半轴及桥壳的结构和尺寸设计计算,并进行相应校核,再根据所计算选取的参数画出了转向驱动桥的整体装配图、差速器装配图以及部分零件图。 关键词:前驱动;转向驱动桥;主减速器;差速器;半轴;桥壳

ABSTRACT As the development of the auto industry, car has gradually become part of everyone's life. Axle design is one of the important parts of automotive design, domestic drive axle in the domestic market accounted for the lion's share, but there is still a certain number of axles dependent on imports, there is still a certain gap between domestic axle and the international advanced level. Firstly, this design is lookup of the domestic and international front drive axle design documents in recent years, integrated the knowledge of our expertise we had knew and mastered the car’s front drive axle structure and working principle, formulated according to the vehicle parameters to the corresponding design programs. Then refered to the relevant standard, manual data to determine the main design parameters of the main components of the drive axle, completed the structure and size of the steering, universal joints, main gear box, differential, axle and axle housing, and check, according to the calculated parameters selected to draw the overall steering drive axle assembly drawings, the differential assembly drawings as well as some parts diagram. Key words: Front drive;Steering drive axle;Main reducer;Differential;Axle;Axle housing

NS SM72295光伏全桥驱动解决方案

NS SM72295光伏全桥驱动解决方案 NS公司的SM72295是能驱动全桥连接的4个分立N沟MOSFET的驱动器,可提供峰值电流3A,并集成了电压高达115VDC高速自举二极管,电流检测可编程的2个跨导放大器来完成,并能去掉波纹电流为控制电路提供平均电流信息.主要用在微型逆变器,功率优化器,充电器和屏安全系统.本文介绍了SM72295主要特性, 功能方框图和典型应用电路图.The SM72295 is designed to drive 4 discrete N type MOSFET’s in a full bridge configuration. The drivers provide 3A of peak current for fast efficient switching and integrated high speed bootstrap diodes. Current sensing is provided by 2 transconductance amplifiers with externally programmable gain and filtering to remove ripple current to provide average current information to the control circuit. The current sense amplifiers have buffered outputs available to provide a low impedance interface to an A/D converter if needed. An externally programmable input over voltage comparator is also included to shutdown all outputs. Under voltage lockout with a PGOOD indicator prevents the drivers from operating if VCC is too low.SM72295主要特性:■ Renewable Energy Grade■ Dual Half Bridge MOSFET Drivers■ Integrated 100V bootstrap diodes■ Independent High and Low driver logic inputs■ Bootstrap supply voltage range up to 115V DC■ Two current sense amplifiers with externally programmable gain and buffered outputs■ Programmable over voltage protection■ Supply rail under-voltage lockouts with power good Indicator图1.SM72295功能方框图图2.SM72295典型应用电路图详情请见:/ds/SM/SM72295.pdf

1章4节驱动桥

第四节驱动桥 汽车驱动桥的功用是把由万向传动装置或直接由变速器传来的转矩传递给左、右驱动车轮,实现降速增扭、改变转矩的传递方向,实现两侧车轮的差速,承受作用于路面和车架或车厢之间的各向力。 驱动桥应能保证具有合适的主减速比,使汽车具有良好的动力性和经济性;具有较大的离地间隙以保证良好的通过性;尽可能减轻重量以提高行驶的平顺性。 一、驱动桥的组成 一般汽车驱动桥包括主减速器、差速器、半轴和驱动桥壳等组成,如图1-4-1所示。 发动机的动力经离合器、变速器(或分动器)、万向传动装置输入驱动桥,首先传到主减速器 图1-4-1 非断开式驱动桥图1-4-2 断开式驱动桥 1-驱动桥壳2-主减速器3-差速器4-半轴5-轮毂 1-主减速器 2-半袖 3-弹性元件 4-减振器 5-车轮 6-摆臂 7-摆臂轴 2,增大转矩降低转速后,再由差速器3分配给左右半轴4,最后通过半轴外端的凸缘盘传至驱动车轮的轮毂5。驱动桥壳1由主减速器壳和半轴套管组成。轮毂借助轴承支承在半轴套管上。 二、驱动桥的类型 驱动桥按其半轴套管与主减速器壳体的连接方式可分为非断开式(或称整体式)驱动桥和断开式驱动桥两种。 在非断开式驱动桥(图1-4-1)中,半轴套管与主减速器壳刚性连成一体,整个驱动桥通过非独立弹性悬架与车架连接,故左、右半轴和驱动轮相对主减速器没有相对运动,亦称为整体式驱动桥。其结构简单,但平顺性差,一般多用于普通车辆。 在图1-4-2中,左、右半轴2的内端通过万向节与主减速器1相连,外端通过万向节与驱动轮相连,主减速器固连于车架上,而左、右驱动轮则分别通过悬架与车架相连。这样,两侧驱动轮就可以彼此独立地相对与主减速器上下跳动。因此,驱动桥壳分成左右两段并通过铰链与半轴连接,故称这种驱动桥为断开式驱动桥。这种驱动桥为适应车轮绕摆臂轴7上下跳动的需要,差速器与轮毂之间的半轴两端用万向节连接。 断开式驱动桥的优点是可以提高汽车行驶平顺性和通过性,相应采用的悬架为独立悬架。其缺点是结构复杂,制造成本高,故许多轿车和越野汽车的驱动桥采用独立悬架。 若驱动桥同时兼作转向桥时,则此类驱动桥称为转向驱动桥,它与车架之间可以是非独立

驱动桥有限元分析(1)

基于ANSYS的汽车驱动桥壳的有限元分 析 武汉理工…-icad 有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均 使用到该方法。 有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。 汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。 一、驱动桥壳强度分析计算 可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重 力之差,受力如图1所示。

驱动桥

载重汽车驱动桥设计 摘要 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。本文首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。本文不是采用传统的双曲面锥齿轮作为载重汽车的主减速器而是采用弧齿锥齿轮,希望这能作为一个课题继续研究下去。 关键字:载重汽车驱动桥单级减速桥弧齿锥齿轮

前言 汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。 对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N·m以上,百公里油耗是一般都在34升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。 目前国内重型车桥生产企业也主要集中在中信车桥厂、东风襄樊车桥公司、济南桥箱厂、汉德车桥公司、重庆红岩桥厂和安凯车桥厂几家企业。这些企业几乎占到国内重卡车桥90%以上的市场。 设计驱动桥时应当满足如下基本要求: 1)选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。 2)外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。3)齿轮及其他传动件工作平稳,噪声小。4)在各种载荷和转速工况下有较高的传动效率。 5)具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。6)与悬架导向机构运动协调。 7)结构简单,加工工艺性好,制造容易,维修,调整方便。

前转向驱动桥总成

SooPAT 前转向驱动桥总成 申请号:201210259961.5 申请日:2012-07-25 申请(专利权)人南京创捷和信汽车零部件有限公司 地址211200 江苏省南京市溧水经济开发区中兴东路5号 发明(设计)人桂治国黄勇边永杰 主分类号B60B35/12(2006.01)I 分类号B60B35/12(2006.01)I B60B35/16(2006.01)I 公开(公告)号102774239A 公开(公告)日2012-11-14 专利代理机构南京天翼专利代理有限责任公司 32112 代理人朱戈胜蒋家华

(10)申请公布号 CN 102774239 A (43)申请公布日 2012.11.14C N 102774239 A *CN102774239A* (21)申请号 201210259961.5 (22)申请日 2012.07.25 B60B 35/12(2006.01) B60B 35/16(2006.01) (71)申请人南京创捷和信汽车零部件有限公司 地址211200 江苏省南京市溧水经济开发区 中兴东路5号 (72)发明人桂治国 黄勇 边永杰 (74)专利代理机构南京天翼专利代理有限责任 公司 32112 代理人朱戈胜 蒋家华 (54)发明名称 前转向驱动桥总成 (57)摘要 本发明公开了一种前转向驱动桥总成,包括 桥壳(1)、轮毂(7)、主减速器带差速器总成和轮 边减速器;桥壳上设有与车辆底盘连接的摆销孔 (21),两个轮毂通过轮毂转向结构(3)连接在桥 壳的左右两端,桥壳中部设有空腔,其内安装主减 速器带差速器总成,主减速器带差速器总成两侧 各转动连接一根驱动轴(6),驱动轴转动连接桥 壳两端的轮边减速器;桥壳上设有车轮转向驱动 装置(4),该车轮转向驱动装置分别与两个轮毂 的轮毂转向结构连接;桥壳断面呈“口”字型空腔 结构,行星轮轴(15)边沿开有小孔(30),轮边减 速器壳(11)对应的开有沉槽(31),孔与槽之间安 装防窜动球(19);轮边减速器壳的最外侧设有端 盖(20)。 (51)Int.Cl. 权利要求书1页 说明书3页 附图4页 (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 1 页 说明书 3 页 附图 4 页

全桥驱动全桥整流变换器的高频变压器设计2

全桥驱动全桥整流变换器的高频变压器设计 1、根据电路形式、输出电压电流、变压器效率计算变压器的传送功率。 2、确定工作磁感应强度、电流密度系数、窗口占空系数(利用率)、工作频率、波形因数。 3、计算功率面积乘积并据此选择磁芯,根据所选磁芯参数计算电流密度。 4、根据伏秒积计算原边绕组匝数;根据电压比计算副边绕组匝数。 5、根据功率和波形因数计算各绕组电流幅值。 1、变压器传送功率计算 o o o P I U =? o I P P η = 11t o I o P P P P η?? ? ??? =+=+ 2、功率面积乘积计算 对于全桥驱动,变压器的2m B B ?=。其中,0.15~0.25m B =,电流密度系数400J K =,窗口占空系数0.2~0.4Ko =,工作频率 20Z f KH = ,波形因数f K =。

1.16 411104o p J c m P A K A B f η???? ? ? ? ? ?? ? ? ? ? ?? ? +?=???? 3、选择磁芯,计算电流密度 0.14()J p J K A -=? 4、原边和副边绕组匝数: 124p on p m c m c U t U D N B A B A f ??==??? 21s p U N N U = 5、原边和副边绕组电流幅值: 副边绕组电流幅值:2o I I D = o s s s s o o o s o s o s P U I U I D U I U U I I D I I D ==??=?=∴=?∴= 原边绕组电流幅值:o p p P I U D η=??

全桥变换器输出电压与输入电压关系推导 伏秒积产生磁通链: t t p p p c p p s s s c s s U N B A L I U N B A L I ??=?Φ=???=????=?Φ=???=?? 原边能量:()2 2 211222p on p on p p p p p U t U t L i L L L ?? ? ???????=??= 副边能量:()22 2 11222s on s on s s s s s U t U t L i L L L ?? ? ??? ????=??= 两边相等:()( )22 22p on s on s s p p p s U t U t U N U N L L ??= ?== 结论:正激变换器输出与输入的电压比等于副边与原边的匝数比 全桥驱动全桥整流变换器的高频变压器A P 公式推导 伏秒积产生磁通链: 222p on p p p m c T D U t U D U N B A f ?=??=?=?? 得原边匝数和副边匝数: 4p p m c U D N B A f ?= ?? 由于 p s p s U U N N =,故: 4s s m c U D N B A f ?= ?? 窗口中包含的总电流为:

KC80和KC100前驱动桥使用保养说明书

前驱动桥使用保养说明书
中国一拖集团有限公司开创科技有限公司 二零零七年九月

前驱动桥使用保养说明书
第一章 第二章 第三章 第四章 第五章 第六章 第七章 注意事项 前驱动桥的主要技术参数 前驱动桥的磨合 前驱动桥的使用 前驱动桥的维护保养操作 常见故障及排除方法 附录
感谢您使用我公司的产品! 本说明书适用于我公司型号为 KC80、KC100、KC160 前驱动桥
第一章
1.
注意事项
用户在选用及使用前应仔细阅读使用保养说明书。

严格按照推荐牌号的润滑油使用,换油时严禁新油、旧油、不同牌号的润 滑油混合使用。 3. 整机出厂前应检查前桥摆角是否达到规定值,以免因摆角不正确引起事 故。 4. 经常检查各连接部位的螺栓、螺母及其他易松动零部件,例如桥壳与锥支 座连接螺栓、轮毂螺母等,发现松动时应及时拧紧。 5. 严格按照图纸要求调整前束量, 以免因前束调整不正确引起轮胎的非正常 磨损。 6. 当拖拉机在良好路面行驶时,应切断前驱动的动力。 7. 严格执行技术保养规程,避免齿轮、轴承等的非正常磨损。 8.润滑油灌注容量 (单位:L) 每侧 1.5;中央 5.4 2.
第二章
前驱动桥的主要技术参数
KC80 性能参数
最大扭矩/转速(N.m/r/min) 传动比 前桥传动轴 输入轴键参数 轮毂与辐板连接螺栓 轮辐距 (mm) 前轮外倾角 前 轮 定 位 主销内倾角 主销后倾角 前轮前束 转向形式 前轴(桥)摆角 前轮最大转角 转向油缸直径(mm) 转向油缸数量 转向油缸行程(mm) ≤320/176-412 21.125 中置式传动轴 m=2.75 z=10 α=30o 8-M16X1.5-6H (?290X?330mm) 1773 1o 7o30′ 10o 0--5 液压转向 11o(每边) 50o ?55 1 200

步进电机驱动之全桥驱动与斩波恒流

步进电机驱动之全桥驱动与斩波恒流 先看两相绕组的全桥驱动电路,四路基本相同的驱动电路,抓取一组电路来分析: 全桥驱动电路,其中Q7和Q8基极和发射极短接,相当于一个反向的二极管。 为了便于分析,将原理图简化后如下所示:

查看IM2000S芯片手册,对全桥驱动芯片输入脚的定义如下: 以上四个输入端:B相高低端全桥控制信号,用来控制离散的PN,NN的全桥或者半桥IC. 从上述可以知道,输出的是一个离散量,那么,是怎样控制电机,使电机获得一个sin和cos 的电流信号而驱动电机的呢? 这里要深入理解一个概念:斩波恒流! 斩波恒流的原理是:当环形分配器导通的时候,IC2使得TL和TH导通,电源通过TH和TL 和电机向下有电流输出,此时R左端的电压上升,当电流上升到给定电平时,比较器反转,输出为低,使得IC1截止,此时电感使电流缓慢下降,此时通过TL采样的电压变低,当电压低于给定电平时候,比较器反转,使得IC1再次导通,这样可以快速的波动,而使电感上的电流保持一个恒定的值。当环形分配器给出低电平时,IC1和IC2截止,电流通过D2流入电源,从而实现节能。 此时,再看上图,会发现: 1、BHO和ALO为一个通路,AHO和BLO为一个通路,实现电流的正向和反向。 2、BHO和AHO的开关频率会比BL0,ALO大很多,BL0和ALO只有在正向和负方向反转的时 候出现跳变,而BHO和AHO的频率会很快以实现恒流。

这里值得注意的一点是,上述过程仅仅是在一个细分时候,一个数模转换量上保持的恒流。如果整步为256细分,则在256细分的每一个细分阶段实际上过程就是上文红色字体运行一遍的一个过程,而要使整个电机转动一圈,则需要完成一个SIN和COS的整个过程,如果上面的过程仍然无法理解,请参看步进电机细分方面的内容。 从整个驱动电路的系统上看, 整个闭环是按照如下进行工作的:

全桥驱动器芯片UBATUBATS

全桥驱动器芯片UBATUBATS

全桥驱动器芯片UBA2032T/UBA2032TS 摘要:飞利浦X公司采用EZ-HVSOI工艺制造的全桥驱动器UBA2032T/TS可用于驱动任何壹类负载,尤其适合于驱动HID灯。文中介绍了UBA2032T/TS的功能特点,给出了它的典型应用电路。 关键词:全桥驱动器;高压IC;UBA2032T/TS;HID灯驱动电路 1.概述:飞利浦X公司推出的UBA2032高压单片IC是采用EZ-HVSO1工艺制造的壹种高压全桥驱动器。UBA2032在全桥拓扑中通过外部MOSFET能够驱动任何壹种负载,尤其适用于驱动高强度的放电HID灯如高压钠灯和金卤灯换向器等commutator。 UBA2032的主要特点如下: ●内置自举二极管和高压电平移位器; ●桥路电压最高可达550V,且可直接从IC的HV脚输入高压,因为内部电路产生低工作电压,而无需附加低压电源; ●带输入启动延时,可利用简单的RC滤波器或来自处理器的控制信号产生延迟; ●振荡器频率可调节; ●只要BD脚上电压超过桥路截止门限1.29V,所有MOSFET都将被关断; ●为保证50%的占空因数,振荡器信号在馈送到输出驱动器

之前应通过除法器; ●非交叠non-overlap时间可由自适应非交叠电路控制,最小非交叠时间可在内部固定; ●采用24脚SO封装UBA2032T和28脚SSOP封装UBA2032TS,引脚排列如图1所示。 2内部结构及工作原理 2.1内部结构及引脚功能UBA2032片内集成有电压稳压器、振荡器、输入信号延迟和桥路禁止电路、控制逻辑、高/低压电平移位器、高端左 /右驱动器和低端左/右驱动器等单元电路, 表1所列是UBA2032的各引脚功能。 备注:H为高电平;L为低电平;X表示无关2.2工作原理 UBA2032既可从HV脚施加电压以产生内部低电源电压VDD11.5±2V,也可将低压电源直接连接到VDD脚此情况下HV脚必须连接到脚VDD或SGND。当VDD脚或HV脚上的电压高于释放功率驱动电平典型值分别为9V和1

前驱动桥使用保养说明书

前驱动桥使用保养说明书 中国一拖集团有限公司开创科技有限公司 二零零七年九月

前驱动桥使用保养说明书 第一章注意事项 第二章前驱动桥的主要技术参数 第三章前驱动桥的磨合 第四章前驱动桥的使用 第五章前驱动桥的维护保养操作 第六章常见故障及排除方法 第七章附录 感谢您使用我公司的产品! 本说明书适用于我公司型号为KC80、KC100、KC160前驱动桥 第一章注意事项 1.用户在选用及使用前应仔细阅读使用保养说明书。

2.严格按照推荐牌号的润滑油使用,换油时严禁新油、旧油、不同牌号的润 滑油混合使用。 3.整机出厂前应检查前桥摆角是否达到规定值,以免因摆角不正确引起事 故。 4.经常检查各连接部位的螺栓、螺母及其他易松动零部件,例如桥壳与锥支 座连接螺栓、轮毂螺母等,发现松动时应及时拧紧。 5.严格按照图纸要求调整前束量,以免因前束调整不正确引起轮胎的非正常 磨损。 6.当拖拉机在良好路面行驶时,应切断前驱动的动力。 7.严格执行技术保养规程,避免齿轮、轴承等的非正常磨损。 8.润滑油灌注容量(单位:L) 每侧1.5;中央5.4 第二章前驱动桥的主要技术参数 KC80性能参数

KC100性能参数 第三章前驱动桥的磨合 (一)使用前的准备工作 1.检查前驱动桥各联接部位螺栓、螺母及转向限位螺钉是否拧紧,若有松动 应及时拧紧;

2.在轮毂、驱动桥主销油杯处加注润滑脂; 3.检查驱动桥中央传动及最终传动油面,不足时按规定加注。 (二)磨合 按照整机磨合要求进行磨合后,才能进行负荷运行。 1.整车空负荷运转,在运转过程中应仔细检查桥的工作状态,观察有无异常 现象及声响,有无油水泄漏。如发现有不正常现象,应立即停车,排除故 障后再使用。 2.空驶磨合后,前驱动桥技术状态完全正常后方可进行负荷磨合。 3.在拖拉机静止情况下,启动发动机运转,操纵方向盘平稳地向左及向右转 动,观察前轮左右转向的随动情况。 注意:拖拉机进行中II档及中III档负荷磨合时,应使前驱动桥结合;其他档位磨合时,应使前驱动桥分离。 (三)磨合后的工作 a)停机后趁热放出前驱动桥内的润滑油,同时加入适量煤油或轻柴油进行 清洗(随整机传动系一起进行),将清洗液放出后,加注N100D新润滑 油。 b)检查前轮前束,必要时进行调整。 c)检查拧紧所有外部螺栓、螺母、螺钉。 d) 在各润滑点加注润滑脂。 第四章前驱动桥的使用 整个前桥通过前后两个摆座与托架相连接,并通过托架联接螺栓与发动机相连。当左、右前轮在一边高、一边低的路面行驶时,前桥可产生摆动,摆角最大可达11°。由于前桥频繁的摆动摩擦磨损,使得前后摆座处的调整垫片磨损减薄,其磨损至一定程度应予以更换。 拖拉机在田间重负荷作业或在潮湿松软土壤上工作时,为了改善拖拉机附着性能,可接合前驱动桥实现四轮驱动。当拖拉机在良好路面行驶时,应切断前驱动的动力,使前轮不产生驱动力,以减少轮胎的磨损和避免传动系统寄生功率的产生。 第五章前驱动桥的维护保养操作 在前桥的使用过程中,由于各种恶劣环境因素的影响,各零部件之间的联接会出现松动,轴承会磨损。另外,润滑油、润滑脂等工作物质也逐渐消耗,使前桥的正常工作条件遭到破坏。因此必须适时、定期采取紧固、调整、更换、添加等维护性技术措施,以保持零部件的正常工作能力,延长零部件的使用寿命。因此必须做到:

驱动桥设计说明书

汽车设计课程设计 轻型货车驱动桥设计 姓名: 黄华明 学号: 12431173 专业班级: 机英123

指导教师: 王淑芬 题目: 1. 整车性能参数: 驱动形式6x2后轮; 轴距3800mm; 轮距前/ 后1750/1586mm; 整备质量4310kg ; 额定载质量5000kg ; 空载时前轴分配负荷45%满载时前轴分配负荷26% 前悬/ 后悬1270/1915mm ; 最高车速110km/h ; 最大爬坡度35%; 长、宽、高6985、2330、2350; 发动机型号YC4E140-20 ; 最大功率99.36KW/3000rpm ; 最大转矩380N- m/1200~1400rpm 变速器传动比7.7 4.1 2.34 1.51 0.81 ; 倒挡8.72 ; 轮胎规格9.00-20 ; 离地间隙>280mm。 2. 具体设计任务: 1)查阅相关资料,根据其发动机和变速箱的参数、汽车动力性的要求,确定驱动桥上主减速器的减速形式,对驱动桥总体进行方案设计和结构设计。 2)校核满载时的驱动力,对汽车的动力性进行验算。 3 )根据设计参数对主要零部件进行设计与强度计算。 4)绘制所有零件图和装配图。 5)完成6千字的设计说明书。

第1章驱动桥的总体方案确定 1.1驱动桥的结构和种类和设计要求 1.1.1汽车车桥的种类 汽车的驱动桥与从动桥统称为车桥,车桥通过悬架与车架(或承载式车身)相连, 它的两端安装车轮,其功用是传递车架(或承载式车身)于车轮之间各方向的作用力及其力矩。 根据悬架结构的不同,车桥分为整体式和断开式两种。当采用非独立悬架时,车桥中部是刚性的实心或空心梁,这种车桥即为整体式车桥;断开式车桥为活动关节式结构,与独立悬架配用。在绝大多数的载货汽车和少数轿车上,采用的是整体式非断开式。断开式驱动桥两侧车轮可独立相对于车厢上下摆动。 根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型。其中,转向桥和支持桥都属于从动桥,一般货车多以前桥为转向桥,而后桥或中后两桥为驱动桥。 1.1.2驱动桥的种类 驱动桥位于传动系末端,其基本功用首先是增扭、降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并合理的分配给左、右驱动车轮,其次, 驱动桥还要承受作用于路面和车架或车厢之间的垂直力、纵向力和横向力,以及制动力矩和反作用力矩。 驱动桥分为断开式和非断开式两种。驱动桥的结构型式与驱动车轮的悬挂型式密切相关。当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上,都是采用非断开式驱动桥,其桥壳是一根支撑在左右驱动车轮上的刚性空心梁,主减速器、差速器和半轴等所有的传动件都装在其中;当驱动车轮采用独立悬挂时,则配以断开式驱动桥。 1.1.3驱动桥结构组成 在多数汽车中,驱动桥包括主减速器、差速器、驱动车轮的传动装置(半轴)及桥壳等部件如图1.1所示。 1 2 3 4 5 6

汽车驱动桥的详细结构及分类

驱动桥的详细结构及分类 我爱车网类型:转载来源:腾讯汽车时间:2011-03-02 作者: 驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。它的作用是将万向传动装置传来的动力折过90°角,改变力的传递方向,并由主减速器降低转速,增大转矩后,经差速器分配给左右半轴和驱动轮。 驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。 (1)非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 整体式驱动桥即非断开式驱动桥组成 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。

全桥驱动原理

5.2.1 全桥驱动原理 全桥驱动又称H桥驱动,下面介绍一下H桥的工作原理: H桥一共有四个臂,分别为B1~B4,每个臂由一个开关控制,示例中为三极管Q1~Q4。 如果让Q1、Q2导通Q3、Q4关断,如图5-8所示,此时电流将会流经Q1、负载、Q2组成的回路,电机正转。 图5-8 B1、B2工作时的H桥电路简图图5-9 B3、B4工作时的H桥电路简图如果让Q1、Q2关断Q3、Q4导通,如图5-9所示,此时电流将会流经Q3、负载、Q4组成的回路,电机反转。 如果让Q1、Q2关断Q3、Q4也关断,负载Load两端悬空,如图5-10所示,此时电机停转。这样就实现了电机的正转、反转、停止三态控制。 如果让Q1、Q2导通Q3、Q4也导通,那么电流将会流经Q1、Q4组成的回路以及Q2和Q3组成的回路,如图5-11所示,这时桥臂上会出现很大的短路电流。在实际应用时注意避免出现桥臂短路的情况,这会给电路带来很大的危害,严重会烧毁电路

图5-10 B1~B4全部停止工作时的H桥简图图5-11 B1~B4全部工作时的H桥简图 6.2 程序中需要说明的几个问题 在程序中有几个地方不易理解,需要特别说明一下: 首先,小车有没有被训练过是怎么知道的? 在这里利用了一个特殊的Flash单元,语音模型存储区首单元(该示例程序中为0xe000单元)。当Flash在初始化以后,或者在擦除后为0xffff,在成功训练并存储后为0x0055(该值由辨识器自动生成)。这样就可以根据这个单元的值来判断是否经过训练。 其次,为什么已经训练过的系统在重新运行时还要进行模型装载? 在首次训练完成之后,辨识器中保存着训练的模型,但是系统一旦复位辨识器中的模型就会丢失,所以在重新运行时必须把存储在Flash中的语音模型装载到辨识器(RAM)中去。 第三,在转弯时为什么前轮要先做一个反方向的摆动? 这是为了克服车体的限制,由于前轮电机的驱动能力有限,有时会出现前轮偏转不到位的情况,所以在转弯前首先让前轮朝反方向摆动,然后再朝目标方向摆动。这样前轮的摆动范围更大,惯性更大,摆幅也最大,能更好实现转弯。

全桥功率开关驱动电路仿真试验

内燃机测试技术试验 实验 全桥功率开关驱动电路仿真试验 实验学时:2 实验类型:基础型 实验对象:本科生 一.实验目的: 1.了解全桥功率开关驱动电路的工作原理和应用。 2.了解全桥功率开关驱动方式的实现原理和特点。 3.掌握全桥功率开关驱动电路关键元器件选择和电路保护。 二.实验原理及设备说明 1.全桥功率开关驱动电路的工作原理 全桥功率开关驱动电路,又称为H桥驱动电路,其基本原理图如图1所示。形象的说,4个开关或者功率管组成H桥的4条垂直腿,而电机或者负载就是H 中的横杠。通过控制4个开关的导通与截止可以实现负载的正向加电和反向加电,其最广泛的用途就是电机的正反转。H桥驱动电路加电必须是对角线两个开关管同时打开,而半桥臂的上下开关管不能同时打开,否则会造成上下位开关管直接短路,电源直接对地短接,造成瞬态电流过大,开关管损坏。当开关管中的1,4导通时,电流经过开关1-电机-开关4流动,电机向一个方向运动;反之,当开关管中的2,3导通时,电流则经过开关3-电机-开关2流动,电机向相反方向运动。 图1 H桥驱动电路原理

由于全桥电路采用了两高两低四个开关管的方式,对于开关管采用是N型还是P型,可以有多种实现方式。一般来讲,高位开关管采用P型实现,驱动最为简单方便,但是P型开关管最大电流不能太大,因此适合再小功率的电机或负载中使用。上下位管均采用N型开关管实现的话,高位的N型开关管控制实现困难一些,但是最大电流可以较大,因此功率可以比较高。总的来说,全桥电路的实际实现方式必须和负载特性结合起来,选择正确的配置。 全桥驱动电路在汽车中的典型应用为电子节气门,EGR阀,电动座椅,伺服阀等。 2.全桥功率开关驱动方式的实现原理和特点 由前面全桥功率开关驱动原理知道,全桥功率开关主要实现的是负载中的电流正反向流动,在实际应用中,全桥驱动基本上使用在电机等类负载上,而从电机的特性上来讲,除了正反向运动外,另外就是电机的调速特性。按照电机调速的基本原理,可以采用调节电机两端电压来实现,而现在调节电机两段电压的方式基本上采用PWM脉宽调制实现,因此必须对PWM脉宽调制下的驱动方式和电机中的电流有比较清楚的理解。表1为典型的电子节气门全桥驱动芯片TLE6281的控制真值表,图2为和真值表对应的控制波形。 表1 TLE6281全桥驱动芯片真值表

汽车驱动桥设计

车辆工程专业课程设计 学院机电工程学院班级 12级车辆工程 姓名黄扬显学号 20120665130 成绩指导老师卢隆辉 设计课题某型轻型货车驱动桥设计 2015 年11 月15 日

整车性能参数(已知) 驱动形式: 6×2后轮 轴距: 3800mm 轮距前/后: 1750/1586mm 整备质量 4310kg 额定载质量: 5000kg 空载时前轴分配轴荷45%,满载时前轴分配轴荷26% 前悬/后悬: 1270/1915mm 最高车速: 110km/h 最大爬坡度: 35% 长宽高: 6985 、2330、 2350 发动机型号: YC4E140—20 最大功率: 99.36kw/3000rmp 最大转矩: 380N·m/1200~1400mm 变速器传动比: 7.7 4.1 2.34 1.51 0.81 倒档传动比: 8.72 轮胎规格: 9.00—20 离地间隙: >280mm

1总体设计 (3) 1.1 非断开式驱动桥 (3) 1.2 断开式驱动桥 (4) 2 主减速器设计 (4) 2.1 主减速器结构方案分析 (4) 2.1.1 螺旋锥齿轮传动 (4) 2.2 主减速器主、从动锥齿轮的支承方案 (5) 2.2.1 主动锥齿轮的支承 (5) 2.2.2 从动锥齿轮的支承 (5) 2.3 主减速器锥齿轮设计 (5) 2.3.1 主减速比i0的确定 (6) 2.3.2 主减速器锥齿轮的主要参数选择 (7) 2.4 主减速器锥齿轮的材料 (8) 2.5 主减速器锥齿轮的强度计算 (9) 2.5.1 单位齿长圆周力 (9) 2.5.2 齿轮弯曲强度 (9) 2.5.3 轮齿接触强度 (10) 2.6 主减速器锥齿轮轴承的设计计算 (10) 2.6.1 锥齿轮齿面上的作用力 (10) 2.6.2 锥齿轮轴承的载荷 (11) 2.6.3 锥齿轮轴承型号的确定 (13) 3 差速器设计 (15) 3.1 差速器结构形式选择 (15) 3.2 普通锥齿轮式差速器齿轮设计 (15) 3.3 差速器齿轮的材料 (17) 3.4 普通锥齿轮式差速器齿轮强度计算 (18) 4 驱动桥壳设计 (19) 4.1 桥壳的结构型式 (19) 4.2 桥壳的受力分析及强度计算 (20) 致谢 (22) 参考文献 (23)

相关主题
文本预览
相关文档 最新文档