哈里伯顿测井新技术
- 格式:ppt
- 大小:3.70 MB
- 文档页数:20
钻井新技术及发展方向分析1 钻井技术新进展1.1石油钻机钻机是实现钻井目的最直接的装备,也直接关系到钻井技术进步。
近年来,国外石油钻机能力不断增强,自动化配套进一步完善,使钻机具备更健康、安全、环保的功能,并朝着不断满足石油工程需要的方向发展。
主要进展有:(1) 采用模块化结构设计,套装式井架,减少钻机的占地面积,提高钻机移运性能,降低搬家安装费用。
(2) 高性能的“机、电、液”一体化技术促进石油钻机的功能进一步完善。
(3) 采用套管和钻杆自动传送、自动排放、铁钻工和自动送钻等自动化工具,提高钻机的智能化水平,为提高劳动生产率创造条件。
1.2随钻测量技术1.2.1随钻测量与随钻测井技术21 世纪以来, 随钻测量(MWD) 和随钻测井(LWD) 技术处于强势发展之中,系列不断完善,其测量参数已逐步增加到近20种钻井工程和地层参数,仪器距离钻头越来越近。
与前几年的技术相比,目前,近钻头传感器离钻头只有0.5~2 m 的距离,可靠性高,稳定性强,可更好地评价油、气、水层,实时提供决策信息,有助于避免井下复杂情况的发生,引导井眼沿着最佳轨迹穿过油气层。
由于该技术的市场价值大,世界范围内有几十家公司参与市场竞争,其中斯伦贝谢、哈里伯顿和贝克休斯3 家公司处于领先地位。
1.2.2电磁波传输式随钻测量技术为适应气体钻井、泡沫钻井和控压钻井等新技术快速发展的需要,电磁波传输MWD(elect romagnetic MWD tool s ,EM MWD) 技术研究与应用已有很大进展,测量深度已经达到41420 km。
1.2.3随钻井底环空压力测量技术为适应欠平衡钻井监测井筒与储层之间负压差的需要,哈里伯顿、斯伦贝谢和威德福等公司研制出了随钻井底环空压力测量仪(annular pressure measurement while drilling, APWD) ,在钻井过程中可以实时测量井底环空压力,通过MWD 或EMMWD 实时将数据传送到地面,指导欠平衡钻井作业。
SmartWell CompletionsJon RawdingManager, Business Development Asia PacificWhat is SmartWell Technology? 为什么是智能完井技术ÎSmartWell®technology is the leading intelligentcompletion technology: SmartWell®技术引领智能完井技术ÎOne company’s SmartWell®completion isanother’s simple well completion:一家公司的智能完井是另一家公司的简单完井ÎAn intelligent well enables an operator to: 一口智能完井井能完成:•Remotely monitor and control flow downhole,at the reservoir, with no physical intervention远程监控和控制井下流量,油藏中无物理干扰•Optimise well, production and reservoirmanagement processes 优化井,生产,油藏管理流程Cost Implications of “Unexpected”Water Breakthrough ÎOffshore Field海上油田•Unexpected Water Breakthrough无法预测的水突破•Intervention Costs干涉花费−$4,000,000 -$8,000,000•What do I get for an average $6,000,000 per well?平均每口井6百万能做什么?−Position Rig平台定位−Install Riser安装升降器−Slickline Drift Run钢丝漂移操作−Wireline Production Logging电缆生产测井−Wireline Set Water Shut Off Plug电缆坐封堵水丝堵−Prepare to suspend Well准备暂停井−Recover the riser回收升降器−Move Rig迁移平台Cost Implications of “Unexpected”Water BreakthroughHow is the water controlled in a SmartWell Completion?智能完井是如何控水的?ÎLocation 位置•Shaybah reservoir, Shaybah Field, Saudi Arabia ÎGoal 目标•Install maximum reservoir contact (MRC) wells to reduce gas breakthrough and manage water coning 安装最大油藏接触面的井来减少气突破和水锥进ÎChallenge 挑战•Water breakthrough from any one of laterals in maximum reservoir contact (MRC) wells has potential to kill well. 在最大油藏接触面的井中的任一个分支发生水突破都可能使井报废Saudi Aramco –Reduce Gas Breakthrough and manage water coning减少气突破和水锥进ÎSolution 解决•Effectively manage water breakthrough variable choking of each of individual laterals 调节任一分支的油嘴,有效管理水突破–Three zone Direct Hydraulic completion in conjunction with Accu-Pulse 用Accu-Pulse 在三个层直接水动力完井ÎAdditional Installations 附加安装•SmartWell completion in expandable liner 可膨胀管线中的智能完井安装•SmartWell completion in open hole 裸眼段的智能完井安装•Installation of PHDMS for intelligent field ?ÎAdditional Benefits 附加利益•Selective well testing 可选择的井测试Saudi Aramco -Increases Well Productivity, Improves Hydrocarbon Recovery增加井的生产能力,提高采收率SmartWell Completions in Multi-lateral Reservoirs 分支井的智能完井Unrealised Added ValueÎSPE 100880 –Smart Snake Wells in Champion West –Expected and Unexpected Benefits From Smart CompletionsW. Obendrauf, K. Schrader, N. Al-Farsi and A White, SPE, Brunei Shell Petroleum Co.Sdn. Bhd.•CW-20 up to 1 mln bbl were initially not connected to the well, due to problems whenrunning the liner. The SmartWell completion enabled clean-up of the well by allowinga large draw down in the toe section of the well.•CW-22 a cement repair job and/or side track was avoided by adapting the SmartWellCompletion, saving at least 7 days of rig time.•CW-18 the well was accidentally drilled into a water bearing sand in the horizontalsnaking section. A side track could be avoided by adapting the planned completion,saving in the order of $6,000,000.Option 1-Uncontrolled Commingling 选项1-没有控制的合采Option 2 -Drill a well for each zone 选项2-每个层钻一口井Option 3 -Controlled Commingling 选项3-可控制的合采Intelligent well technology enables exploitation ofmarginal reserves and acceleration ofhydrocarbon production through controlledcommingling of reservoirs.Controlled Commingling“…15% of discovered, uneconomic oil reserves in the UK Sector of the North Sea couldbe made economic by commingling.”在北海英国区,15%已发现的、无经济效益的油田储量通过合采产生经济效益Department of Trade and Industry (DTI)PILOT Undeveloped Discoveries WorkgroupCommingled SmartWell Zone 5 Sequential Zone 4 Sequential Zone 3 Sequential Zone 2 Sequential Zone 1 SequentialP r o d u c t i o n R a t e C u m u l a t i v e P r o d u c t i o n Years Zone 5Zone 4Zone 3Zone 2Zone 1Zone 5Zone 4Zone 3Zone 2Zone 1Economic Rate Limit Commingled SmartWell Completion Commingled SmartWell Completion Commingled SmartWell vs. Sequential Development 合采的智能完井vs. 滚动开发SmartWell completion reaches economic limitCompartmentalized Reservoir –SPE 110207ÎAdditional 1.57 million bbls of oil over six years (indicated by initial performance test against base case)Background and Subsurface SettingÎLocation: Brunei Shell Petroleum’s (BSP) Iron Dukefield, a structurally complex offshore field,characterized by multiple fault blocksÎDue to very limited aquifer support, the wells aretypically drilled very close to the oil water contact tomaximize oil production and minimize GORChallengeÎAfter producing approximately 50% of the perforated section reserves, several intervals were producing mainly gasÎThe ultimate oil recovery expected from the solution gas drive was unachievable from the conventional completionCompartmentalized Reservoir –SPE 110207多层油藏Compartmentalized Reservoir –SPE 110207ÎAdditional 1.57 million bbls of oil over six years (indicated by initial performance test against base case)SmartWell SolutionÎSmartWell completion•enabling the control of each zone individually orcommingling to allow a high GOR zone to lift a lowGOR zone (internal gas lift)Î A 5-zone Digital Hydrauliccompletion was proposedÎWell was the first well to have surfacecontrol and monitoring in allfive zonesÎIn 2007 a 6 zone completion was successfully run forthe first time.Here’s an example worth noting…价值计算CapEx required to develop a field with vertical wells 直井开发的油田的基建(资本建设?)费用3 platforms @ US$300 million/platform = US$900 million21 wells @ $US12 million/well = US$252 millionUS$900 million + US$252 million =US$1.51 BILLION!Capital Expenditure to Develop a Field Using Vertical Wells 直井开发的油田的基建(资本建设)费用3 platforms @ US$300 million eachUS$900 million21 wells @ US$12 million eachUS$252 millionUS$900 million + US$252 million = US$1.152 billion!Capital Expenditure to Develop a Field Using Snake Wells来回曲折井开发的油田的基建(资本建设)费用1 platform @ US$300 million eachUS$300 million6 snake wells @ US$30 million eachUS$180 million US$900 million + US$180 million = US$480 million!Comparison of Costs 费用对比ÎWell Engineer Point of View•1 standard well =$12M •1 snake well = $30MSmartWell technology snake wells will save $672M ÎAsset Manager Point of View•3 platforms +21 standard wells = $1.152B•1 x platform +6 snake wells =$480MConclusion: A snake well is$18M more expensive than a standard well ICV PDG LVExamples of Capital Expenditure基建(资本建设)费用的例子Connector Wells多井连接Controlled Dump Flood可控制的回注Controlled Dump Flood –Reduce CAPEX –SPE 112243可控制的回注-减少基建(资本建设)费用ÎLocation 位置•Minagish Field, West KuwaitÎGoal 目标•Control and monitor downhole water dump floodfrom the high pressure Zubair formation to thelower pressured Minagish Oolite formation控制和监控从高压Zubair层到低压Minagish Oolite层的水的回注ÎChallenge 挑战•Control water flow between formations 层间控水•Control sand production from Zubair formation控制Zubair层出沙•Monitor down hole flow rate 监控产量ÎSolution 解决方案•Model reservoir to evaluate parameters required to control water rate from the Zubair to Minagish.油藏建模评估参数,控制从Zubair 到Minagish 的水量•Install HVC-ICV to allow controlled flow from Zubair to Minagish安装流量控制阀来控制从Zubair 到Minagish 的流量•HCV-ICV designed to close from any position without the requirement to fully open, thus controlling sand productionHCV-ICV 阀可调节开关控制出沙•Installation of Permanent Downhole Monitoring gauges, ported to tubing and annulus for downhole flow rate monitoring 安装永久式井下监控测量仪,监控油管和环空的流量Controlled Dump Flood –Reduce CAPEX –SPE 112243可控制的回注-减少基建(资本建设)费用Auto Gas Lift –Reduce CAPEX自动气举-减少基建(资本建设)费用Waterflood Control in a Multilateral Well – SPE 81493Water cut reduced from 99% to 71% Incremental volume of 96,000+ bbl oil produced Dehydration and water injection costs reducedBackground and Subsurface SettingLocation: Saih Rawl Shuaiba, a low permeability limestone oil reservoir in the Middle East Wells generally require artificial lift to optimize oil recovery (ESP)ChallengeUltimate recoverables were reduced because increased water cuts associated with uncontrolled laterals dominated well production Control early water breakthroughWaterflood Control in a Multilateral Well – SPE 81493Water cut reduced from 99% to 71% Incremental volume of 96,000+ bbl oil produced Dehydration and water injection costs reducedSmartWell SolutionDigital Hydraulics™ • Improved waterflood efficiency and reduced water cut of produced fluids Remotely-operated downhole interval control valves with isolation packers • Isolated water-producing laterals Same technology in water injection wells can further improve water flooding efficiencyCase Study: A Milestone for Smart Fields in Haradh Inc. IIIBackground Haradh III came onstream in February 2006, adding 300 MBPD to Arabian light crude productionResultsHaradh III set milestone for SmartWell technology at an unprecedented scale for both Saudi Aramco and the industry “The SmartWell completions were necessary to ensure production sustainability in the face of premature water encroachment.”-JPT Technology Update November 2006 N.G Saleri, Saudi Aramco Reservoir Management Head; A.O Al-Kaabi, Haradh Reservoir Management Supervisor and General Supervisor and A.S. Muallem, Udhaliyah Reservoir ManagementChallenges Geological complexities, fault/fracture systems, reservoir heterogeneities, associated premature water breakthrough (hence, oil productivity decline) put at risk 300 MBPD Arabian light crude production 30-month time window between spud date of first development well and scheduled start-up Emphasis on long-term productionCase Study: A Milestone for Smart Fields in Haradh Inc. IIIRelative Unit Cost (Dimensionless)1.0 0.70.35VERTICALH ORIZONTALM RC/SM ARTHaradh III: A Milestone for Smart FieldsJPT Technology Update N.G Saleri, Saudi Aramco Reservoir Management Head; A.O Al-Kaabi, Haradh Reservoir Management Supervisor and General Supervisor and A.S. Muallem, Udhaliyah Reservoir Managment“In essence, i-field enables real-time subsurface monitoring in combination with real-time control of ICVs. The resulting synergy is bound to bring long lasting improvements in field performance well beyond gains realized in the start up phase of Haradh III.”“The journey has just begun.”Technology Behind SmartWell CompletionsElements of SmartWell CompletionsPower and Communications Architecture and InfrastructureFlow ControlFlow MonitoringField Solutions Closing the LoopFlow OptimizationData Management Interpretation ValuationSmartWell Completion ComponentsSmartWell® Intelligent CompletionsOptimize well, production and reservoir management processes by enabling the operator to remotely monitor and control well inflow or injection downhole, at the reservoir, with no physical interventionThe Basics of an Intelligent CompletionComponents of a SmartWellDownhole Control and Communications Control SystemsSCRAMS® Digital Hydraulics™ Direct Hydraulics™ Accu-Pulse™Permanent MonitoringDownhole Flow Control Devices Zonal IsolationHF Series Packers MC Series Packers Feed-Thru Seal StackSurface Control and Data Acquistion Manual SystemPermanent Gauges and SensorsROC™ PDGs EZ-Gauge® OptoLog® DTS Symphony® Plus FloStream™Automated SystemAuxiliary ComponentsFlat-pack FMJ Connector Splice Sub Control Line Clamps Hydraulic DisconnectWellhead SensorsInterval Control ValvesIV-ICV/CV-ICV Series HV-ICV Series MC-ICV Series LV-ICV SeriesIntegrated SystemDownhole Flow Control ValvesFunction • Binary (on/off) • Discrete multi-position • High resolution/infinitely variable Actuation • Hydraulic balanced • Electro-hydraulic (SCRAMS) • Mechanical override facility Sizes and Ratings • 5-1/2”, 4-1/2”, 3-1/2”, 2-7/8” • Various static and dynamic pressure rating • Variety of materialsOptions • Shrouding and extension • Position feedback sensor • Integrated pressure/temperature • Multiplex valve control • Custom choke trim designOperation of an Interval Control Valve (ICV)Lubricator Valve (LV-ICV)On/off control of injection or production Features • Full bore ID • Deep set capability • Minimal number of moving parts • High force actuation for both open and close operationsROC™ Permanent Downhole GaugesFeatures • State-of-the-art downhole electronics • Industry-standard quartz resonating sensor • Robust design • Multi-point sensing (on ROC-D and ROC-S) Benefits • Reliable, field-proven system • Multiple gauges on single i-wire cable • Cost-effectiveData Acquisition – Downhole Fiber OpticsRate Temperaturem er oth GeDepthT al e tur ra pe emCombo Electrical/Fiber Optic CableBased on reliable, field-proven components Distributed temperature sensing fiber and electronic gauge conductor in the same package Minimizes incremental cost of DTS over conventional electronic DHPT systems Maximizes the number of connectors, feedthrough slots, penetrators, etc. Allows use of proven, reliable quartz temperature measurement of DHPT as selfcalibrating mechanism for DTS Loose fiber tube design ruggedized for the downhole environment Rated for use up to 20,000 psi at 175°C (347°F)Flat-PackFeatures • Range of configurations available to suit SmartWell applications • Range of materials available to suit the specific downhole environment Benefits • All control lines are tested and certified to include UTS, proof stress, elongation, NDT and hydraulic pressure tests • Encapsulation and bumper lines have been proven to increase loading capability of control lines • Single or multiple configurations available to facilitate completion installation and retrievalFeed-through Isolation Production/Injection PackerFeatures • Control line or tubing pressure set • Bypass for multiple control lines • Hydraulic interlock prevents premature setting • Premium threaded connections throughout Benefits • Control line feed through for SmartWell systems • Qualified for high tensile or compressive loads • Tailpipe can be left in tension or compression • No body movement during settingHF-1 Production PackerFeatures • High load carrying retrievable packer. • Hydraulic set – control line or tubing set options • Hydraulically activated anti-preset mechanism • Multiple control line feed-through (continuous) • Optional release mechanisms • No elastomers between upper / lower annulus (only packing element)。
CAST-V测井在套管井中的应用作者:王磊来源:《管理观察》2010年第01期摘要:阐述了CAST-V测井原理及现场应用情况。
CAST-V测井适用于套管井和裸眼井测井,既能检查射孔质量,固井质量,可对套管错段、变形、找漏等套损情况进行检测,还可确定工具及异常井段,可检查地层构造及相应参数,识别地层裂缝,判断井壁坍塌。
关键词:CAST-V测井检测在油田开发过程,定期进行工程测井,监测井下技术状况及储层的变化,及时发现问题、解决问题是保持油田稳产,延长油井生产寿命的重要手段[1.2]。
CAST-V测井能立体直观地展示固井质量、套损及射孔情况,定量进行解释,对全井进行系统分析。
在套管井中,它能检查射孔质量,固井质量,可对套管错段、变形、找漏等套损情况进行检测,能确定工具及异常井段。
该仪器与电磁成像仪组合测井可较精确的进行薄层划分,能对整个测量井段进行任意方向、任意比例的三维成像,立体直观,检测精度极高,为油田监测提供可靠的依据,对油田稳产起到重要的作用。
一、CAST-V测井仪器CAST-V测井仪是从哈里伯顿引进的仪器,它是一种脉冲超声波系列的测井仪。
见图1。
它由电路、方位和探头三部分组成。
仪器底部为扫描探头,由两个既可以作为发射器也可以作为接收器的压电超声换能器组成。
第一个换能器安装在旋转的扫描头上,可根据不同的套管尺寸选择不同的扫描探头,一般5-1/2-in的套管选用3-5/8-in的探头,7in的套管选用4-3/8in的探头。
当它发射一超声脉冲后马上开关到接收方式,接收的信号经电路处理后上传到地面。
第二个换能器是泥浆壳换能器(Mud-Cell Transducer),用来测量井眼中流体的声速。
换能器正对固定靶,由于靶与换能器之间的距离已知,所以通过记录换能器传播时间,就可以确定井眼流体的传播时差(FTT-Fluild Transit Time)。
它可以被用来确定井眼或套管中的内径及椭圆度。
二、CAST-V测井资料应用(1)检查射孔质量。
最新随钻声波测井仪器的技术性能近年来,声波测井技术已成功应用于随钻测量(MWD)和随钻测井(LWD)中。
随钻声波测井技术为钻井施工和储层评价提供了全面的数据支持和测井解释。
目前,国外三大公司分别推出了最新的随钻声波仪器,它们分别是贝克休斯公司的APX随钻声波测井仪,哈里波顿Sperry Drilling Service公司研制的双模式随钻声波测井仪器(BAT)和斯伦贝谢公司研制的新一代随钻声波仪器sonicVISION。
下面我们对三种仪器的性能分别进行介绍和对比。
1.APX随钻声波测井仪APX随钻声波测井仪由贝克休斯公司INTEQ公司生产,其结构简图见图1。
该仪器声源以最佳频率向井眼周围地层发射声波,声波在沿井壁传播的过程中被接收器检测并接收。
接收器采用了先进的嵌入技术,将接收到的声波模拟信号转换为数字信号,以获取地层声波时差(△t),而后将原始声波波形数据和预处理的声波波形数据存储在高速存储器内。
仪器的主要技术性能●计算机模型(FEA):该模型是为声学仪器的优化配置而设计,同时具备有助于不同窗口模式的评价和解释。
●全向发射器:与典型的LWD仪器等单向的有线测井仪不同,APX发射器使用一组圆柱形压电晶体,对井眼和周围地层提供3600的覆盖范围,其声源能够在10~18,000Hz频率范围内调频,并可以单极子和偶极子发射。
●全向接收器阵列:6×4接收器阵列,间距228.6mm。
这种全向结构类似于XMAC电缆测井系统,接收器阵列与声源排成一条线,以实现径向多极子声波激发。
●接收器。
该仪器的声源具有优化发射频率功能,其接收器有几个比仪器本身信号低很多的波段,可以显著减少接收器及钻柱连接的干扰。
在关掉发射源的情况下,该仪器测试到的信号主要来自于频率低于5KHz的PDC钻头噪音。
●较大的动力范围。
该仪器具有较大的信号采集动力范围,能够显著提高信号穿越地层的能力,有助于信号的提取。
●四极子波技术。
首次采用四极子波发射技术,同时兼容单极子和偶极子的信号发射和接收。
随钻测量随钻测井技术现状及研究随钻测量(measure while drilling,MWD)技术可以在钻进的同时监测一系列的工程参数以控制井眼轨迹,提高钻井效率。
随钻测井(logging while drilling,LWD)技术可以不中断钻进监测一系列的地质参数以指导钻井作业,提高油气层的钻遇率[1-5]。
近年来,油气田地层状况越来越复杂,钻探难度越来越大。
在大斜度井、大位移井和水平井的钻进中,MWD/LWD是监控井眼轨迹的一项关键技术[6-8],是评价油气田地层的重要手段[9],是唯一可用的测井技术[3],而常规的电缆测井无法作业[10]。
国外的MWD/LWD技术日趋完善,而国内起步较晚,技术水平相对落后,国际知识产权核心专利较少[9],与国外的相关技术有一段差距。
本文介绍国内外MWD/LWD相关产品的技术特点和市场应用等情况,分析国内技术落后的原因以及应对措施。
1 国外MWD/LWD技术现状20世纪60年代前,国外MWD的尝试都未能成功。
60年代发明了在钻井液柱中产生压力脉冲的方法来传输测量信息。
1978年Teleco公司开发出第一套商业化的定向MWD系统,1979年Gearhart Owen公司推出NPT定向/自然伽马井下仪器[10]。
80年代初商用的钻井液脉冲传输LWD 才产生,例如:1980年斯伦贝谢推出业内第一支随钻测量工具M1,但仅能提供井斜、方位和工具面的测量,应用比较受限,不能满足复杂地质条件下的钻井需求[11]。
1996年后,MWD/LWD技术得到了快速的发展。
国际公认的三大油服公司:斯伦贝谢、哈里伯顿、贝克休斯,其MWD/LWD技术实力雄厚,其仪器耐高温耐高压性能好、测量精度高、数据传输速率高,几乎能满足所有油气田的钻采,在全球油气田均有应用。
斯伦贝谢经过长期的技术及经验积累,其技术特点为高、精、尖、专,业内处于绝对的领先地位[12-15],是全球500强企业。
LWD的技术主要体现在智能性、高效性、安全性[10]。
第32卷第4期2008年8月测并技术WEI。
LI.0GGlNGTECHN()U)GYVOL32No.4Aug2008文章编号:1004—1338(2008)04—0380—05国外电缆测井技术新进展朱桂清,章兆淇(中国石油集团经济技术研究院,北京100011)摘要:介绍了国外测井公司近年来推出的电缆测井新技术以及新型或改进型测井仪器的特点、结构组成及工作参数。
主要包括:新型3D电极电阻率测井仪器、新型阵列感应测井仪器、新型微电阻率极板仪器、油基泥浆成像仪器、低污染流体采样技术、新一代油管传送流体采样系统、具有椭圆形极板的地层压力测试仪器和ConneX射孔系统。
这些新仪器和技术可在斜井或水平井中更准确地确定三维地层电阻率分布,改善地层评价;采集“清洁的”地层流体样品,缩短采样时间;克服常规聚能射孔系统的不足,提高油气井的产量。
关键词:电阻率测井;感应测井;地层测试;流体采样;射孔中图分类号:P631文献标识码:ARecentAdvancesinForeignWirelineLoggingTechnologyZHUGui-qing,ZHANGZhao-qi(ResorchInstituteofEconomicsandTechnology,CNPC。
Beijing100011,China)Abstract:Introducedarespecialities,structuresandparametersofsomenewlydevelopedwellloggingtoolsusedbyeminentwellloggingcompaniesinthepastfewyears.suchasthenew3一Delectrode-typeloggingtool,thenewasymmetricalarrayinductionloggingtool,thenewmicro-re—sistivitypadtool,theoil-basedmudimagingtool,thenovelthrough-casingresistivitytool,thefor—mationtesterwithanovalpad,theArmadaTMsamplingsystemandtheConneXperforatingsys—tern.Thesetechnologiesandtoolscanbeusedtodetermine3一Dformationresistivitydistributionindeviatedandhorizontalwells.acquirecleanfluidsamplesinshortperiod,overcomethedeft—ciencyoftraditionalperforatingsystemandincreaseoilandgasproduction.Keywords:resistivitylogging,inductionlogging,formationtesting,fluidsampling,perforationO引言近2年,哈里伯顿等公司研发了新型电阻率测井仪器,如新型阵列感应测井仪器、新型3D电极电阻率测井仪器等,他们采用了新的设计方法或是对以前同类仪器进行了重大改进。
哈里伯顿EarthStar超深LWD技术LWD技术的准确性直接决定了井筒的布位,哈里伯顿推出的EarthStar超深LWD技术探测深度可达60m以上,能够最大限度地帮助开发商精准定位井筒。
在油藏开发过程中,利用钻前建模技术针对目标地层进行井位优化是一项具有挑战性的任务。
现有的井眼设计方法,如邻井测井记录或地面地震数据,不能提供所需的准确度,并且可能导致地质导向决策的高度不确定。
相反,传统的随钻测井(LWD)工具可以确定非常精细的地层特性,但其地层探测深度有限,这使得研究人员难以将LWD测量数据与较大尺度的地震数据相关联;因此,要想精确确定井位有时可能非常具有挑战性。
超深方位电磁LWD测井工具有效地填补了地震数据与传统测井数据之间的尺度差距,实现了两者之间更好的关联,能够获得更精确的井位布局。
目前,出现了一种新型的多天线方位电磁LWD工具,它可以在近井筒区域以三维方式建立电磁场,并具有超深的探测深度(DOI)。
根据传播磁场的感应测量数据,利用强大的反演技术,即可推导出工具范围内的地层位置和电阻率。
这些信息使地质学家能够更清楚地了解周围地质情况,及时做好地质导向决策,优化井位,以及更有效地开发油田。
哈里伯顿近日发布了EarthStar服务,这是一种随钻测井技术,可帮助工作人员绘制距离井筒超过61 m的油藏和流体边界,探测深度是目前业内常规产品的一倍以上。
该服务提供了一个全面综合的油藏视图,使作业公司避免了昂贵的钻导眼和侧钻作业,可实时做出明智的地质导向决策,并更好地规划未来的油田开发。
哈里伯顿副总裁Lamar Duhon表示,“我们很高兴发布此项颠覆性技术,作业公司在钻井过程中能够更深入了解储层。
EarthStar的推出源于与客户的合作,这种解决方案可以增强对油藏的理解,减少建井周期。
”EarthStar使用方位电磁测量数据来绘制井眼周围的地质结构,加深工作人员对储层的了解,以提高采收潜力。
测量数据与哈里伯顿RoxC地质导向软件集成,使用先进的计算方法提供储层结构和流体边界的实时可视化试图。