中考数学《三角形》知识点:平行线的定义性质及判定
- 格式:docx
- 大小:14.55 KB
- 文档页数:1
中考数学《三角形》知识点:平行线的定义性
质及断定
中考数学《三角形》知识点:平行线的定义性质及断定
平行线
定义:
在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
性质:
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用断定公理(或定理)在条件中有两条直线平行时,那么应用性质定理。
断定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
第 1 页共 1 页。
中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)知识点总结1. 三线八角:同位角,内错角,同旁内角。
2. 平行线定义:两条永不相交的直线的位置关系是平行线。
3. 平行线性质:①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
④同一平面内,过直线外一点有且只有一条直线与已知直线平行。
⑤平行于同一直线的两直线平行。
即c b b a ∥,∥,则c a ∥。
4. 平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角相等,两直线平行。
④垂直于同一直线的两直线平行。
即若c a b a ⊥⊥,,则c a ∥。
⑤平行于同一直线的两直线平行。
即若c b b a ∥,∥,则c a ∥。
5. 平行线间的距离:平行线间的距离处处相等。
练习题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40°B.50°C.60°D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.50°C.40°D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC ⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32°B.38°C.48°D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50°B.60°C.70°D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60°B.120°C.30°D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°.故选:A.26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:D.27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°【分析】根据平行线的判定逐项分析即可得到结论.【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;C.∵∠1=90°,∠4=90°,∴∠1=∠4,∴两条铁轨平行,故该选项符合题意;D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;故选:C.30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180°C.∠1=∠2 D.∠1=∠4【分析】根据平行线的判定定理进行一一分析.【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.。
第二部分图形与几何19.线段、角、相交线与平行线知识过关1.直线、射线、线段(1)直线上一点和它____的部分叫做射线;直线上两点和它们____的部分叫做线段,这两点叫做线段的_______.(2)两点_____一条直线,两点之间线段最短,两点之间_____的长度,叫做两点间的距离.(3)线段的中点把线段_______等分.2.角(1)角:有_____端点的两条射线组成的图形叫做角,角也可以看作由一条_____绕着它的端点旋转而形成的图形.(2)余角:如果两个角的和等于_____,那么就说这两个角互为余角._____或等角的余角相等.(3)补角:如果两个角的和等于_____,那么就说这两个角互为补角._____或等角的补角相等.(4)一条射线把一个角分成两个______的角,这条射线叫做这个角的平分线.3.相交线(1)对顶角:如果一个角的两边分别是另一个角的两边的_____延长线,则称这两个角是对顶角,对顶角______.(2)垂直:在同一平面内,两条直线相交成90,叫做两条直线相互垂直,其中一条叫做另一条的垂线.(3)垂直的性质:同一平面内,过一点_____一条直线与已知直线垂直,直线外一点和直线上所有点的连接中,_______最短.(4)点到直线的距离:从直线外一点到这条直线的_____的长度,叫做点到直线的距离.4.平行线(1)平行线:平面内,_______的两条直线叫做平行线.(2)平面内两条直线的位置关系:_________和_________.(3)平行公理:过直线外一点,有且______一条直线与已知直线平行.如果两条直线都与第三条直线平行,那么这两条直线也互相______.(4)平行线的性质:如果两条直线平行,那么同位角相等,_____相等,同旁内角_______.(5)平行线的判定:如果同位角相等,或______或______互补,那么两直线平行.5.命题的概念(1)命题:______的语句叫做命题.(2)命题的组成:命题由______和______两部分组成.(3)命题的形成:命题可以写成“如果.......,那么.......”的形式,以如果开头的部分是_____,以那么开头的部分是________.(4)命题的真假:_______的命题叫做真命题,______的命题叫做假命题.6.尺规作图(1)在几何里,把用没有刻度的____和____这两种工具作几何图形的方法称为尺规作图.(2)常见的五种基本作图:①作一条线段等于已知线段;①作一个角等于已知角;①作一个角的平分线;①过一个点作已知直线的垂线;①作线段的垂直平分线.➢考点过关考点1 线段长度的有关计算例1已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2cm,则线段DC=.考点2对顶角、邻补角的相关计算如图,点O为直线AB上一点,OC平分∠AOD,∠BOD=3∠BOE,若∠AOC=α,则∠COE 的度数为()A.3αB.120°−43αC.90°D.120°−13α考点3平行线的性质例3如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=54°,则∠2等于()A.108°B.117°C.126°D.54°考点4平行线的判定与性质综合例4如图1,直线HD∥GE,点A是直线HD上一点,点C是直线GE上一点,点B是直线HD、GE之间的一点.(1)过点B作BF∥GE,试说明:∠ABC=∠HAB+∠BCG;(2)如图2,RC平分∠BCG,BM∥CR,BN平分∠ABC,当∠HAB=40°时,点C在直线AB右侧运动的过程中,∠NBM的度数是否不变,若是,求出该度数;若不是,请说明理由.考点5命题的真假例5下列结论中,正确的有①对顶角相等;②两直线平行,同旁内角相等;③面积相等的两个三角形全等;④有两边和一个角分别对应相等的两个三角形全等;⑤钝角三角形三条高所在的直线交于一点,且这点在钝角三角形外部.()A.2个B.3个C.4个D.5个考点6尺规作图例6如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,观察图中尺规作图的痕迹,则AD的长是.➢真题演练1.如图,OC在∠AOB外部,OM,ON分别是∠AOC,∠BOC的平分线.∠AOB=110°,∠BOC=60°,则∠MON的度数为()A.50°B.75°C.60°D.55°2.如图,OC、OD为∠AOB内的两条射线,OC平分∠AOB,∠BOD=3∠COD,若∠COD =10°,则∠AOB的度数是()A.30°B.40°C.60°D.80°3.如图,已知ON,OM分别平分∠AOC和∠BON.若∠MON=20°,∠AOM=35°,则∠AOB的度数为()A.15°B.35°C.40°D.55°4.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中不正确的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=12CD•OE5.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B.内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.一个角的补角一定是钝角6.下列说法错误的是()A.在同一平面内,没有公共点的两条直线是平行线B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.经过直线外一点有且只有一条直线与该直线平行D.在同一平面内,不相交的两条线段是平行线7.如图所示,C为线段AB的中点,D在线段CB上,DA=6cm,DB=4cm,则CD的长度为______cm.8.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,观察图中尺规作图的痕迹,则AD的长是.9.如图,C是线段AB上一点,D,E分别是线段AC,BC的中点,若AB=10,则DE=.10.如图,C,D为线段AB上两点,AB=7cm,AD=1.5cm,D为线段AC的中点,则线段CB=cm.11.(1)已知:如图1,AB∥CD,求证:∠B+∠D=∠BED;(2)已知:如图2,AB∥CD,试探求∠B、∠D与∠E之间的数量关系,并说明理由.拓展提升:如图3,已知AB∥DE,BF,EF分别平分∠ABC与∠CED,若∠BCE=140°,求∠BFE的度数.12.如图,AB∥CD,点P为平面内一点.(1)如图①,当点P在AB与CD之间时,若∠A=20°,∠C=45°,则∠P=°;(2)如图②,当点P在点B右上方时,∠ABP、∠CDP、∠BPD之间存在怎样的数量关系?请给出证明;(不需要写出推理依据)(3)如图③,EB平分∠PEG,FP平分∠GFD,若∠PFD=40°,则∠G+∠P=°.➢课后练习1.如图,已知AB∥DF,DE和AC分别平分∠CDF和∠BAE,若∠DEA=46°,∠ACD=56°,则∠CDF的度数为()A.22°B.33°C.44°D.55°2.如图,直线CE∥DF,∠CAB=135°,∠ABD=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°3.如图,已知a∥b,则∠ACD的度数是()A.45°B.60°C.73°D.90°4.如图所示,直线a∥b,∠2=31°,∠A=28°,则∠1=()A.61°B.60°C.59°D.58°5.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C .两点确定一条直线D .过一点有且只有一条直线与已知直线平行6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法中错误的是( )A .过一点有且只有一条直线与已知直线平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线相交,有且只有一个交点D .若两条直线相交成直角,则这两条直线互相垂直8.下列说法正确的是( )A .过直线上一点有且只有一条直线与已知直线平行B .不相交的两条直线叫做平行线C .直线外一点到该直线的所有线段中垂线最短D .过直线外一点有且只有一条直线与已知直线平行9.如图,在△ABC 中,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若△CDB 的面积为12,△ADE 的面积为9,则四边形EDBC 的面积为( )A .15B .16C .18D .2010.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD =∠DAB 的依据是( )A .SASB .ASAC .AASD .SSS11.如图,点A 、B 、C 在同一条直线上,点D 为BC 的中点,点P 为AC 延长线上一动点(AD ≠DP ),点E 为AP 的中点,则AC−BP DE 的值是 .12.如图,点D是线段AB上一点,点C是线段BD的中点,AB=8,CD=3,则线段AD长为.13.如图1,已知∠BOC=40°,OE平分∠AOC,OF平分∠BOC.(1)若AO⊥BO,则∠EOF是多少度?(2)如图2,若角平分线OE的位置在射线OB和射线OF之间(包括重合),请说明∠AOC的度数应控制在什么范围.14.如图,已知∠1=∠2,∠C=∠D.(1)求证:AC∥DF;(2)如果∠DEC=105°,求∠C的度数.15.如图,已知BC⊥AE,DE⊥AE,∠2+∠3=180°.(1)请你判断CF与BD的位置关系,并证明你的结论;(2)若∠1=70°,BC平分∠ABD,试求∠ACF的度数.➢冲击A+在半径为5的⊙O中,AB是直径,点C是直径AB上方半圆上一动点,连接AC、BC.(1)如图1,则△ABC面积的最大值是;(2)如图2,如果AC=8,①则BC=;②作∠ACB的平分线CP交⊙O于点P,求长CP的长.(3)如图3,连接AP并保持CP平分∠ACB,D为线段BC的中点,过点D作DH⊥AP,在C点运动过程中,请直接写出DH长的最大值.。
专题08 高分必刷题-平行线的性质与判定的证明题重难点题型分类(解析版)专题简介:本份资料专攻《相交线与平行线》这一章中的中档大题,所选题目源自各名校月考、期末试题中的典型考题,具体分成两类题型:完善证明题中的推导过程(9道题)、证明题+角度计算(9道题),适合于培训机构的老师给学生作专题培训时使用或者学生考前刷题时使用。
题型一:完善证明题中推导过程1.(师大)如图,如果AB∥CD,证明∠B+∠E=∠C+180°.请阅读以下证明过程,并补全所空内容.证明:过点E作直线EF,使得EF∥AB.∵EF∥AB,∴∠B+=180°(两直线平行,同旁内角互补).又∵AB∥CD,∴EF∥(平行于同一直线的两条直线平行).∴∠FEC=∠C().∵∠BEC=∠BEF+∠FEC.∴∠B+∠BEC=∠B+∠BEF+∠FEC.故:∠B+∠BEC=+∠C(等量代换).【解答】证明:过点E作直线EF,使得EF∥AB.∵EF∥AB,∴∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD,∴EF∥CD(平行于同一直线的两条直线平行).∴∠FEC=∠C(两直线平行,内错角相等).∵∠BEC=∠BEF+∠FEC.∴∠B+∠BEC=∠B+∠BEF+∠FEC.故:∠B+∠BEC=180°+∠C(等量代换).故答案为:∠BEF;CD;两直线平行,内错角相等;180°.2.(雅礼)如图,AB⊥BD,CD⊥BD,∠A与∠AEF互补,以下是证明CD∥EF的推理过程及理由,请你在横线上补充适当条件,完整其推理过程或理由.证明:∵AB⊥BD,CD⊥BD(已知)∴∠ABD=∠CDB=.()∴∠ABD+∠CDB=180°∴AB∥()又∠A与∠AEF互补()∠A+∠AEF=∴AB∥.()∴CD∥EF()【解答】证明:∵AB⊥BD,CD⊥BD(已知)∴∠ABD=∠CDB=90°.(垂直的定义)∴∠ABD+∠CDB=180°∴AB∥CD(同旁内角互补,两直线平行)又∠A与∠AEF互补(已知)∴∠A+∠AEF=180°(互补的定义)∴AB∥EF(同旁内角互补,两直线平行)∴CD∥EF(平行于同一条直线的两条直线平行);故答案为:90°;垂直的定义;CD;同旁内角互补,两直线平行;已知;180°;EF;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.3.(中雅)如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°,试说明:∠GDC=∠B.请补充说明过程,并在括号内填上相应的理由.解:∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFB=90°.∴EF∥AD(),∴+∠2=180°().又∵∠2+∠3=180°(已知),∴∠1=∠3(),∴AB∥(内错角相等,两直线平行).∴∠GDC=∠B().【解答】证明:∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFB=90°,∴EF∥AD(同位角相等两直线平行),∴∠1+∠2=180°(两直线平行同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠3(同角的补角相等),∴AB∥DG(内错角相等,两直线平行),∴∠GDC=∠B(两直线平行同位角相等).故答案为:内错角相等两直线平行;∠1;两直线平行同旁内角互补;同角的补角相等;DG;两直线平行同位角相等.4.(明德)完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB()∴∠1=()∴EC∥BF()∴∠B=∠AEC()又∵∠B=∠C(已知)∴∠AEC=()∴()∴∠A=∠D()【解答】证明:∵∠1=∠2,(已知)∠2=∠AGB(对顶角相等)∴∠1=∠AGB(等量代换),∴EC∥BF(同位角相等,两直线平行)∴∠B =∠AEC (两直线平行,同位角相等),又∵∠B =∠C (已知)∴∠AEC =∠C (等量代换)∴AB ∥CD (内错角相等,两直线平行),∴∠A =∠D (两直线平行,内错角相等),故答案为:对顶角相等,∠AGB ,等量代换,同位角相等,两直线平行,两直线平行,同位角相等,∠C ,等量代换,AB ∥CD ,内错角相等,两直线平行,两直线平行,内错角相等.5.(广益)根据题意结合图形填空:已知:如图,DE ∥BC ,∠ADE =∠EFC ,试说明:∠1=∠2.解:∵DE ∥BC∴∠ADE =∵∠ADE =∠EFC∴ =∴DB ∥EF∴∠1=∠2 .【解答】解:∵DE ∥BC (已知),∴∠ADE =∠ABC (两直线平行,同位角相等), ∵∠ADE =∠EFC (已知),∴∠ABC =∠EFC ,∴DB ∥EF (同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等).故答案为已知,∠ABC ,已知,∠ABC ,∠EFC ,同位角相等,两直线平行,两直线平行,内错角相等.6.(雅礼)已知:如图,123l l l ,点A 、M 、B 分别在直线、1l 、2l 、3l 上,MC 平分AMB ∠,128∠=︒,2110∠=︒,D 为2l 上一点,求CMD ∠的度数,请补全以下解答过程;解:∵12l l ,∴ ∠DMB 128=∠=︒(两直线平行,内错角相等)又∵32l l ,∴2180BMD ∠+∠=︒( 两直线平行,内错角相等 )∴180270BMD ∠=︒-∠=︒,∴98AMB BMD AMD ∠=∠+∠=︒,又∵MC 平分AMB ∠,∴BMC ∠= 49o ;∴CMD BMD BMC ∠=∠-∠= 21o ;7.(雅礼)如图,BD 平分∠ABC ,F 在AB 上,G 在AC 上,FC 与BD 相交于点H ,∠3+∠4=180°,试说明∠1=∠2.(请通过填空完善下列推理过程)解:∵∠3+∠4=180°(已知),∠FHD =∠4( ).∴∠3+ =180°(等量代换).∴FG ∥BD ( ).∴∠1= ( ).∵BD 平分∠ABC ,∴∠ABD = ( ).∴∠1=∠2( ).【解答】解:∵∠3+∠4=180°(已知),∠FHD =∠4(对顶角相等),∴∠3+∠FHD =180°(等量代换),∴FG ∥BD (同旁内角互补,两直线平行),∴∠1=∠ABD (两直线平行,同位角相等),∵BD 平分∠ABC ,∴∠ABD =∠2(角平分线的性质),∴∠1=∠2(等量代换),故答案为:对顶角相等,∠FHD ,同旁内角互补,两直线平行,∠ABD ,两直线平行,同位角相等,∠2,角平分线的定义,等量代换.8.(广益)完成下面的证明如图,端点为P 的两条射线分别交两直线l 1、l 2于A 、C 、B 、D 四点,已知∠PBA =∠PDC ,∠1=∠PCD ,求证:∠2+∠3=180°.证明:∵∠PBA =∠PDC ( )∴(同位角相等,两直线平行)∴∠P AB=∠PCD()∵∠1=∠PCD()∴(等量代换)∴PC∥BF(内错角相等,两直线平行)∴∠AFB=∠2()∵∠AFB+∠3=180°()∴∠2+∠3=180°(等量代换)【解答】证明:∵∠PBA=∠PDC(已知)∴AB∥CD(同位角相等,两直线平行)∴∠P AB=∠PCD(两直线平行同位角相等)∵∠1=∠PCD(已知)∴∠P AB=∠1(等量代换)∴PC∥BF(内错角相等,两直线平行)∴∠AFB=∠2(两直线平行内错角相等)∵∠AFB+∠3=180°(邻补角的性质)∴∠2+∠3=180°(等量代换).故答案为:已知,AB∥CD,两直线平行同位角相等,已知,∠P AB=∠1,两直线平行内错角相等,邻补角的性质.9.(广益)完成下面推理步骤,并在每步后面的括号内填写出推理根据:如图,已知AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知),∴∠4=∠(),∵∠3=∠4(已知)∴∠3=∠(),∵∠1=∠2(已知),∴∠CAE+∠=∠CAE+∠,即∠=∠,∴∠3=∠,∴AD∥BE().【解答】解:∵AB∥CD(已知),∴∠4=∠BAE(两直线平行,同位角相等),∵∠3=∠4(已知)∴∠3=∠BAE(等量代换),∵∠1=∠2(已知),∴∠CAE+∠1=∠CAE+∠2,即∠BAE=∠DAC,∴∠3=∠DAC,∴AD∥BE(内错角相等,两直线平行).故答案为:BAE;两直线平行,同位角相等;BAE;等量代换;1;2;BAE;DAC;DAC;内错角相等,两直线平行.题型二:证明题+角度计算10.(雅礼)已知,AB∥CD,分别探讨四个图形中∠APC,∠P AB,∠PCD的关系.(1)请说明图1、图2中三个角的关系,并任选一个加以证明.(2)猜想图3、图4中三个角的关系,不必说明理由.(提示:注意适当添加辅助线!)【解答】解:(1)图1,∠A+∠P+∠C=360°,图2,∠A+∠C=∠APC,证明图1:过P作PE∥AB,∴∠A+∠APE=180°,又∵AB∥CD,∴CD∥PE,∴∠C+∠CPE=180°,∴∠A+∠APE+∠EPC+∠C=360°;(2)图3:∠PCD=∠P AB+∠APC,图4:∠P AB=∠PCD+∠CP A.11.(怡雅)如图,已知CD平分∠ACB,∠1=∠2.(1)求证:DE∥AC;(2)若∠3=30°,∠B=25°,求∠BDE的度数.【解答】(1)证明:∵CD平分∠ACB,∴∠2=∠3.∵∠1=∠2,∴∠1=∠3,∴DE∥AC;(2)解:∵CD平分∠ACB,∠3=30°,∴∠ACB=2∠3=60°.∵DE∥AC,∴∠BED=∠ACB=60°.∵∠B=25°,∴∠BDE=180°﹣60°﹣25°=95°.12.(广益)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2.(1)求证:AB∥CD;(2)若∠D=∠3+50°,∠CBD=80°,求∠C的度数.【解答】(1)证明:∵∠1=∠2,∴AB∥CD(内错角相等两直线平行).(2)解:设∠C=x°.∵AB∥CD,∴∠C=∠3=x°,∴∠D=(x+50)°,在△BDC中,x+x+50+80=180,∴x=25,∴∠C=25°.13.(广益)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG∥BC的理由;(2)如果∠B=54°,且∠ACD=35°,求∠3的度数.【解答】(1)证明:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠1=∠BCD.又∵∠1=∠2,∴∠2=∠BCD,∴DG∥BC.(2)解:∵EF⊥AB,∴∠BFE=90°,∵∠B=54°,∴∠1=36°,∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠BCD=∠2=36°.又∵BC∥DG,∴∠3=∠ACB=∠ACD+∠BCD=35°+36°=71°.14.(师大)已知:如图,△ABC中,D,E,F三点分别在AB,AC,BC三边上,过点D的直线与线段EF的交点为点H,∠1+∠2=180°,∠3=∠C.(1)求证DH∥EC;(2)若∠4=32°,求∠EFC.【解答】证明:(1)∵H在直线EF上,∴∠1+∠5=180°,∵∠1+∠2=180°,∴∠2=∠5,∴DH∥EC;(2)延长DH交FC于点G,由(1)可得DH∥EC,∴∠C=∠6,∵∠3=∠C,∴∠3=∠6,∴DE∥BC,∴∠EFC=∠4=32°.15.(雅礼)如图,已知∠1+∠2=180°,且∠3=∠B.(1)求证:∠AFE=∠ACB;(2)若CE平分∠ACB,且∠2=110°,∠3=50°,求∠ACB的度数.【解答】(1)证明:∵∠1+∠2=180°,∠1+∠FDE=180°,∴∠FDE=∠2,∵∠3+∠FEC+∠FDE=180°,∠2+∠B+∠ECB=180°,∠B=∠3,∴∠FEC=∠ECB,∴EF∥BC,∴∠AFE=∠ACB;(2)解:∵∠3=∠B,∠3=50°,∴∠B=50°,∵∠2+∠B+∠ECB=180°,∠2=110°,∴∠ECB=20°,∵CE平分∠ACB,∴∠ACB=2∠ECB=40°.16.(青竹湖)如图,在三角形ABC中,D,E,F分别是三边上的点,且DE平分∠ADF,∠ADF=2∠DFB.(1)判断DE与BC是否平行,并说明理由.(2)若EF∥AB,∠DFE=3∠CFE,求∠ADE的度数.【解答】解:(1)DE∥BC,理由:∵DE平分∠ADF,∴∠ADF=2∠EDF,又∵∠ADF=2∠DFB,∴∠EDF=∠DFB,∴DE∥BC;(2)设∠EFC=α,则∠DFE=3∠CFE=3α,∵EF∥AB,∴∠B=∠EFC=α,又∵DE∥BC,∴∠ADE=∠B=α,∵DE平分∠ADF,DE∥BC,∴∠DFB=∠EDF=∠ADE=α,∵∠DFB+∠DFE+∠CFE=180°,∴α+3α+α=180°,解得α=36°,∴∠ADE=36°.17.(广益)如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)求证:BE∥CF;(2)若∠C=35°,求∠BED的度数.【解答】(1)证明:方法一:∵∠1=∠2,∠2=∠BFG,∴∠1=∠BFG,∴AC∥DG,∴∠ABF=∠BFG,∵∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∴∠EBF=∠ABF,BFG,∴∠EBF=∠CFB,∴BE∥CF;方法二:∵∠1=∠2,∠1=∠ABF,∠2=∠BFG,∴∠ABF=∠BFG,∵∠ABF的平分线是BE,∠BFG 的平分线是FC,∴∠EBF=∠ABF,BFG,∴∠EBF=∠CFB,∴BE∥CF;(2)解:∵AC∥DG,BE∥CF,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°﹣∠BEG=145°.18.(青竹湖)已知//∠.AD BC,//AB CD,E为射线BC上一点,AE平分BAD(1)如图1,当点E在线段BC上时,求证:BAE BEA∠=∠;(2)如图2,当点E在线段BC延长线上时,连接DE,若3AED∠=︒.∠=∠,50ADE CDE①求证:ABC ADC∠=∠;②求CED∠的度数.解:(1)∵AE平分∠BAD∴∠BAE=∠EAD,∵AD//BC,∴∠AEB=∠EAD,∴∠BAE=∠BEA;(2) ①∵AD//BC,AB//CD,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC;②∵∠ADE=3∠CDE,设∠CDE=x o,∠ADE=3x o,∠ADC=2x o,∵AB//CD,∴∠BAD+∠ADC=180o,∠DAB=180o-2x o,∴∠DAE=∠BAE=∠BEA=90o-x o,又∵AD//BC,∴∠BED+∠ADE=180o,解得x=15,∴∠CDE=x°=15°,∠ADE=45°,∵AD//BC,∴∠CED=180°-∠ADE=135°.。
专题11 平行线与三角形一.选择题(2022·湖北宜昌·中考真题)1. 如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A. 25B. 22C. 19D. 18【答案】C【解析】 【分析】由垂直平分线的性质可得BD =CD ,由△ABD 的周长=AB +AD +BD =AB +AD +CD =AB +AC 得到答案.【详解】解:由作图的过程可知,DE 是BC 的垂直平分线,∴BD =CD ,∵7AB =,12AC =,∴ △ABD 的周长=AB +AD +BD=AB +AD +CD=AB +AC=19.故选:C【点睛】此题考查了线段垂直平分线的作图、线段垂直平分线的性质、三角形的周长等知识,熟练掌握线段垂直平分线的性质是解题的关键.(2022·浙江台州·中考真题)2. 如图,点D 在ABC 的边BC 上,点P 在射线AD 上(不与点A ,D 重合),连接PB ,PC .下列命题中,假命题是( )A. 若AB AC =,AD BC ⊥,则PB PC =B. 若PB PC =,AD BC ⊥,则AB AC =C. 若AB AC =,12∠=∠,则PB PC =D. 若PB PC =,12∠=∠,则AB AC =【答案】D【解析】【分析】根据等腰三角形三线合一的性质证明PD 是否是BC 的垂直平分线,判断即可.【详解】因为AB=AC ,且AD ⊥BC ,得AP 是BC 的垂直平分线,所以PB=PC ,则A 是真命题;因为PB=PC ,且AD ⊥BC ,得AP 是BC 的垂直平分线,所以AB=AC ,则B 是真命题;因为AB=AC ,且∠1=∠2,得AP 是BC 的垂直平分线,所以PB=PC ,则C 是真命题;因为PB=PC ,△BCP 是等腰三角形,∠1=∠2,不能判断AP 是BC 的垂直平分线,所以AB 和AC 不一定相等,则D 是假命题.故选:D .【点睛】本题主要考查了等腰三角形的性质和判定,掌握性质定理是解题的关键. (2022·江苏宿迁·中考真题)3. 若等腰三角形的两边长分别是3cm 和5cm ,则这个等腰三角形的周长是( )A. 8cmB. 13cmC. 8cm 或13cmD. 11cm 或13cm 【答案】D【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当3是腰时,∵3+3>5,∴3,3,5能组成三角形,此时等腰三角形的周长为3+3+5=11(cm),当5是腰时,∵3+5>5,5,5,3能够组成三角形,此时等腰三角形的周长为5+5+3=13(cm),则三角形的周长为11cm或13cm.故选:D【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.(2022·浙江杭州·中考真题)4. 如图,CD⊥AB于点D,已知∠ABC是钝角,则()A. 线段CD是ABC的AC边上的高线B. 线段CD是ABC的AB边上的高线C. 线段AD是ABC的BC边上的高线D. 线段AD是ABC的AC边上的高线【答案】B【解析】【分析】根据高线的定义注意判断即可.【详解】∵线段CD是ABC的AB边上的高线,∴A错误,不符合题意;∵线段CD是ABC的AB边上的高线,∴B正确,符合题意;∵线段AD是ACD的CD边上的高线,∴C错误,不符合题意;∵线段AD是ACD的CD边上的高线,∴D错误,不符合题意;故选B.【点睛】本题考查了三角形高线的理解,熟练掌握三角形高线的相关知识是解题的关键.(2022·湖南邵阳·中考真题)5. 下列长度的三条线段能首尾相接构成三角形的是()A. 1cm,2cm,3cmB. 3cm,4cm,5cmC. 4cm,5cm,10cmD. 6cm,9cm,2cm【答案】B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故选项错误,不符合题意;B、3+4>5,能够组成三角形,故选项正确,符合题意;C、5+4<10,不能组成三角形,故选项错误,不符合题意;D、2+6<9,不能组成三角形,故选项错误,不符合题意;故选:B.【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数.(2022·云南·中考真题)6. 如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE FOE,你认为要添加的那个条件是()A. OD =OEB. OE =OFC. ∠ODE =∠OEDD. ∠ODE =∠OFE【答案】D【解析】【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∵OB 平分∠AOC∴∠AOB =∠BOC当△DOE ≌△FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是△DOE ≌△FOE 的对应边,A 不正确;B 答案中OE 与OF 不是△DOE ≌△FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是△DOE ≌△FOE 的对应角,C 不正确; D 答案中,若∠ODE =∠OFE ,在△DOE 和△FOE 中, DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△DOE ≌△FOE (AAS )∴D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.(2022·浙江湖州·中考真题)7. 如图,已知在锐角△ABC 中,AB =AC ,AD 是△ABC 的角平分线,E 是AD 上一点,连结EB ,E C .若∠EBC =45°,BC =6,则△EBC 的面积是( )A. 12B. 9C. 6D. 【答案】B【解析】【分析】根据三线合一可得ED BC ⊥,根据垂直平分线的性质可得EB EC =,进而根据∠EBC =45°,可得BEC △为等腰直角三角形,根据斜边上的中线等于斜边的一半可得132DE BC ==,然后根据三角形面积公式即可求解. 【详解】解: AB =AC ,AD 是△ABC 的角平分线,,AD BD BD DC ∴⊥=,EB EC ∴=,∠EBC =45°,45ECB EBC ∠=∠=︒,∴BEC △为等腰直角三角形,6BC =, ∴132DE BC ==, 则△EBC 的面积是13692⨯⨯=.故选B .【点睛】本题考查了等腰三角形的性质与判定,垂直平分线的性质,直角三角形中斜边上的中线等于斜边的一半,掌握等腰三角形的性质与判定是解题的关键. (2022·江苏扬州·中考真题)8. 如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC ∆,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A. ,,AB BC CAB. ,,AB BC B ∠C. ,,AB AC B ∠D. ,,∠∠A B BC【答案】C【解析】 【分析】根据SSS ,SAS ,ASA 逐一判定,其中SSA 不一定符合要求.【详解】A. ,,AB BC CA .根据SSS 一定符合要求;B. ,,AB BC B ∠.根据SAS 一定符合要求;C. ,,AB AC B ∠.不一定符合要求;D. ,,∠∠A B BC .根据ASA 一定符合要求.故选:C .【点睛】本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS ,SAS ,ASA 三个判定定理.(2022·山东泰安·中考真题)9. 如图,30AOB ∠=︒,点M 、N 分别在边OA OB 、上,且3,5OM ON ==,点P 、Q 分别在边OB OA 、上,则MP PQ QN ++的最小值是( )A. 2- 2-【答案】A【解析】 【分析】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值;证出△ONN ′为等边三角形,△OMM ′为等边三角形,得出∠N ′OM ′=90°,由勾股定理求出M ′N ′即可.【详解】解:作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,如图所示:连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:5ON ON '==,3OM OM '==,∠N ′OQ =∠M ′OB =30°, ∴∠NON ′=60°,'60MOM ∠=︒,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°,∴在Rt △M ′ON ′中,M ′N=故选:A .【点睛】本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.(2022·浙江金华·中考真题)10. 如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A. SSSB. SASC. AASD. HL【答案】B【解析】 【分析】根据OA OD =,OB OC =,AOB COD ∠=∠正好是两边一夹角,即可得出答案.【详解】解:∵在△ABO 和△DCO 中,OA OD AOB COD OB OC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABO DCO ≌△△,故B 正确. 故选:B .【点睛】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.(2022·浙江金华·中考真题)11. 已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A. 2cmB. 3cmC. 6cmD. 13cm【答案】C【解析】【分析】先确定第三边的取值范围,后根据选项计算选择.【详解】设第三边的长为x ,∵ 角形的两边长分别为5cm 和8cm ,∴3cm <x <13cm ,故选C .【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键. (2022·安徽·中考真题) 12. 已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△P AB ,△PBC ,△PCA 的面积分别记为0S ,1S ,2S ,3S .若12302S S S S ++=,则线段OP 长的最小值是( )A. 2C.【答案】B【解析】【分析】根据12302S S S S ++=,可得1012S S =,根据等边三角形的性质可求得△ABC 中AB 边上的高1h 和△P AB 中AB 边上的高2h 的值,当P 在CO 的延长线时,OP 取得最小值,OP =CP -OC ,过O 作OE ⊥BC ,求得OC =【详解】解:如图,2PDB BDC S S S ,3PDA ADC S S S , ∴1231()()PDB BDC PDA ADC S S S S SS S S ++=++++ =1()()PDB PDA BDC ADC S SS S S ++++ =1PAB ABC S S S ++=110S S S ++=102S S +=02S , ∴1012S S =, 设△ABC 中AB 边上的高为1h ,△P AB 中AB 边上的高为2h , 则0111116322S AB h h h ,1222116322S AB h h h , ∴211332h h ,∴122h h =,∵△ABC 是等边三角形, ∴22166()332h , 2113322h h ,∴点P 在平行于AB ,且到AB ∴当点P 在CO 的延长线上时,OP 取得最小值,过O 作OE ⊥BC 于E , ∴12932CP h h , ∵O 是等边△ABC 的中心,OE ⊥BC ∴∠OCE =30°,CE =132BC = ∴OC =2OE∵222OE CE OC +=,∴2223(2)OE OE ,解得OE∴OC =∴OP =CP -OC 52332. 故选B .【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识,弄清题意,找到P 点的位置是解题的关键.(2022·四川南充·中考真题) 13. 如图,在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DE //AB ,交AC 于点E ,DF AB ⊥于点F ,5,3DE DF ==,则下列结论错误的是( )A. 1BF =B. 3DC =C. 5AE =D. 9AC =【答案】A【解析】 【分析】根据角平分线的性质得到CD =DF =3,故B 正确;根据平行线的性质及角平分线得到AE =DE =5,故C 正确;由此判断D 正确;再证明△BDF ≌△DEC ,求出BF =CD =3,故A 错误.【详解】解:在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DF AB ⊥,∴CD =DF =3,故B 正确;∵DE =5,△CE =4,∵DE //AB ,∴∠ADE =∠DAF ,∵∠CAD =∠BAD ,∴∠CAD =∠ADE ,∴AE =DE =5,故C 正确;∴AC =AE +CE =9,故D 正确;∵∠B =∠CDE ,∠BFD =∠C =90°,CD =DF ,∴△BDF ≌△DEC ,∴BF =CD =3,故A 错误;故选:A .【点睛】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键. (2022·四川德阳·中考真题)14. 八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能...是( ) A. 1kmB. 2kmC. 3kmD. 8km【答案】A【解析】【分析】利用构成三角形的条件即可进行解答.【详解】以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a ,则根据题意有:5-353a +<<,即28a <<,当杨冲家、李锐家以及学校这三点共线时,538a =+=或者532a =-=, 综上a 的取值范围为:28a ≤≤,据此可知杨冲家、李锐家的距离不可能是1km ,故选:A .【点睛】本题考查了构成三角形的条件的知识,构成三角的条件:三角形中任意的两边之和大于第三边,任意的两边之差小于第三边.(2022·山东泰安·中考真题) 15. 如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =( )A. 40°B. 45°C. 50°D. 60°【答案】C【解析】 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠F AP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC =∠ACD ﹣∠ABC =2x °﹣(x °﹣40°)﹣(x °﹣40°)=80°,∴∠CAF =100°,在Rt △PF A 和Rt △PMA 中,{PA PAPM PF ==,∴Rt △PF A ≌Rt △PMA (HL ),∴∠F AP =∠P AC =50°.故选C .【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM =PN =PF 是解题的关键.(2022·浙江绍兴·中考真题)16. 如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A. 30°B. 45°C. 60°D. 75°【答案】C【解析】【分析】根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解. 【详解】解:30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键. (2022·安徽·中考真题)17. 两个矩形的位置如图所示,若1∠=α,则2∠=( )A. 90α-︒B. 45α-︒C. 180α︒-D. 270α︒-【答案】C【解析】 【分析】用三角形外角性质得到∠3=∠1-90°=α-90°,用余角的定义得到∠2=90°-∠3=180°-α.【详解】解:如图,∠3=∠1-90°=α-90°,∠2=90°-∠3=180°-α.故选:C .【点睛】 本题主要考查了矩形,三角形外角,余角,解决问题的关键是熟练掌握矩形的角的性质,三角形的外角性质,互为余角的定义.(2022·浙江杭州·中考真题)18. 如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =( )A. 10°B. 20°C. 30°D. 40°【答案】C【解析】 【分析】根据三角形外角的性质、平行线的性质进行求解即可;【详解】解:∵∠C +∠D =∠AEC ,∴∠D =∠AEC -∠C =50°-20°=30°,∵AB CD ∥,∴∠A =∠D=30°,故选:C .【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.(2022·湖南娄底·中考真题)19. 一条古称在称物时的状态如图所示,已知180∠=︒,则2∠=( )A. 20︒B. 80︒C. 100︒D. 120︒【答案】C【解析】【分析】如图,由平行线的性质可得80,BCD ∠=︒ 从而可得答案.【详解】解:如图,由题意可得:,AB CD ∥ 180∠=︒,180,BCD218080100,故选C 【点睛】本题考查的是平行线的性质,邻补角的含义,掌握“两直线平行,内错角相等”是解本题的关键.(2022·江苏苏州·中考真题)20. 如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A. 25°B. 30°C. 40°D. 50°【答案】D【解析】【分析】根据对顶角相等可得75BOD ∠=︒,之后根据125∠=︒,即可求出2∠.【详解】解:由题可知75BOD AOC ∠=∠=︒,125∠=︒∵,217525BOD ∴∠=∠-∠=︒-︒=50︒.故选:D .【点睛】本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.二.填空题(2022·湖南株洲·中考真题)21. 如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.【答案】15【解析】【分析】根据ON BC ⊥,OM AB ⊥,OM ON =判断OB 是ABC ∠的角平分线,即可求解.【详解】解:由题意,ON BC ⊥,OM AB ⊥,OM ON =,即点O 到BC 、AB 的距离相等,△ OB 是ABC ∠的角平分线,△ 30ABC ∠=︒, △1152ABO ABC ∠=∠=︒. 故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.(2022·浙江嘉兴·中考真题)22. 小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.【答案】60A ∠=︒(答案不唯一)【解析】【分析】利用等边三角形的判定定理即可求解.【详解】解:添加60A ∠=︒,理由如下: ABC 为等腰三角形,180602A B C ︒-∠∴∠=∠==︒, ABC ∴为等边三角形,故答案为:60A ∠=︒(答案不唯一).【点睛】本题考查了等边三角形的判断,解题的关键是掌握三角形的判断定理. (2022·浙江绍兴·中考真题)23. 如图,在ABC 中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连接CD ,则BCD ∠的度数是______.【答案】10°或100°【解析】【分析】分两种情况画图,由作图可知得AC AD =,根据等腰三角形的性质和三角形内角和定理解答即可.【详解】解:如图,点D 即为所求;在ABC ∆中,40ABC ∠=︒,80BAC ∠=︒,180408060ACB ∴∠=︒-︒-︒=︒,由作图可知:AC AD =,1(18080)502ACD ADC ∴∠=∠=︒-︒=︒, 605010BCD ACB ACD ∴∠=∠-∠=︒-︒=︒;由作图可知:AC AD =',ACD AD C ∴∠'=∠',80ACD AD C BAC ∠'+∠'=∠=︒,40AD C ∴∠'=︒,1801804040100BCD ABC AD C ∴∠'=︒-∠-∠'=︒-︒-︒=︒.综上所述:BCD ∠的度数是10︒或100︒.故答案为:10︒或100︒.【点睛】本题考查了作图-复杂作图,三角形内角和定理,等腰三角形的判定与性质,解题的关键是掌握基本作图方法.(2022·云南·中考真题)24. 已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.【答案】40°或100°【解析】【分析】分∠A 为三角形顶角或底角两种情况讨论,即可求解.【详解】解:当∠A 为三角形顶角时,则△ABC 的顶角度数是40°;当∠A 为三角形底角时,则△ABC 的顶角度数是180°-40°-40°=100°;故答案为:40°或100°.【点睛】本题考查了等腰三角形的性质,此类题目,难点在于要分情况讨论. (2022·山东滨州·中考真题)25. 如图,屋顶钢架外框是等腰三角形,其中AB AC =,立柱AD BC ⊥,且顶角120BAC ∠=︒,则C ∠的大小为_______.【答案】30°##30度【解析】【分析】先由等边对等角得到B C ∠=∠,再根据三角形的内角和进行求解即可.【详解】AB AC =,B C ∴∠=∠,120BAC ∠=︒,180BAC B C ∠+∠+∠=︒,180120302C ︒-︒∴∠==︒, 故答案为:30°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.(2022·山东泰安·中考真题)26. 如图,△ ABC 中,∠BAC =90°,AB =3,AC =4,点 D 是 BC 的中点,将△ ABD 沿 AD 翻折得到△ AED ,连 CE ,则线段 CE 的长等于_____【答案】75【解析】【详解】如图,过点A 作AH △BC 于点H ,连接BE 交AD 于点O △△△ABC 中,△BAC =90°△AB =3△AC =4,点D 是BC 的中点,△BC 5=△AD =BD =2.5△ △12BC ·AH =12AC ·AB △即2.5AH =6△△AH =2.4△由折叠的性质可知,AE =AB △DE =DB =DC △△AD 是BE 的垂直平分线,△BCE 是直角三角形,△S △ADB =12AD ·OB =12BD ·AH △△OB =AH =2.4△△BE =4.8△△CE 75=. 故答案为△75. 【点睛】本题的解题要点有△△1△读懂题意,画出符合要求的图形;(2)作AH △BC 于点H ,连接BE 交AD 于点O ,利用面积法求出AH 和OB 的长;(3)一个三角形中,若一边上的中线等于这边的一半,则这边所对的角是直角. (2022·湖北武汉·中考真题)27. 如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取150ABC ∠=︒,1600m BC =,105BCD ∠=︒,则C ,D 两点的距离是_________m .【答案】【解析】【分析】如图所示:过点C 作CE BD ⊥于点E ,先求出800m CE =,再根据勾股定理即可求出CD 的长.【详解】如图所示:过点C 作CE BD ⊥于点E ,则∠BEC =∠DEC =90°, 150ABC ∠=︒,30CBD ∴∠=︒,∴∠BCE =90°-30°=60°,又105BCD ∠=︒,45CDB ∴∠=︒,∴∠ECD =45°=∠D ,∴CE DE =,1600m BC =,111600800m 22CE BC ∴==⨯=,22222CD CE DE CE ∴=+=,即CD ==.故答案为:【点睛】本题考查三角形内角和定理、等腰三角形的判定与性质、直角三角形的性质及勾股定理,解题的关键是熟练掌握相关内容并能灵活运用.(2022·湖北黄冈·中考真题)28. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是________(结果用含m 的式子表示).【答案】m 2+1【解析】【分析】2m 为偶数,设其股是a ,则弦为a +2,根据勾股定理列方程即可得到结论.【详解】∵2m 为偶数,∴设其股是a ,则弦为a +2,根据勾股定理得,(2m )2+a 2=(a +2)2,解得a =m 2-1,∴弦长为m 2+1,故答案为:m 2+1.【点睛】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键. (2022·江苏苏州·中考真题)29. 定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.【答案】6【解析】【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:∵△ABC 是等腰三角形,底边BC =3∴AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意;所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6. 故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.(2022·江苏扬州·中考真题)30. 将一副直角三角板如图放置,已知60E ∠=︒,45C ∠=︒,EF BC ∥,则BND ∠=________°.【答案】105【解析】【分析】根据平行线的性质可得45FAN B ∠=∠=︒,根据三角形内角和定理以及对顶角相等即可求解.【详解】45B C ∠︒∠==,EF BC ∥,∴45FAN B ∠=∠=︒,△△E =60°△△△F =30°△180105BND ANF F BAF ∴∠=∠=︒-∠-∠=︒故答案为:105【点睛】本题考查了平行线的性质,三角形内角和定理,掌握平行线的性质是解题的关键.(2022·湖北黄冈·中考真题)31. 如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=54°,则∠3=________度.【答案】54【解析】【分析】根据对顶角相等和平行线的性质“两直线平行同位角相等”,通过等量代换求解.【详解】因为a△b ,所以23∠=∠,因为12∠∠,是对顶角,所以12∠=∠,所以31∠=∠,因为154∠=︒,所以354∠=︒,故答案为:54.【点睛】本题考查了平行线的性质和对顶角的性质,熟练掌握对顶角相等,两直线平行同位角相等、内错角相等,加以灵活运用求解相关角的度数是解题关键. (2022·四川达州·中考真题)32. 如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数为_____.【答案】50︒##50度【解析】【分析】根据作图可知DA DB =,20DAB B ∠=∠=︒,根据直角三角形两个锐角互余,可得70CAB ∠=︒,根据CAD CAB DAB ∠=∠-∠即可求解.【详解】解:∵在Rt ABC 中,90C ∠=︒,20B ∠=︒,∴70CAB ∠=︒,由作图可知MN 是AB 的垂直平分线,DA DB ∴=,∴20DAB B ∠=∠=︒,∴CAD CAB DAB∠=∠-∠702050︒-︒=︒,故答案为:50︒.【点睛】本题考查了基本作图,垂直平分线的性质,等边对等角,直角三角形的两锐角互余,根据题意分析得出MN是AB的垂直平分线,是解题的关键.(2022·湖北黄冈·中考真题)33. 如图,点B、E、C、F在一条直线上,AB∥DE,且AB=DE,请添加一个条件_____,使△ABC≌△DEF.【答案】∠A=∠D或BC=EF或BE=CF或∠ACB=∠F【解析】【分析】判定一般三角形全等一共有四种方法,根据这四种方法一一选择即可.【详解】解:添加BE=CF∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵AB=DE,∴△ABC≌△DEF(SAS).故答案为:AB=DE(答案不唯一).视频【点睛】本题考查的是三角形全等的判定,根据判定的方法选择合适的方法,关键是要能熟练运用三角形的判定方法.三.解答题(2022·浙江温州·中考真题)∥,交AB于点E.34. 如图,BD是ABC的角平分线,DE BC(1)求证:EBD EDB ∠=∠.(2)当AB AC =时,请判断CD 与ED 的大小关系,并说明理由.【答案】(1)见解析 (2)相等,见解析【解析】【分析】(1)利用角平分线的定义和平行线的性质可得结论;(2)利用平行线的性质可得ADE AED ∠=∠, 则AD= AE ,从而有CD = BE ,由(1) 得,EBD EDB ∠=∠,可知BE = DE ,等量代换即可.【小问1详解】证明:△BD 是ABC 的角平分线,△CBD EBD ∠=∠.△DE BC ∥,△CBD EDB ∠=∠,△EBD EDB ∠=∠.【小问2详解】CD ED =.理由如下:△AB AC =,△C ABC ∠=∠.△DE BC ∥,△,ADE C AED ABC ∠=∠∠=∠,△ADE AED ∠=∠,△AD AE =,△AC AD AB AE -=-,即CD BE =.由(1)得EBD EDB ∠=∠,△BE ED =,△CD ED =.【点睛】本题主要考查了平行线的性质,等腰三角形的判定与性质,角平分线的定义等知识,熟练掌握平行与角平分线可推出等腰三角形是解题的关键. (2022·四川乐山·中考真题)35. 如图,B 是线段AC 的中点,,AD BE BD CE ∥∥,求证:ABD BCE △≌△.【答案】证明过程见详解【解析】【分析】运行平行线的性质可证△A =△EBC ,△DBA =△C ,结论即可得证.【详解】证明△B 是AC 中点,△AB =BC ,△AD BE ∥,△△A =△EBC ,△BD EC ∥,△△DBA =△C ,在△ABD 和△BCE 中,A EBC AB BC DBA C ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△ABD ≌△BCE (ASA).【点睛】本题考查了全等三角形的判定、平行线的性质,掌握两直线平行同位角相等的知识是解答本题的关键.(2022·浙江杭州·中考真题)36. 如图,在Rt △ACB 中,∠ACB =90°,点M 为边AB 的中点,点E 在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.【答案】(1)见解析(2【解析】【分析】(1)根据直角三角形的性质可得MC=MA=MB,根据外角的性质可得∠MEC=∠A+∠ACE,∠EMC=∠B+∠MCB,根据等角对等边即可得证;(2)根据CE=CM先求出CE的长,再解直角三角形即可求出FC的长.【小问1详解】证明:∵∠ACB=90°,点M为边AB的中点,∴MC=MA=MB,∴∠MCA=∠A,∠MCB=∠B,∵∠A=50°,∴∠MCA=50°,∠MCB=∠B=40°,∴∠EMC=∠MCB+∠B=80°,∵∠ACE=30°,∴∠MEC=∠A+∠ACE=50°,∴∠MEC=∠EMC,∴CE=CM;【小问2详解】解:∵AB=4,∴CE=CM=12AB=2,∵EF⊥AC,∠ACE=30°,∴FC=CE•cos30°=【点睛】本题考查了直角三角形的性质,涉及三角形外角的性质,解直角三角形等,熟练掌握并灵活运用直角三角形的性质是解题的关键.(2022·陕西·中考真题)37. 如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .【答案】证明见解析【解析】【分析】利用角边角证明△CDE ≌△ABC ,即可证明DE =BC .【详解】证明:∵DE ∥AB ,∴∠EDC =∠B .又∵CD =AB ,∠DCE =∠A ,∴△CDE ≌△ABC (ASA).∴DE =BC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.(2022·湖南衡阳·中考真题)38. 如图,在ABC 中,AB AC =,D 、E 是BC 边上的点,且BD CE =,求证:AD AE =.【答案】见解析【解析】【分析】利用等腰三角形的性质可得B C ∠=∠,再由SAS 证明ABD ACE △≌△,从而得AD AE =.【详解】证明:∵AB AC =,∴B C ∠=∠,在ABD △和ACE 中,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS △≌△,∴AD AE =.【点睛】本题考查等腰三角形的性质,全等三角形的性质与判定,熟练掌握相关性质定理是解题的关键.(2022·湖南怀化·中考真题)39. 如图,在等边三角形ABC 中,点M 为AB 边上任意一点,延长BC 至点N ,使CN =AM ,连接MN 交AC 于点P ,MH ⊥AC 于点H .(1)求证:MP =NP ;(2)若AB =a ,求线段PH 的长(结果用含a 的代数式表示).【答案】(1)见详解;(2)0.5a .【解析】【分析】(1)过点M 作MQ ∥CN ,证明MQP NCP ≅△△即可;(2)利用等边三角形的性质推出AH =HQ ,则PH =HQ +PQ =0.5(AQ +CQ ).【小问1详解】如下图所示,过点M 作MQ ∥CN ,△ABC 为等边三角形,MQ ∥CN , △1AM AB AQ AC==, 则AM =AQ ,且△A =60°,△AMQ △为等边三角形,则MQ =AM =CN ,又△MQ ∥CN ,△△QMP =△CNP ,在MQP NCP △与△中,MPQ NPC QMP CNP QM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩△MQP NCP ≅△△,则MP =NP ;【小问2详解】△AMQ △为等边三角形,且MH △AC ,△AH =HQ ,又由(1)得,MQP NCP ≅△△,则PQ =PC ,△PH =HQ +PQ =0.5(AQ +CQ )=0.5AC =0.5a .【点睛】本题考查了等边三角形的性质与判定、三角形全等的判定,正确作出辅助线是解题的关键.(2022·浙江丽水·中考真题)40. 如图,将矩形纸片ABCD 折叠,使点B 与点D 重合,点A 落在点P 处,折痕为EF .(1)求证:PDE CDF △≌△;(2)若4cm,5cm CD EF ==,求BC 的长.【答案】(1)证明见解析(2)163cm 【解析】【分析】(1)利用ASA 证明即可;(2)过点E 作EG ⊥BC 交于点G ,求出FG 的长,设AE =x ,用x 表示出DE 的长,在Rt △PED 中,由勾股定理求得答案.【小问1详解】∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠B =∠ADC =∠C =90°,由折叠知,AB =PD ,∠A =∠P ,∠B =∠PDF =90°,∴PD =CD ,∠P =∠C ,∠PDF =∠ADC ,∴∠PDF -∠EDF =∠ADC -∠EDF ,∴∠PDE =∠CDF ,在△PDE 和△CDF 中,P C PD CDPDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴PDE CDF △≌△(ASA );【小问2详解】如图,过点E 作EG ⊥BC 交于点G ,∵四边形ABCD 是矩形,∴AB =CD =EG =4cm ,又∵EF =5cm ,∴3GF ==,设AE =x ,∴EP =x ,由PDE CDF △≌△知,EP =CF =x ,∴DE =GC =GF +FC =3+x ,在Rt △PED 中,222PE PD DE +=,即()22243x x +=+, 解得,76x =, ∴BC =BG +GC =77163663++=cm . 【点睛】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,根据翻折变换的性质将问题转化到直角三角形中利用勾股定理是解题的关键. (2022·四川自贡·中考真题)41. 如图,△ABC 是等边三角形,,D E 在直线BC 上,DB EC =.求证:D E ∠=∠ .【答案】详见解析【解析】【分析】由等边三角形的性质以及题设条件,可证△ADB ≌△AEC ,由全等三角形的性质可得D E ∠=∠.【详解】证明:△△ABC 是等边三角形,∴AB=AC ,∠ABC =∠ACB ,∴∠ABD =∠ACE ,在△ADB 和△AEC 中,AB AC ABD ACE DB EC =⎧⎪=⎨⎪=⎩∠∠∴△ADB ≌△AEC (SAS ),∴D E ∠=∠.【点睛】本题考查等边三角形的性质、补角的性质、全等三角形的判定和性质,综合性强,但是整体难度不大.(2022·重庆·中考真题)42. 我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为h 的三角形的面积公式为12S ah =.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点D .(只保留作图痕迹)在ADC 和CFA △中,∵AD BC ⊥,∴90ADC ∠=︒.∵90F ∠=︒,。
中考数学三角形知识点总结归纳提高学习效率并非一朝一夕之事,需要长期的探索和积累,前人的经验是可以借鉴的,但必须充分结合自己的特点。
下面是小编为大家整理的关于中考数学三角形知识点总结,希望对您有所帮助!初中数学三角形知识点总结一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。
2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。
二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。
在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
平行线与三角形一、单选题1.(2021·山东临沂市)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B 【分析】根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∵AB ∥CD ,∴∠ABC =∠BCD ,∵CB 平分∠DCE ,∴∠BCE =∠BCD ,∴∠BCE =∠ABC ,∵∠AEC =∠BCE +∠ABC =40°,∴∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.2.(2021·四川眉山市)如图,将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为( )A .42°B .48°C .52°D .60°【答案】A 【分析】先通过作辅助线,将∠1转化到∠BAC ,再利用直角三角形两锐角互余即可求出∠2.【详解】解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A ,由矩形对边平行,可得∠1=∠BAC ,因为BC ⊥AB ,∴∠BAC +∠2=90°,∴∠1+∠2=90°,因为∠1=48°,∴∠2=42°;故选:A.【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质等内容,要求学生能根据题意理解其中的隐含关系,解决本题的关键是对角进行的转化,因此需要牢记并能灵活应用相关性质等.3.(2021·四川乐山市)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为()A.3 B.72C.2 D.52【答案】A【分析】根据由边长为4的正方形分割制作的七巧板,可得共5种图形,然后根据阴影部分的构成图形,计算阴影部分面积即可.【详解】解:如下图所示,由边长为4的正方形分割制作的七巧板,共有以下几种图形:○1腰长是2的等腰直角三角形,的正方形,⑤边长分别是245和135的平行四边形,根据图2可知,图中抬起的“腿”的等腰直角三角形,和一个边长分别是2,顶角分别是45和135的平行四边形组成,如下图示,根据平行四边形的性质可知,顶角分别是45和135的平行四边形的高是DB,且DB=,的等腰直角三角形的面积是:112=,顶角分别是45和135的平行四边形的面积是:2=,∴阴影部分的面积为:123+=,故选:A.【点睛】本题考查了七巧板中的图形的构成和面积计算,熟悉七巧板中图形的分类是解题的关键.4.(2021·湖南岳阳市)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.5.(2021·安徽)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∵//BC EF ,∴45FDB F ∠=∠=︒, ∴180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.6.(2021·浙江金华市)某同学的作业如下框,其中※处填的依据是( )A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补【答案】C 【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知∠3和∠4是同位角关系,即可选出答案.【详解】解:∵12//l l ,∴34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.7.(2021·云南)如图,直线c 与直线a 、b 都相交.若//a b ,155∠=︒,则2∠=( )A .60︒B .55︒C .50︒D .45︒【答案】B 【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【详解】解:如图,1=55∠︒, 3=55,∴∠︒ ∵a ∥b ,∠3=55°,∴∠2=∠3=55°.故选B .【点睛】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.8.(2021·山东)如图,AB ∥CD ∥EF ,若∠ABC =130°,∠BCE =55°,则∠CEF 的度数为( )A .95°B .105°C .110°D .115°【答案】B 【分析】由//AB CD 平行的性质可知ABC DCB ∠=∠,再结合//EF CD 即可求解.【详解】解://AB CD 130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD 180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B .【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质.9.(2021·山东泰安市)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D 【分析】根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∴∠6=∠7=45°;A 、∵∠1=60°,∠6=45°,∴∠8=180°-∠1-∠6=180-60°-45°=75°,m ∥n ,∴∠2=∠8=75°结论正确,选项不合题意;B 、∵∠7=45°,m ∥n ,∴∠3=∠7=45°,结论正确,选项不合题意;C 、∵∠8=75°,∴∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∵∠7=45°,∴∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补. 10.(2021·四川资阳市)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为( )A .80︒B .70︒C .60︒D .50︒【答案】B 【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∵//,140m n ∠=︒,∴∠4=∠1=40°,∵230∠=︒,∴34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.11.(2021·四川广元市)如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是( )A .2B .1CD .32【答案】B【分析】以CD 为边作等边三角形CDE ,连接EQ ,由题意易得∠PDC =∠QDE ,PD =QD ,进而可得△PCD ≌△QED ,则有∠PCD =∠QED =90°,然后可得点Q 是在QE 所在直线上运动,所以CQ 的最小值为CQ ⊥QE 时,最后问题可求解.【详解】解:以CD 为边作等边三角形CDE ,连接EQ ,如图所示:∵PDQ 是等边三角形,∴60,,CED PDQ CDE PD QD CD ED ∠=∠=∠=︒==,∵∠CDQ 是公共角,∴∠PDC =∠QDE ,∴△PCD ≌△QED (SAS ),∵90ACB ∠=︒,4AC BC ==,点D 是BC 边的中点,∴∠PCD =∠QED =90°,122CD DE CE BC ====,∴点Q 是在QE 所在直线上运动, ∴当CQ ⊥QE 时,CQ 取的最小值,∴9030QEC CED ∠=︒-∠=︒,∴112CQ CE ==;故选B . 【点睛】本题主要考查等边三角形的性质、含30°直角三角形的性质及最短路径问题,熟练掌握等边三角形的性质、含30°直角三角形的性质及最短路径问题是解题的关键.12.(2021·河北)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A 与B ,利用理论与实践相结合可判断C 与D .【详解】解:A . 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A 不符合题意;B . 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B 符合题意;C . 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C 不符合题意;D . 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D 不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.13.(2021·四川凉山州)如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .74【答案】D【分析】先在RtABC 中利用勾股定理计算出AB =10,再利用折叠的性质得到AE =BE ,AD =BD =5,设AE =x ,则CE =AC -AE =8-x ,BE =x ,在Rt △BCE 中根据勾股定理可得到x 2=62+(8-x )2,解得x ,可得CE .【详解】解:∵∠ACB =90°,AC =8,BC =6,∴AB ,∵△ADE 沿DE 翻折,使点A 与点B 重合,∴AE =BE ,AD =BD =12AB =5, 设AE =x ,则CE =AC -AE =8-x ,BE =x ,在Rt △BCE 中∵BE 2=BC 2+CE 2,∴x 2=62+(8-x )2,解得x =254,∴CE =2584-=74,故选:D . 【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.14.(2021·陕西)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B 【分析】由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∵25B ∠=︒,50C ∠=︒,∴在Rt △BEC 中,由三角形内角和可得105BEC ∠=︒,∵35A ∠=︒,∴170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键.15.(2021·安徽)在△ABC 中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是( ) A .2CD ME =B .//ME ABC .BD CD = D .ME MD = 【答案】A【分析】设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .由题意易证△CAE ≌△FAE ,从而证明ME 为△CBF 中位线,即//ME AB ,故判断B 正确;又易证△AGD ≌△ABD ,从而证明D 为BG 中点.即利用直角三角形斜边中线等于斜边一半即可求出CD BD =,故判断C 正确;由90HDM DHM ∠+∠=︒、90HCE CHE ∠+∠=︒和DHM CHE ∠=∠可证明HDM HCE ∠=∠.再由90HEM EHF ∠+∠=︒、EHC EHF ∠=∠和90EHC HCE ∠+∠=︒可推出 HCE HEM ∠=∠,即推出HDM HEM ∠=∠,即MD ME =,故判断D 正确;假设2CD ME =,可推出2CD MD =,即可推出30DCM ∠=︒.由于无法确定DCM ∠的大小,故2CD ME =不一定成立,故可判断A 错误.【详解】如图,设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .∵AD 是BAC ∠的平分线,HF AB ⊥,HC AC ⊥,∴HC =HF ,∴AF =AC .∴在△CAE 和△FAE 中,AF AC CAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAE ≌△FAE ,∴CE FE =,∠AEC =∠AEF =90°,∴C 、E 、F 三点共线,∴点E 为CF 中点.∵M 为BC 中点,∴ME 为△CBF 中位线,∴//ME AB ,故B 正确,不符合题意;∵在AGD △和ABD △中,90GAD BAD AD AD ADG ADB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AGD ≌△ABD , ∴12GD BD BG ==,即D 为BG 中点.∵在BCG 中,90BCG ∠=︒,∴12CD BG =, ∴CD BD =,故C 正确,不符合题意;∵90HDM DHM ∠+∠=︒,90HCE CHE ∠+∠=︒,DHM CHE ∠=∠,∴HDM HCE ∠=∠. ∵HF AB ⊥,//ME AB ,∴HF ME ⊥,∴90HEM EHF ∠+∠=︒.∵AD 是BAC ∠的平分线,∴EHC EHF ∠=∠.∵90EHC HCE ∠+∠=︒, ∴HCE HEM ∠=∠,∴HDM HEM ∠=∠,∴MD ME =,故D 正确,不符合题意;∵假设2CD ME =,∴2CD MD =,∴在Rt △CDM 中,30DCM ∠=︒.∵无法确定DCM ∠的大小,故原假设不一定成立,故A 错误,符合题意.故选A .【点睛】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以及含30角的直角三角形的性质等知识,较难.正确的作出辅助线是解答本题的关键.16.(2021·重庆)如图,在△ABC 和△DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明和△ABC 和△DCB 全等的是( )A .ABC DCB ∠=∠ B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在△ABC 和△DCB 中,ABC DCB BC CB ACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA ), 选项B ,添加AB DC =, 在△ABC 和△DCB 中,AB DC =,BC CB =,ACB DBC ∠=∠,无法证明△ABC ≌△DCB ; 选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS ); 选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (AAS ); 综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.17.(2021·浙江丽水市)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .207【答案】D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∠DAE=∠DFE ,AD=DF ,然后根据角平分线的定义证得∠BFD=∠DFE =∠DAE ,进而证得∠BDF=90°,证明Rt △ABC ∽Rt △FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==,∴AB ==, 由折叠性质得:∠DAE=∠DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∴∠BFD =∠DFE=∠DAE ,∵∠DAE +∠B =90°,∴∠BDF +∠B =90°,即∠BDF =90°,∴Rt △ABC ∽Rt △FBD ,∴BD BC DF AC =即534AD AD -=,解得:AD =205,故选:D . 【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.18.(2021·四川自贡市)如图,()8,0A ,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,6【答案】D 【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB ∵()8,0A ,()2,0C -∴OA =8,OC =2∴AC =AB =10在Rt △OAB 中,6OB ==∴B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键19.(2021·重庆)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断△ABC ≌△DEF 的是( )A .AB =DEB .∠A =∠DC .AC =DFD .AC ∥FD【答案】C 【分析】根据全等三角形的判定与性质逐一分析即可解题. 【详解】解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△ 故A 不符合题意;B. 添加一个条件∠A =∠D ,又,BC EF B E =∠=∠,∴△ABC ≌△DEF (AAS ),故B 不符合题意;C. 添加一个条件AC =DF ,不能判断△ABC ≌△DEF ,故C 符合题意;D. 添加一个条件AC ∥FD , ACB EFD ∴∠=∠,又,BC EF B E =∠=∠,△ABC ≌△DEF (ASA ),故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.20.(2021·江苏扬州市)如图,在44⨯的正方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角....三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .5【答案】B 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰直角△ABC 底边;②AB 为等腰直角△ABC 其中的一条腰.【详解】解:如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有0个; ②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有3个.故共有3个点,故选:B .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.21.(2021·浙江宁波市)如图,在△ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D .2【答案】C【分析】根据条件可知△ABD 为等腰直角三角形,则BD =AD ,△ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC . 【详解】解:因为AD 垂直BC ,则△ABD 和△ACD 都是直角三角形,又因为45,60,B C ∠=︒∠=︒所以AD =BD =sin ∠C =AD AC =AC =2, 因为EF 为△ABC 的中位线,所以EF =2AC =1,故选:C .【点睛】本题主要考查了等腰直角三角形、锐角三角形函数值、中位线相关知识,根据条件分析利用定理推导,是解决问题的关键.22.(2021·青海)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【答案】A【详解】如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S△BCD=12BC•DE=12×5×3=7.5.故选A.考点:角平分线的性质;全等三角形的判定与性质.二、填空题1.(2021·浙江)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是______.1【分析】据裁剪和拼接的线段关系可知CD =,1BD CE ==,在Rt ACD △中应用勾股定理即可求解.【详解】解:∵地毯平均分成了3=,∴CD =在Rt ACD △中,根据勾股定理可得AD =,根据裁剪可知1BD CE ==,∴1AB AD BD =-=1.【点睛】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键. 2.(2021·河北)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【答案】减少 10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF 与∠D 、∠E 、∠DCE 之间的关系,进行计算即可判断.【详解】解:∵∠A +∠B =50°+60°=110°,∴∠ACB =180°-110°=70°,∴∠DCE =70°,如图,连接CF 并延长,∴∠DFM =∠D +∠DCF =20°+∠DCF ,∠EFM =∠E +∠ECF =30°+∠ECF ,∴∠EFD=∠DFM+∠EFM=20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD=110°,则∠EFD减少了10°,若只调整∠D的大小,由∠EFD=∠DFM+∠EFM=∠D+∠DCF+∠E+∠ECF=∠D+∠E+∠ECD=∠D+30°+70°=∠D+100°,因此应将∠D减少10度;故答案为:①减少;②10.【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.3.(2021·青海)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.【答案】40°【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°,即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.4.(2021·山东聊城市)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD 与CE交于点O,连接BO并延长交AC于点F,若AB=5,BC=4,AC=6,则CE:AD:BF 值为____________.【答案】12:15:10【分析】由题意得:BF ⊥AC ,再根据三角形的面积公式,可得5432ABC SAD CE BF ===,进而即可得到答案.【详解】解:∵在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D 和点E ,AD 与CE 交于点O ,∴BF ⊥AC ,∵AB =5,BC =4,AC =6,∴111222ABC SBC AD AB CE AC BF =⋅=⋅=⋅, ∴5432ABC S AD CE BF ===,∴CE :AD :BF =12:15:10,故答案是:12:15:10. 【点睛】本题主要考查三角形的高,掌握“三角形的三条高交于一点”是解题的关键. 5.(2021·江苏南京市)如图,在四边形ABCD 中,AB BC BD ==.设ABC α∠=,则ADC ∠=______(用含α的代数式表示).【答案】11802α︒- 【分析】由等腰的性质可得:∠ADB =1902ABD ︒-∠,∠BDC =1902CBD ︒-∠,两角相加即可得到结论.【详解】解:在△ABD 中,AB =BD ∴∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠ 在△BCD 中,BC =BD ∴∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠ ∵ABC ABD CBD α∠=∠+∠= ∴ADC ADB CBD ∠=∠+∠ =11909022ABD CBD ︒-∠+︒-∠=1180()2ABD CBD ︒-∠+∠=11802ABC ︒-∠=11802α︒-故答案为:11802α︒-. 【点睛】此题主要考查了等腰三角形的性质和三角形内角和定理,分别求出∠ADB=1902ABD ︒-∠,∠BDC=1902CBD ︒-∠是解答本题的关键. 6.(2021·江苏连云港市)如图,BE 是ABC 的中线,点F 在BE 上,延长AF 交BC 于点D .若3BF FE =,则BD DC=______. 【答案】32【分析】连接ED ,由BE 是ABC 的中线,得到BE BCE S S =△A △,AED EDC S S =,由3BF FE =,得到3,3ABFBFDAFE FED S S S S ==,设=,AEF EFD S x S y =,由面积的等量关系解得53x y =,最后根据等高三角形的性质解得ABDADC S BD S DC =,据此解题即可. 【详解】解:连接EDBE 是ABC 的中线,ABE BCE S S ∴=,AED EDC S S = 3BF FE =3,3ABF BFD AFE FED S S S S ∴==设=,AEF EFD S x S y =,33ABF BFD S x S y ∴==, 4,4,4ABE BEC BED S x S x S y ∴===44EDC BECBED S S S x y ∴=-=-ADE EDC S S =44x y x y ∴+=-53x y ∴=ABD 与ADC 是等高三角形,53+33333833=516445325333ABD ADC y y SBD x y x y y S DC x y x y x y y y y ⨯++∴=====++--⨯-,故答案为:32. 【点睛】本题考查三角形的中线、三角形面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.(2021·浙江绍兴市)如图,在ABC 中,AB AC =,70B ∠=︒,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是_______.【答案】15︒或75︒【分析】分①点P 在BC 的延长线上,②点P 在CB 的延长线上两种情况,再利用等腰三角形的性质即可得出答案.【详解】解:①当点P 在BC 的延长线上时,如图∵AB AC =,70B ∠=︒,∴70B ACB ∠=∠=︒∴40CAB ∠=︒ ∵以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,∴AC =PC ∴∠=∠P CAP∵70∠=∠+∠=︒ACB B CAP ∴35∠=∠=P CAP ∴403575∠=∠+∠=+=BAP BAC CAP②当点P 在CB 的延长线上时,如图由①得70C ∠=︒,40CAB ∠=︒∵AC =PC ∴=55∠=∠P CAP∴-55-4015∠=∠∠==BAP CAP BAC 故答案为:15︒或75︒【点睛】本题主要考查了等腰三角形的性质,分类讨论不重不漏是解题的关键.8.(2021·四川广安市)如图,将三角形纸片ABC 折叠,使点B 、C 都与点A 重合,折痕分别为DE 、FG .已知15ACB ∠=︒,AE EF =,DE =BC 的长为_______.【答案】4+【分析】由折叠的性质得出BE =AE ,AF =FC ,∠F AC =∠C =15°,得出∠AFE =30°,由等腰三角形的性质得出∠EAF =∠AFE =30°,证出△ABE 是等边三角形,得出∠BAE =60°,求出AE =BE =2,证出∠BAF =90°,利用勾股定理求出AF ,即CF ,可得BC .【详解】解:∵把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE ,FG , ∴BE =AE ,AF =FC ,∠F AC =∠C =15°,∴∠AFE =30°,又AE =EF ,∴∠EAF =∠AFE =30°,∴∠AEB =60°,∴△ABE 是等边三角形,∠AED =∠BED =30°,∴∠BAE =60°,∵DE =AE =BE =AB =cos30DE ︒=2,∴BF =BE +EF =4,∠BAF =60°+30°=90°,∴FC =AF =BC =BF +FC =4+,故答案为:4+.【点睛】此题考查了翻折变换的性质、等腰三角形的性质、等边三角形的判定与性质、直角三角形的性质;根据折叠的性质得出相等的边和角是解题关键.9.(2021·四川遂宁市)如图,在△ABC中,AB=5,AC=7,直线DE垂直平分BC,垂足为E,交AC于点D,则△ABD的周长是_____ .【答案】12.=,根据三角形的周长公式计算即可.【分析】根据线段的垂直平分线的性质得到DB DC=,【详解】解:∵直线DE垂直平分BC,∴DB DC∴△ABD的周长5712=++=++=+=+=,故答案为:12.AB AD BD AB AD DC AB AC【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.(2021·江苏宿迁市)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(示意图如图,则水深为__尺.【答案】12【分析】依题意画出图形,设芦苇长AB=AB'=x尺,则水深AC=(x﹣1)尺,因为B'E=10尺,所以B'C=5尺,利用勾股定理求出x的值即可得到答案..【详解】解:依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt △AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.三、解答题1.(2021·湖北武汉市)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.【答案】见解析【分析】根据已知条件//AB CD ,B D ∠=∠,得到DCF D ∠=∠,从而得到//AD BC ,即可证明DEF F ∠=∠.【详解】证明:∵//AB CD ,∴DCF B ∠=∠.∵B D ∠=∠,∴DCF D ∠=∠.∴//AD BC .∴DEF F ∠=∠.【点睛】本题考查平行线的性质和判定.平行线的性质:两直线平行,内错角相等.平行线的判定:同位角相等,两直线平行.2.(2021·浙江温州市)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =. (1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证; (2)先求出∠ADE ,再利用平行线的性质求出∠ ABC ,最后利用角平分线的定义即可完成求解.【详解】解:(1)BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2)65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒,即35EBC ∠=︒. 【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.3.(2021·四川南充市)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD⊥于点E ,CF AD ⊥于点F .求证:AF BE =.【答案】见详解【分析】根据AAS 证明△BAE ≌△ACF ,即可得AF BE =.【详解】证明:∵90BAC ∠=︒,∴∠BAE +∠CAF =90°,∵BE ⊥AD ,CF ⊥AD ,∴∠BEA =∠AFC =90°,∴∠BAE +∠EBA =90°,∴∠CAF =∠EBA ,∵AB =AC ,∴△BAE ≌△ACF ,∴AF BE =.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.4.(2021·浙江绍兴市)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE .(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.【答案】(1)50BDC ∠=︒;20ABE ∠=︒;(2)110BEC BDC ∠+∠=︒,见解析【分析】(1)利用三角形的内角和定理求出ACB ∠的大小,再利用等腰三角形的性质分别求出BDC ∠,ABE ∠.(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含ABE ∠分别表示BEC ∠,BDC ∠,即可得到两角的关系.【详解】(1)80ABC ∠=︒,BD BC =,50BDC BCD ∴∠=∠=︒.在ABC 中,180A ABC ACB ∠+∠+∠=︒,40A ∠=︒,60ACB ∠=︒∴,CE BC =,60EBC ∴∠=︒.20ABE ABC EBC ∴∠=∠-∠=︒.(2)BEC ∠,BDC ∠的关系:110BEC BDC ∠+∠=︒.理由如下:设BEC α∠=,BDC β∠=.在ABE △中,40A ABE ABE α=∠+∠=︒+∠,CE BC =,CBE BEC α∴∠=∠=.2402ABC ABE CBE A ABE ABE ∴∠=∠+∠=∠+∠=︒+∠, 在BDC 中,BD BC =,2402180BDC BCD DBC ABE β∴∠+∠+∠=+︒+∠=︒.70ABE β︒∴=-∠.4070110ABE ABE αβ∴+=︒+∠+︒-∠=︒.110BEC BDC ∴∠+∠=︒.【点睛】本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形的性质.三角形的内角和等于180︒ .三角形的外角等于与其不相邻的两个内角之和.等腰三角形等边对等角.5.(2021·陕西中考真题)如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.【答案】见解析【分析】由题意易得EBD C ∠=∠,进而可证EDB ABC ≌△△,然后问题可求证. 【详解】证明:∵//BD AC ,∴EBD C ∠=∠.∵BD BC =,BE AC =,∴()EDB ABC SAS ≌.∴D ABC ∠=∠.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.6.(2021·湖南衡阳市)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.【答案】见解析【分析】根据//,//AC DF BC EF ,可以得到,A FDE ABC DEF ∠=∠∠=∠,然后根据题目中的条件,利用ASA 证明△ABC ≌△DEF 即可.【详解】证明:点A ,B ,C ,D ,E 在一条直线上∵//,//AC DF BC EF ∴,A FDE ABC DEF ∠=∠∠=∠在△ABC 与△DEF 中CAB FDE AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DEF ASA △≌△ 【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目.7.(2021·浙江)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,ACB CAD BD AC AP ︒∠=︒∠===,求BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.【答案】(1)(2)见解析;(3)存在,m =【分析】(1)先解直角三角形ABC 得出2AB AC =,从而得出△ADC 是等边三角形,再解直角三角形ACP 即可求出AC 的长,进而得出BC 的长;(2)连结BE ,先利用AAS 证出△CPA ≌△DPE ,得出AE =2PE ,AC =DE ,再得出△ADC 是等边三角形,然后由SAS 得出△CAB ≌△EBA ,得出AE =BC 即可得出结论;(3)过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ⊥AB 于G ,过E 作EN ⊥AB 于N ,由(2)得AE =2AP ,DE =AC ,再证明△AEN ≌△BCG ,从而得出△CAB ≌△EBA 得出DE =BE ,然后利用勾股定理即可得出m 的值.【详解】(1)解 90,60ACB CAD ∠=∠=︒︒,2cos60AC AB AC ︒==, BD AC =,AD AC =∴,∴△ADC 是等边三角形,60ACD ∴∠=︒Р是CD 的中点,AP CD ∴⊥,在Rt APC 中,AP =2sin 60AP AC ∴==︒,tan 60BC AC =︒=∴ (2)证明:连结BE ,//DE AC ,CAP DEP ∴∠=∠, ,CP DP CPA DPE =∠=∠,∴△CPA ≌△DPE , 1,2AP EP AE DE AC ∴===, BD AC =,BD DE ∴=,又//DE AC ,60BDE CAD ∴∠=∠=︒,。
中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)命题点分类集训命题点1 线段【命题规律】主要考查:①两点之间线段最短;②两点确定一条直线这两个基本事实.【命题预测】与图形的变换中立体图形的侧面展开结合,求两点之间的最短距离,另外也会与对称性结合,考查两线段和的最小值.1. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短1. D第1题图第2题图2. 如图,AB⊥AC,AD⊥BC,垂足分别为A,D.则图中能表示点到直线距离的线段共有( )A. 2条B. 3条C. 4条D. 5条2. D【解析】AD是点A到直线BC的距离;BA是点B到直线AC的距离;BD是点B到直线AD的距离;CA是点C到直线AB的距离;CD是点C到直线AD的距离,共5条,故答案为D.命题点2 角、余角、补角及角平分线【命题规律】主要考查:①角度的计算(度分秒之间的互化);②余角、补角的计算;③角平分线的性质.【命题预测】角、余角、补角及角平分线等基本概念是图形认识的基础,应给予重视.3. 下列各图中,∠1与∠2互为余角的是( )3. B4. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.4. 3【解析】如解图,过点P作PD⊥OA于点D,∵OP为∠AOB的平分线,PC⊥OB于点C,∴PD=PC,∵PC=3,∴PD=3,即点P到点OA的距离为3.5. 1.45°=________′.5. 87【解析】∵1°=60′,∴0.45°=27′,∴1.45°=87′.6. 已知∠A=100°,那么∠A的补角为________度.6. 80【解析】用180度减去已知角,就得这个角的补角.即∠A的补角为:180°-100°=80°.命题点3 相交线与平行线【命题规律】考查形式:①三线八角中同位角、内错角、同旁内角的识别或计算,有时综合对顶角、邻补角求角度;②综合角平分线、垂线求角度;③综合三角形的相关知识求角度;④根据角的关系判断两直线的关系.【命题预测】平行线性质是认识图形的基础知识,也是全国命题的潮流和方向.7. 如图,直线a,b被直线c所截,∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 对顶角7. B【解析】根据相交线的性质及角的定义可知∠1与∠2的位置关系为内错角,故选B.第7题图第8题图第9题图8. 如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于( )A. 50°B. 70°C. 90°D. 110°8. B【解析】如解图,∵a∥b,∴∠3+∠4=180°,∵c∥d,∴∠2=∠4,∵∠1=∠3,∴∠2=180°-∠1=70°,故本题选B.9. 如图,在下列条件中,不能..判定直线a与b平行的是( )A. ∠1=∠2B. ∠2=∠3C. ∠3=∠5D. ∠3+∠4=180°9. C【解析】逐项分析如下:选项逐项分析正误A∵∠1=∠2,即同位角相等,两直线平行,∴a∥b √B∵∠2=∠3,即内错角相等,两直线平行,∴a∥b √∵∠3、∠5既不是a与b被第三直线所截的同位角,也不是内错角,×C∴∠3=∠5,不能够判定a与b平行D∵∠3+∠4=180°,即同旁内角互补,两直线平行,∴a∥b √10. 如图,将一块直角三角板的直角顶点放在直尺的一边上,如果∠1=50°,那么∠2的度数是( )A. 30°B. 40°C. 50°D. 60°10. B 【解析】如解图,∠1+∠3=90°,∴∠3=90°-∠1=90°-50°=40°,由平行线性质得∠2=∠3=40°.11. 如图所示,AB ∥CD ,EF ⊥BD ,垂足为E ,∠1=50°,则∠2的度数为( )A . 50°B . 40°C . 45°D . 25°11. B 【解析】∵EF ⊥BD ,∠1=50°,∴∠D =90°-50°=40°,∵AB ∥CD ,∴∠2=∠D =40°.第10题图 第11题图 第12题图 第13题图12. 如图,AB ∥CD ,直线EF 与AB ,CD 分别交于点M ,N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )A . ∠EMB =∠END B . ∠BMN =∠MNC C . ∠CNH =∠BPGD . ∠DNG =∠AME12. D 【解析】A.两直线平行,同位角相等,∴∠EMB =∠END ;B.两直线平行,内错角相等,∴∠BMN =∠MNC ;C.两直线平行,同位角相等,∴∠CNH =∠APH ,又∠BPG =∠APH ,∴∠CNH =∠BPG ;D.∠DNG 和∠AME 无法推导数量关系,故不一定相等,答案为D.13. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=________°.13. 75 【解析】如解图,过点P 作PH ∥a ∥b ,∴∠FPH =∠1,∠EPH =∠2,又∵∠1=45°,∠2=30°,∴∠EPF =∠EPH +∠HPF =30°+45°=75°.命题点4 命 题【命题概况】命题考查的知识点比较多,一般几个知识点结合考查,考查形式有:①下面说法错误(正确)的是;②写出命题…的逆命题;③能说明…是假命题的反例.【命题趋势】命题为新课标新增内容,考查知识比较综合,是全国命题点之一.14. (2016宁波)能说明命题“对于任何实数a ,|a|>-a”是假命题的一个反例可以是( )A . a =-2B . a =13C . a =1D . a = 214. A 【解析】由于一个正数的绝对值是它本身,它的相反数是一个负数,所以当a =13,1,2时,|a |>-a 总是成立,当a =-2时,|-2|=2=-(-2),此时|a |=-a ,故本题选A.15. 写出命题“如果a =b ,那么3a =3b”的逆命题...:________________________. 15. 如果3a =3b ,那么a =b 【解析】命题由条件和结论构成,则其逆命题只需将原来命题的条件和结论互换即可,即将结论作为条件,将条件作为结论. ∵命题“如果a =b ,那么3a =3b ,”中条件为“如果a =b ”,结论为“那么3a =3b ”,∴其逆命题为“如果3a =3b ,那么a =b ”.中考冲刺集训一、选择题1. 如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为( )A. 65°B. 55°C. 45°D. 35°第1题图第2题图第3题图2. 如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=( )A. 65°B. 115°C. 125°D. 130°3. 如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( )A.75°36′B.75°12′C.74°36′D.74°12′二、填空题4. 如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________.第4题图第5题图第6题图5. 如图,直线CD∥EF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=________.6. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM等于________度.7. 如图,直线AB∥CD,BC平分∠ABD.若∠1=54°,则∠2=________°.第7题图第8题图第9题图8. 如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=________.9.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.答案与解析:1. B【解析】∵DA⊥AC,∠ADC=35°,∴∠ACD=90°-∠ADC=90°-35°=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.2. B【解析】∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=130°,∵AE平分∠CAB,∴∠EAB=12∠CAB=65°.又∵AB∥CD,∴∠AED+∠EAB=180°,∴∠AED=180°-∠EAB=180°-65°=115°.3. B【解析】根据平面镜反射原理可知,∠ADC=∠ODE,∵DC∥OB,∴∠ADC=∠AOE,∴∠ODE=∠AOE=37°36′,∴∠DEB=∠ODE+∠AOE=37°36′+37°36′=75°12′,故选B.4. 50°5. 30°6. 307. 72【解析】∵CD∥AB,∴∠CBA=∠1=54°,∠ABD+∠CDB=180°,∵CB平分∠ABD,∴∠DBC=∠CBA=54°,∴∠CDB=180°-54°-54°=72°,∴∠2=∠CDB=72°.8. 15°【解析】由两直线平行,内错角相等,可得∠A=∠AFE=30°,∠C=∠CFE,由∠AFC=15°,可得∠CFE=∠C=∠AFE-∠AFC=15°.第9题解图9. 2【解析】如解图,过点P作PE⊥OB于点E,∵OP平分∠AOB,∴PD=PE,∠AOB=2∠AOP=30°,∵PC∥OA,∴∠ECP=∠AOB=30°,∴PE=12PC=2,∴PD=PE=2.。
第1讲 角、相交线与平行线考点1 :角的相关概念与性质知识梳理 :1.线段:(1)定义:线段的直观形象是拉直的一段线.(2)基本事实:两点之间的所有连线中,线段最短.(3)线段的和与差:已知两条线段a 和b ,且a>b ,在直线l 上画线段AB =a ,BC =b ,则线段AC 就是线段a 与b 的和,即AC =a +b .在直线l 上画线段AB =a ,在AB 上画线段AD =b ,则线段DB 就是线段a 与b 的差,即DB =a -b.(4)线段的中点:线段AB 上的一点M ,把线段AB 分成两条线段AM 与MB.如果AM =MB ,那么点M 就叫做线段AB 的中点,此时有AM =MB =12AB ,AB =2AM =2MB. 2.直线:(1)定义:沿线段向两方无限延伸所形成的图形.(2)基本事实:经过两点有一条直线,并且只有一条直线.3.射线:把线段向一方无限延伸所形成的图形.4.角的分类:周角、平角、直角之间的关系和度数1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°,1°=60′,1′=60″,1′=⎝ ⎛⎭⎪⎫160°,1″=⎝ ⎛⎭⎪⎫160′. 5.角平分线的概念及性质:(1)定义:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的角平分线.(2)性质:角平分线上的点到角两边的距离相等.(3)判定:到角两边距离相等的点在角平分线上.6.余角、补角与邻补角:(1)余角:①如果两个角的和为90°,那么这两个角互为余角;②同角(等角)的余角相等.(2)补角:①如果两个角的和为180°,那么这两个角互为补角;②同角(等角)的补角相等.(3)邻补角:①两个角有一个公共顶点和一条公共边,另一边互为反向延长线的两个角互为邻补角;②互为邻补角的两个角的和为180°.例题感受:1、(2019 吉林中考)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是()A.两点之间,线段最短B.平行于同一条直线的两条直线平行C.垂线段最短D.两点确定一条直线2、(2019•广州)如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l 的距离是cm.3、(2019•日照)如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.4、(2019 河南开封中考模拟)如图,点C在线段AB上,AC:BC=3:2,点M是AB的中点,点N是BC的中点,若MN=3cm,求线段AB的长.考点2 :相交线知识梳理:1.相交线三线八角(如图)同位角:∠1与∠5,∠2与∠6,∠4与∠8,∠3与∠7.内错角:∠2与∠8,∠3与∠5.同旁内角:∠3与∠8,∠2与∠5.对顶角:∠1与∠3,∠2与∠4,∠5与∠7,∠6与∠8.2.垂线及其性质(1)定义:两条直线相交所成的四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.(2)基本事实:经过直线上或直线外一点,有且只有一条直线与已知直线垂直.(3)性质:直线外一点与直线上各点连接的所有线段中,垂线段最短.(4)点到直线的距离:从直线外一点到这条直线的垂线段的长度.(5)线段垂直平分线:定理:线段垂直平分线上的点到线段两端的距离相等;逆定理:到一条线段的两端点的距离相等的点在线段的垂直平分线上.例题感受:1、(2019 河北唐山中考模拟)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数().A.45°B.60°C.50°D.30°2、(2019 山东淄博中考模拟)(填空题)如图,将两块直角三角板的直角顶点C叠放在一起.(1)若∠DCB=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数.3、(2019 河北沧州中考模拟)(1)如图1,AB∥CD,点E是在AB、CD之间,且在BD的左侧平面区域内一点,连结BE、DE.求证:∠E=∠ABE+∠CDE.(2)如图2,在(1)的条件下,作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F、∠ABE、∠CDE之间的关系,并证明你的猜想.(3)如图3,在(1)的条件下,作出∠EBD的平分线和△EDB的外角平分线,两线交于点G,猜想∠G、∠ABE、∠CDE之间的关系,并证明你的猜想.4、(2019河南郑州中考模拟)如图,直线a∥b,直线AB与a,b分别相交于点A,B,AC⊥AB,AC交直线b 于点C.(1)若∠1=60°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求a与b的距离.考点3 平行线的判定及性质知识梳理:1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.两条平行线之间的距离处处相等.2.平行线的性质:(1)两直线平行,同位角相等,即∠1=∠2;(2)两直线平行,内错角相等,即∠2=∠3;(3)两直线平行,同旁内角互补,即∠3+∠4=180°.3.平行线的判定:(1)基本事实:经过已知直线外一点,有且只有一条直线和已知直线平行;(2)同位角相等,两直线平行;(3)内错角相等,两直线平行;(4)同旁内角互补,两直线平行;(5)平行于同一条直线的两条直线平行.例题感受:1、(2019浙江宁波中考模拟)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC =30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )A.20°B.30°C.45°D.50°2、(2019 河北石家庄中考模拟)(改成选择题)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.3、(2019 河北沧州中考模拟)一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?4、(2019 山东青岛中考模拟)如图,BD是∠ABC的平分线,ED∥BC,∠FED=∠BDE,试说明:EF是∠AED 的平分线.5、(2019 海南中考)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°6、(2019 河南中考)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°7、(2019 广东中考)如图,已知a∥b,∠1=75°,则∠2=.8、(2019 湖北孝感中考)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°9、(2019 河北中考)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB考点4 命题与定理知识梳理:命题:判断一件事情的句子叫做命题,命题由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常写成“如果……那么……”的形式.真命题:如果题设成立,那么结论一定成立的命题叫做真命题.假命题:题设成立,不能保证结论一定成立的命题叫做假命题.定理:有些命题的正确性是用推理证实的,这样的真命题叫做定理,推理过程叫做证明.【解题技巧】掌握命题的概念.知道命题由“条件”和“结论”两部分组成,能够初步区分命题的条件和结论,能把命题改写成“如果……那么……”的形式.我们发现由观察、实验、归纳和类比等方法得出的命题,可能是真命题,也可能是假命题. 凡是我们学过的定理、定义、性质等都是真命题。
湖南中考数学考点知识点1.平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.2、两条平行线之间的距离处处相等.2.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.3.全等三角形的性质(1)性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等说明:①全等三角形的对应边上的高、中线以及对应角的平分线相等②全等三角形的周长相等,面积相等③平移、翻折、旋转前后的图形全等(2)关于全等三角形的性质应注意①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.4.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.5.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.6.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.7.等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.8.平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.9.菱形的判定与性质(1)依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.(2)菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形.)(3)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(4)正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形.10.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.11.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.12.圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.13.切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.14.弧长的计算(1)圆周长公式:C=2πR(2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长.③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.15.轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.16.轴对称图形(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.17.翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.18.胡不归问题著名的几何最值问题19.生活中的平移现象1、平移的概念在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.2、平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3、确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.20.坐标与图形变化-平移(1)平移变换与坐标变化①向右平移a个单位,坐标P(x,y)⇒P(x+a,y)①向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y)①向上平移b个单位,坐标P(x,y)⇒P(x,y+b)①向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)21.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.22.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.23.坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.24.几何变换综合题几何变换综合题.25.平行线分线段成比例(1)定理1:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)推论1:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)推论2:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.26.相似三角形的判定(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.27.相似三角形的判定与性质(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.28.相似形综合题相似形综合题.29.特殊角的三角函数值(1)特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.30.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)31.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.32.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.33.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.34.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.。
专题16 相交线与平行线专题知识点概述一、相交线1.邻补角(1)定义:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
(2)性质:邻补角的性质:邻补角互补。
2.对顶角(1)定义:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
(2)性质:对顶角的性质:对顶角相等。
3.垂线(1)定义:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
(2)垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
4.同位角、内错角、同旁内角(1)同位角定义:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
(2)内错角定义:∠2与∠6像这样的一对角叫做内错角。
(3)同旁内角定义:∠2与∠5像这样的一对角叫做同旁内角。
二、平行线1.平行线概念:在同一平面内,两条不想交的直线叫做平行线。
记做a∥b 如“AB∥CD”,读作“AB平行于CD”。
2.两条直线的位置关系:平行和相交。
3.平行线公理及其推论:(1)公理:经过已知直线外一点,有且只有一条直线与这条直线平行;(2)推论:如果两条直线都与第三条直线平行,那么这两条直线平行. 4.平行线的判定:判定方法1:两条直线被第三条直线所截,同位角相等,两直线平行;判定方法2:两条直线被第三条直线所截,内错角相等,两直线平行;判定方法3:两条直线被第三条直线所截,同旁内角互补,两直线平行. 补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
5.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
6.证明的一般步骤(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
例题解析与对点练习【例题1】(2020•北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5【答案】A【分析】根据对顶角定义和外角的性质逐个判断即可.【解析】A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故③错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误.【对点练习】(2019•河北省)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【答案】C.【解析】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EF C.故AB∥CD(内错角相等,两直线平行).【点拨】以角度之间的关系为前提,得出两条直线平行,是平行线判定定理的运用。
预测03 全等三角形的判定与性质、平行四边形及特殊平行四边形的性质及判定、平行线分线段成比例定理、相似三角形的判定2015-2020上海中考“23题几何证明”考点及分值分布年份题型考点分值15证明2323-1平行四边形的性质及判定23-2等角的余角相等相似三角形的判定(AA)1216证明2323-1垂径定理+全等三角形的判定、性质23-2全等三角形的判定、性质+平行四边形判定1217证明2323-1全等三角形的性质及判定,平行四边形的性质及判定,菱形的判定定理23-2等腰三角形三角形的内角和定理正方形的判定定理1218证明23正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质1219证明2323-1全等三角形的判定、性质23-2相似三角形的判定(SAS)+菱形判定1220证明23相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识12借助转化思想解决相似三角形中的证明问题2018徐汇一模23题:如上题的视频所示,解决相似三角形的线段比问题的步骤如下:①将已知(求证)条件标记在图上,借助线段勾画出需要求证的相似三角形,如果不能勾出三角形,借助线段间的相等关系,观察是否可以转化,继而找到题目中隐含的相似三角形或找到中间比。
②一般证明2个三角形相似,往往需要2个条件,而题目中往往都会出现一组等角,那么就根据题意,到底是用S.A.S还是用A.A.判定相似。
若用A.A判定相似,那么利用直角或外角性质,找到另一组等角;若用S.A.S判定相似,那么去寻找夹角所在的夹边对应的相似三角形,利用2次相似,得到题目中所需要的的线段间的比例关系。
(再复杂的证明题所需要的的相似也不超过2次)③善于挖掘题目中隐含的基本图形,这些基本图形往往是解决问题的桥梁,不要疏漏了。
双垂直基本模型:2020崇明一模23题:解题思路:(1)根据题目中的比例线段以及求证的结论可以确定要求证的是:△AEF∽△CDF;(2)根据结论中的比例关系,可以确定要证明的相似三角形是:△BDF∽△AFO.这对相似三角形的等角是∠BFD=∠AFC=90°,另外可以从A.A或S.A.S两个角度进行证明.2019普陀一模23题:解题思路:(1)根据条件中的等积式可以得到:△AEF∽△ABE,得到∠B=∠DAE,再根据∠DAF=∠EAC,得到另一组等角:∠DAE=∠BAC,得到△ADE∽△ACB;(2)根据结论中的比例关系,由于DF、DE,CE、CB在一直线上,因此无法勾画出要求证的相似三角形,因此将求证变形,得到DF:CE对应的相似三角形是△ADF∽△ACE、DE:CB对应的相似三角形是△ADE∽△ACB,而这两种比例线段得以转化的中间比是AD:AC,继而得到了等量关系.相似三角形与比例线段相似三角形与比例线段相关的几何证明题往往是23题几何证明的必考知识点,同时在25题压轴题中也常常会有类似知识点的问题呈现。
中考数学《三角形》知识点:平行线的定义性质及判定
为您整理“中考数学《三角形》知识点:平行线的定义性质及判定”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。
中考数学《三角形》知识点:平行线的定义性质及判定
平行线
在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。