天然气轻烃回收工艺流程
- 格式:docx
- 大小:144.66 KB
- 文档页数:7
轻烃回收工艺流程的优化摘要:天然气中的轻烃是优质的燃料,现在通常采用浅冷方法回收轻烃,浅冷装置操作主要问题是能耗高而轻烃的回收率低,现在开展轻烃回收装置优化研究,优化结果,回收率提高了,能耗降低了,获得可观的经济效益。
关键词:轻烃回收装置优化中图分类号:tf526 文献标识码:a 文章编号:轻烃回收的原理和现状1、工艺方法:目前国产化装置采用的主要工艺方法有冷剂循环制冷、膨胀制冷和混合制冷。
(1)冷剂制冷有氨、氟利昂、丙烷循环制冷。
氨和氟利昂已被逐渐淘汰,丙烷冷剂压缩循环制冷属于新开发的制冷工艺,制冷温度为-35至-30度,制冷系数较大,丙烷冷剂可由轻烃回收装置自行生产,无刺激性气味,该工艺将在国内广泛应用。
(2)采用膨胀制冷法的工艺装置,国内有膨胀机制冷和热分离机制冷两种方法。
大多数装置采用中低压小膨胀比的单机膨胀机制冷技术,膨胀比小,制冷温度一般为-50度,装置运行平稳,工艺技术成熟,膨胀机制冷工艺得到了广泛的应用。
目前国产化装置以回收lpg为主,c3平均回收率不足60%,深冷装置少,膨胀制冷工艺流程单一,国产装置大多采用iss膨胀制冷工艺。
国内开发应用的热机分离机制冷技术,由于热分离效率低,适应性差,技术性能差,质量不过关等原因,我国仍处于工业试验阶段。
(3)国外浅冷装置广泛采用丙烷制冷工艺,在美国和加拿大多用于处理c3含量较多的伴生气,国外深冷装置采用制冷工艺有复叠式制冷法、膨胀制冷法和膨胀制冷与冷剂制冷相结合的混合制冷法。
原料气脱水技术目前国产轻烃回收装置大多数采用分子筛脱水方法,在中深冷装置中全部用分子筛脱水方法。
国外常用的脱水方法主要有三甘醇脱水法、分子筛脱水法和喷注甲醇或乙二醇防冻脱水法。
深冷装置多采用分子筛脱水法或分子筛脱水与其它脱水方式相结合的方法。
冷换技术板翅式换热器作为主要冷换设备,在国产装置中已得到广泛应用。
板翅式换热器具有占地面积小、绝热材料少、安装费用低的优点,具有较小的换热温差,传热效率高,可做大限度地进行能量回收利用,以降低能耗,简化流程。
轻烃回收工艺技术及其进展轻烃是指碳数在1至4之间的烃类化合物,包括甲烷、乙烷、丙烷和丁烷等,是石油和天然气中的重要组成部分。
随着全球能源需求的增长,轻烃的开采和利用越来越受到人们的关注。
由于轻烃的挥发性和易燃性,它在生产、储运和利用过程中容易造成能源的浪费和环境污染。
轻烃的回收工艺技术及其进展成为当前研究的热点之一。
轻烃的回收工艺技术涉及到轻烃的分离、提纯和再利用等方面。
目前,主要的轻烃回收工艺技术包括吸附分离、膜分离、压缩液工艺、结晶分离和化学吸收等。
这些工艺技术在轻烃回收中发挥着重要作用,不仅可以有效提高轻烃的回收率,减少能源浪费,还可以减少对环境的污染。
吸附分离是一种通过吸附材料选择性吸附轻烃分子的工艺技术。
常用的吸附剂包括活性炭、分子筛和硅胶等。
通过合理选择吸附剂和优化操作条件,可以实现对轻烃的高效分离和回收。
膜分离则是利用特定的膜材料,通过膜的选择性透过性,将轻烃与其他组分分离开来。
与传统的蒸馏分离相比,膜分离工艺具有能耗低、设备小、操作简便等优点,因此在轻烃回收中得到了广泛的应用。
压缩液工艺利用了轻烃在高压情况下溶解度的变化,通过变化温度和压力来实现轻烃的回收。
结晶分离则是通过控制温度和添加适当的添加剂,使轻烃在溶剂中结晶析出,实现轻烃的分离和回收。
化学吸收则是利用化学反应将轻烃与其他组分转化为更容易分离的化合物,然后再对其进行分离和回收。
随着科技的进步和工艺的不断改进,轻烃回收工艺技术也在不断地发展和完善。
膜分离技术是目前发展最为迅速的轻烃回收技术之一。
传统的多孔膜已经不能满足对轻烃的高效分离要求,因此近年来,研究者们将目光转向了纳米孔膜。
纳米孔膜具有孔径小、分离效果好、通量大等优点,可以实现对轻烃的高效分离和回收。
化学吸收技术也在不断地得到改进和应用。
传统的化学吸收工艺中使用的吸收剂对环境和人体健康都存在一定的污染和危害,因此研究者们将目光转向了新型环保型吸收剂。
这些新型吸收剂具有高效、低毒、易生物降解等特点,可以实现对轻烃的高效吸收和回收,同时减少对环境的污染。
油田伴生气的回收工艺方案概述从油田伴生气中回收轻烃的工艺通常都是将伴生气经净化、压缩、冷凝、分馏等工艺过程来实现的;从制冷深度上划分,气体处理可以分为浅冷和深冷工艺,从制冷设备上划分,又有节流制冷、外加冷源制冷、膨胀机制冷和气波制冷等工艺。
天然气处理工艺的选择,应视原料气规模、组成、产品构成和价格、进出装置的温压条件等来确定。
轻烃回收操作条件的确定(1)主要工艺方案的确定天然气的冷凝分离需要冷量,工业上获得冷量的方法有许多,但从原理上讲基本可以分为冷剂制冷和气体膨胀制冷两大类。
膨胀制冷需要消耗原料气的压力能;辅助冷剂制冷是利用冷剂气化吸热制冷,要消耗冷剂压缩能量。
膨胀制冷可采用J-T阀,也可采用膨胀机,两种方法的主要区别是,节流膨胀是等焓过程,能量都消耗在节流阀(J-T阀)上,不能回收功;膨胀机膨胀是等熵过程,可以通过匹配同轴增压机回收一部分功,相同条件下的制冷效率高,但投资比节流膨胀要高,操作维护也比节流膨胀复杂。
无论什么方案,都希望在天然气中回收尽可能多的产品,这就需要在制冷工艺部分具有足够大的冷凝压力和足够低的冷凝温度,以便产生尽可能多的凝液。
但这并不说明,压力越高、温度越低、产生的凝液越多就越好,它必要在经济合理的前提条件下,因此,为升高压力或降低温度所付出的能耗要与所得的凝液量成比例,并且凝液的增加要与产品产量的增加相一致,因为通常在一定的冷凝温度和冷凝压力范围内,凝液的产量与产品的产量是一致的,但当凝液中乙烷量增多而丙丁烷冷凝量增加很少时,将会使得分馏部分的脱乙烷塔负荷增加,而塔顶气相中与乙烷平衡带走的丙、丁烷数量也会上升,这时的产品产量不会随凝液量增加而增加。
因此,气体处理装置都有最佳的冷凝压力和冷凝温度。
应从获得的伴生气组分数据进行分析,采用PROII软件分别对膨胀制冷工艺和外加辅助冷源膨胀制冷工艺进行了计算。
对于较富的伴生气而言,单纯采用膨胀制冷工艺,采取提高天然气压力,利用膨胀机膨胀制冷、分离。
轻烃回收工艺主要有三类:油吸收法;吸附法;冷凝分离法。
当前主要采用冷凝分离法实现轻烃回收。
1、吸附法利用固体吸附剂(如活性氧化铝和活性炭)对各种烃类吸附容量不同,而,将吸附床上的烃类脱附,经冷凝分离出所需的产品。
吸使天然气各组分得以分离的方法。
该法一般用于重烃含量不高的天然气和伴生气的加工办法,然后停止吸附,而通过少量的热气流附法具有工艺流程简单、投资少的优点,但它不能连续操作,而运行成本高,产品范围局限性大,因此应用不广泛。
2、油吸收法油吸收法是基于天然气中各组分在吸收油中的溶解度差异,而使不同的烃类得以分离。
根据操作温度的不同,油吸收法可分为常温吸收和低温吸收。
常温吸收多用于中小型装置,而低温吸收是在较高压力下,用通过外部冷冻装置冷却的吸收油与原料气直接接触,将天然气中的轻烃洗涤下来,然后在较低压力下将轻烃解吸出来,解吸后的贫油可循环使用,该法常用于大型天然气加工厂。
采用低温油吸收法C3收率可达到(85~90%),C2收率可达到(20~60%)。
油吸收法广泛应用于上世纪60年代中期,但由于其工艺流程复杂,投资和操作成本都较高,上世纪70年代后,己逐步被更合理的冷凝分离法所取代。
上世纪80年代以后,我国新建的轻烃回收装置己较少采用油吸收法。
3、冷凝分离法(1)外加冷源法天然气冷凝分离所需要的冷量由独立设置的冷冻系统提供。
系统所提供冷量的大小与被分离的原料气无直接关系,故又可称为直接冷凝法。
根据被分离气体的压力、组分及分离的要求,选择不同的冷冻介质。
制冷循环可以是单级也可以是多级串联。
常用的制冷介质有氨、氟里昂、丙烷或乙烷等。
在我国,丙烷制冷工艺应用于轻烃回收装置还不到10年时间,但山于其制冷系数较大,制冷温度为(-35~-30℃),丙烷制冷剂可由轻烃回收装置自行生产,无刺激性气味,因此近儿年来,该项技术迅速推广,我国新建的外冷工艺天然气轻烃回收装置基本都采用丙烷制冷工艺,一些原设计为氨制冷工艺的老装置也在改造成丙烷制冷工艺。
天然气轻烃回收工艺一.轻烃回收工艺从天然气中回收轻烃凝液经常采用的工艺包括油吸收法,吸附法,冷凝法。
国内外近20多年已建成的轻烃回收装置大多采用冷凝法。
冷凝法回收轻烃工艺就是利用天然气中各烃类组分冷凝温度的不同,在逐步降温过程中依次将沸点较高的烃类冷凝分离出来的方法。
该法的基点是在于:需要提供较低温位的冷量使原料气降温。
按制冷温度不同,又可分为浅冷分离和深冷分离工艺。
浅冷是以回收丙烷为主要目的,制冷温度一般在-15~-25℃左右,深冷则以回收乙烷为目的或要求丙烷收率大于90%。
制冷温度一般在-90~-100℃左右。
常用的制冷工艺主要有三种:①冷剂循环制冷工艺;②膨胀制冷工艺;③冷剂制冷与膨胀制冷的联合制冷工艺。
常用的原料气脱水工艺主要采用分子筛(3A或4A)脱水法和甘醇脱水法。
二.轻烃回收工艺选择1.选择依据含量及自身可利用的压力降大小等多方面因素来选择合适根据油气田中C2的制冷工艺。
根据原料气预冷温度要求的脱水深度及天然气组成等多方面因素来选择合适的天然气脱水工艺。
2.制冷工艺的选择① 冷剂制冷工艺冷剂制冷是利用某些物质(制冷工质)在低温下冷凝分离(如融化、汽化、升华)时的吸热效应产生的冷量。
在NGL(Natural Gas Liquids天然气凝液)回收中常用乙烷、丙烷、氨、氟里昂等由液体汽化吸热冷。
这就需要耗功,用压缩机将气体压缩升压,冷凝液化、蒸发吸热、产生冷量必须消耗热能。
冷剂制冷工艺流程比较复杂,投资较高,但稳定性比较好。
② 膨胀机制冷工艺膨胀机制冷是非常接近于等熵膨胀的过程,气体经过膨胀降压之后温度降低(可能有凝液产生)。
这部分气体与原料气换冷或通过别的途径放出冷量。
膨胀机制冷可以回收一部分功,一般匹配同轴压缩机。
膨胀机制冷工艺中的单级膨胀制冷理论上可达到深冷工艺要求的制冷温度,但对天然气轻烃回收量较大的装置,制冷量需求较大。
如采用单级膨胀制冷工艺,则天然气的压缩功会太大,能耗较高,并由于较高的原料气压力使操作稳定性降低。
轻烃回收工艺流程轻烃回收工艺流程是指对工业生产过程中产生的废气中所含的轻烃进行回收利用的一种处理方法。
轻烃是指碳数较低的烷烃类化合物,如甲烷、乙烷、丙烷等。
这些轻烃通常是石油、天然气等燃料的组成成分,具有较高的能量价值。
因此,对于将这些轻烃回收利用,不仅可以减少能源浪费,还可以减少对环境的污染。
轻烃回收工艺流程主要包括以下几个步骤:废气收集、净化、液化、分离和利用。
首先,废气收集是指将产生轻烃废气的工业生产设备的排放口通过管道连接到废气处理设备上。
废气处理设备可以是一个集中的废气处理装置,也可以是直接连接到产生废气的生产设备上的小型处理装置。
然后,废气净化是指将废气中的杂质、颗粒物等进行过滤和清除,以保证后续处理过程的正常进行。
废气净化可以采用物理方法,如过滤、吸附等,也可以采用化学方法,如催化氧化等。
接下来,废气液化是将经过净化的废气进行冷却和压缩,使其转变为液态,方便后续步骤中的分离和利用。
废气液化通常采用冷凝器和压缩机进行,通过降低废气的温度和增加废气的压力,使其转变为液态的轻烃。
然后,分离过程是将液态的轻烃通过蒸馏等方法,将其中碳数不同的烷烃分开。
这是因为不同碳数的烷烃在沸点上存在差异,通过控制温度和压力,可以将其分离开来,并分别进行后续的利用。
最后,利用过程是将分离出的各种轻烃利用起来。
这可能包括将其作为燃料进行燃烧,或作为原料进行化学反应,制备其他有用的化学品。
轻烃的利用方式多种多样,根据不同的需求和实际情况进行选择。
综上所述,轻烃回收工艺流程是一种将工业生产过程中产生的废气中的轻烃进行回收利用的处理方法。
通过废气收集、净化、液化、分离和利用等步骤,可以将废气中的轻烃转化为有用的能源或化学品,达到减少能源浪费和环境污染的目的。
这一工艺流程在现代工业生产中具有重要的意义,可以提高资源利用效率,促进可持续发展。
轻烃回收工艺主要有三类:油吸收法;吸附法;冷凝分离法。
当
前主要采用冷凝分离法实现轻烃回收。
1、吸附法
利用固体吸附剂(如活性氧化铝和活性炭)对各种烃类吸
附容量不同,而,将吸附床上的烃类脱附,经冷凝分离出
所需的产品。
吸使天然气各组分得以分离的方法。
该法一
般用于重烃含量不高的天然气和伴生气的加工办法,然后
停止吸附,而通过少量的热气流附法具有工艺流程简单、
投资少的优点,但它不能连续操作,而运行成本高,产品
范围局限性大,因此应用不广泛。
2、油吸收法
油吸收法是基于天然气中各组分在吸收油中的溶解度差异,而使不同的烃类得以分离。
根据操作温度的不同,
油吸收法可分为常温吸收和低温吸收。
常温吸收多用于中
小型装置,而低温吸收是在较高压力下,用通过外部冷冻
装置冷却的吸收油与原料气直接接触,将天然气中的轻烃
洗涤下来,然后在较低压力下将轻烃解吸出来,解吸后的
贫油可循环使用,该法常用于大型天然气加工厂。
采用低
温油吸收法C3 收率可达到( 85~90%),C2 收率可达到
(20~60%)。
油吸收法广泛应用于上世纪 60 年代中期,但由于其工艺流
程复杂,投资和操作成本都较高,上世纪 70 年代后,己
逐步被更合理的冷凝分离法所取代。
上世纪80 年代以后,我国新建的轻烃回收装置己较少采用油吸收法。
3、冷凝分离法
(1)外加冷源法
天然气冷凝分离所需要的冷量由独立设置的冷冻系统提供。
系统所提供冷量的大小与被分离的原料气无直接关系,故又
可称为直接冷凝法。
根据被分离气体的压力、组分及分离的
要求,选择不同的冷冻介质。
制冷循环可以是单级也可以是
多级串联。
常用的制冷介质有氨、氟里昂、丙烷或乙烷等。
在我国,丙烷制冷工艺应用于轻烃回收装置还不
到 10 年时间,但山于其制冷系数较大,制冷温度为(-35~
-30℃),丙烷制冷剂可由轻烃回收装置自行生产,无刺激
性气味,因此近儿年来,该项技术迅速推广,我国新建的
外冷工艺天然气轻烃回收装置基本都采用丙烷制冷工艺,
一些原设计为氨制冷工艺的老装置也在改造成丙烷制冷工
艺。
(2)自制冷法①节
流制冷法
节流制冷法主要是根据焦耳 -汤姆逊效应,较高压力的原料
气通过节流阀降压膨胀,使原料气冷却并部分液化,以达到
分离原料气的目的。
该方法具有流程简单、设备少、投资少
的特点,但此过程效率低,只能使少量的重烃液化,
故只有在气体有压力能可利用,处理量小,气体重烃含量
少和收率要求不高时才选用此方法。
②透平膨胀机制冷法
采用透平膨胀机制冷法的前提条件是有自由压力能供利用
的场合。
当具有一定压力的天然气通过透平膨胀机时,其
膨胀过程近似于等嫡膨胀过程,获得膨胀功的同时,气流
的温度将急剧下降。
因此,气流中的烃组分将被冷凝下来。
膨胀机制冷法的特点是流程简单,设备数量少,维护费用低,公用工程消耗低,占地面积小,因此近年来采用的较多。
但是当处理量过小时不宜采用,因为此时膨胀机效率
较低,可考虑采用热分离机。
③热分离机制冷法
热分离机装置的流程与透平膨胀机装置类似,主要
差别是主冷设备不同,它是利用高能动力气体由转动(或静止 )的喷嘴分配进入末端封闭的容器,形成压缩、膨胀,
由动能转变为热能的多变过程。
压缩时放出的热量由周围
环境吸收掉,而膨胀时则相似于等嫡过程使气体降温而达
到制冷的目的。
热分离机具有结构简单,维修方便,省人省电,允许带液工作的特点,适用于小气量、带液量大和气源压力较高的场所。
但是国内开发应用的热分离机制冷技术,由于热分离效率低、适应性差、技术性能差、质量不过关等原因,
在我国仍处于工业试验阶段。
(3)混合制冷法
为了最大限度地从天然气中回收轻烃,要求的温度更低,单一的制冷法一般难以达到,即便有时膨胀机制冷能
达到温度,但由于出口带液问题,对富气仍是不适用的,
这时往往采用混合制冷法,即冷冻循环的多级化和混合冷
剂制冷以及膨胀机加外冷的方式来实现。
目前,轻烃回收
工艺上应用最多的是外加冷剂循环制冷作为辅助冷源,膨
胀制冷作为主冷源,并采取逐级冷冻和逐级分离出凝液的
工艺措施来降低冷量消耗和提高冷冻深度,以达到较高的
冷凝率,回收原料气中绝大部分丙烷组份,达到回收目的。
这种方法具有许多优点:1)有两个冷源,因此运转适应性
较大,即使外加制冷系统发生故障,装置也能在保持较低
收率情况下继续运行。
2)混合制冷法中的外加制冷系统比
外加冷源法要简单、容量小 ;外加冷源解决高沸点较重烃类
冷凝问题,膨胀制取的冷量用在较低温度位。
3)此种流程
组合即可提高乙烷、丙烷收率,又可大大减少装置的能耗。
轻烃回收新工艺
1.3.
2.1 气体过冷工艺 (GSP)和液体过冷工艺 (LSP)
此工艺是对工业标准单级膨胀制冷工艺(ISS)和多级膨胀制冷工艺 (MTP)的改进。
采用GSP 工艺可在保持较高
C2 烃类收率的情况下,使原料气中C2 的容许含量高于膨
胀制冷工艺的容许含量,而且功耗较低。
1.3.
2.2 直接换热工艺 (DHX)
DHX 工艺是埃索资源公司首先提出并在JudyCreek 工厂实
践,叮收率由原来的72%增加到 95%。
实践证明,在不回
收乙烷的情况下,利用 DHX工艺可很容易地对现有的膨胀
制冷流程加以改造,多数情况下所用投资较少。
1.3.
2.3 混合冷剂制冷工艺
与传统的单组分冷剂或阶式制冷法相比,混合冷剂制冷
(MRC)法采用的冷剂可根据冷冻温度的高低配制冷剂的组
分与组成一般是以乙烷、丙烷为主。
当压力一定时,混合
冷剂在一个温度范围内随着温度逐渐升高而逐步汽化,因
而在换热器中与待冷冻的天然气的传热温差很小,故其用
效率很高。
当原料气与外输干气压差甚小,或在原料气较
富的情况下,采用混合冷剂制冷法的工艺更为有利。
1.3.3 国内外轻烃回收技术的发展趋势
国内外轻烃回收技术将以低温分离法为主,向投资少、
深分离、高效率、低能耗、橇装化、自动化的方向发展。
目前通用的工艺流程
1、加拿大改良油吸收法轻烃回收新工艺
2、冷剂制冷与膨胀机制冷相结合的混合制冷
3、 DHX 换热工艺。