定量分析中的误差
- 格式:ppt
- 大小:1.90 MB
- 文档页数:116
第一章定量分析测定中的误差本章教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。
2、掌握系统误差和偶然误差的概念。
3、掌握有效数字的概念及运算规则,并能在实践中灵活运用。
教学重点与难点:准确度和精密度表示方法;误差来源;有效数字及运算法则。
教学内容:第一节定量分析中的误差教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。
2、掌握系统误差和偶然误差的概念。
教学重点:误差、偏差的概念和计算方法,准确度和精密度表示方法教学难点:误差来源实验引题:1、每位同学测自己20秒的脉搏,测6次,记录每次脉动次数。
2、投影屏开启4~5次,记录每次所需时间。
设问:1、同一块表测得的脉动次数或开启时间相同吗?2、不同的表(定时)测得的脉动次数或开启时间相同吗?引入内容:在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等方面的限制,使测得的结果不可能和真实含量完全一致;即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。
这说明客观上存在着难于避免的误差。
一、真实值、平均值与中位值1.真实值(x T)物质中各组分的真实数值,称为该量的真实值。
显然,它是客观存在的。
一般来说,真实值是末知的,但下列情况可认为其真实值是已知的。
(1)理论真实值 如某种化合物的理论组成等。
(2)相对真实值 认定精度高一个数量级的测定值作为低一级测量值的真实值,这种真实 值是相对比较而言的。
如分析实验室中标准试样及管理试样中组分的含量等。
2.平均值(1) 算术平均值(x ) 几次测量数据的算术平均值为12311nni i x x x x x x nn =++++==∑ (1-1) (2) 总体平均值(u ) 表示总体分布集中趋势的特征值。
第二章定量分析中的误差及其处理分析结果必须达到一定的准确度,满足对分析结果准确度的要求。
因为不准确的分析结果会导致产品的报废和资源的浪费,甚至在科学上得出的错误的结论,给生产或科研造成很大的损失,人民生活造成巨大困难或灾难。
但是分析结果是由分析者对所取样品(供试品或样品)利用某种分析方法、分析仪器、分析试剂得到的,必然受到这些分析的限制,分析结果不可能和样品的真实组成或真实含量完全一致,在一定条件下分析结果只能接近于真实值而不能达到真实值。
测定值与客观存在的真实值的差异就是所谓的误差(error)。
因此分析误差是客观存在、不可避免的,我们只能得到一定误差范围内的真实含量的近似值,达到一定的准确度。
采用哪些措施可能减小误差,依赖于误差本身的性质。
所以,我们应当了解误差的有关理论,明确误差的性质和来源,根据分析目的对误差的要求,选择准确度合适的分析方法,合理安排分析实验,设法减小分析误差,使分析结果的准确度达到要求,避免追求过高的准确度。
同时,也应当了解对分析结果的评价方法,以判断分析结果的可靠程度,对分析结果做出正确的取舍和表示。
2.1 分析结果的误差一、真值、样本平均值和总体平均值1. 真值与相对真值真值(true value)是指某物理量本身具有的客观存在的真实数值,表示物质存在的数量特征,用T来表示。
由于分析误差是不可避免的,因此真值是不可能测得的,实际工作中往往将理论值、约定值和标准值当作真值来检验分析结果的准确度,分别称为理论真值、约定真值和标准真值。
理论真值是指由公认理论推导或证明的某物理量的数值。
如水的组成常数或组成分数即为理论真值:1 mol H2O含2mol H和1 mol O,再如H+与OH-的反应的化学计量关系即H+与OH-的反应量之比为1 mol H+ : 1 mol OH-,该比值也是理论真值。
约定真值是指计量组织、学会或管理部门等规定并得到公认的计量单位的数值。
如国际计量大会定义的长度、时间、质量和物质的量等物理量的基本单位:光在真空中传播(1/299 792 458)s所经过的路径长度为1 m,国际千克原器的质量为1 kg、铯-133原子基态的两个超精细能级之间跃迁所对应的辐射的9 192 631 770个周期的持续时间为1 s等。
定量分析中的误差定量分析中的误差,也称为测量误差,是指实际测量结果与真实值之间的差异。
在定量分析领域中,对误差的准确定义和评估是非常重要的,因为它直接影响到数据的可靠性和结果的准确性。
本文将探讨定量分析中的误差的类型、产生原因以及如何评估和控制误差。
1.系统误差是由于测量方法、仪器或实验条件等固有的偏倚或倾斜引起的误差。
这种误差是有方向性的,通常是持续的,会导致测量结果偏离真实值的固定量。
系统误差的产生原因包括:-仪器漂移:由于仪器老化、磨损或使用不当等,仪器的测量性能会逐渐下降,导致系统误差。
-校准不准确:如果仪器的校准不准确,或者校准曲线的拟合不好,都会产生系统误差。
-环境条件:例如温度、湿度等环境条件的变化,会影响到实验条件,进而产生系统误差。
-人为因素:操作员的技术水平、操作规范等因素也可能引起系统误差。
2.随机误差是由于各种随机因素所引起的误差,其大小和方向都是无规律的,因此也称为无偏差误差。
这种误差会导致在多次重复测量中,得到不同结果,形成结果的分布。
随机误差的产生原因包括:-个体差异:不同个体之间的差异,包括实验对象的差异和人体感知的差异等,会导致随机误差。
-实验条件的不确定性:例如仪器的读数精度、样品的异质性等,都会产生随机误差。
-测量误差的传播:由于测量值之间的运算和计算过程中的近似或舍入,误差会被传递到结果中,导致随机误差。
在定量分析中,我们需要对误差进行评估和控制,以保证数据的准确性和可靠性。
评估误差的方法包括:1.校准和验证:通过与已知标准值的比较,来评估仪器的准确性和正误差大小。
2.重复测量:通过多次重复测量同一样品,来评估测量值的离散程度,即随机误差的大小。
3.数据处理和统计分析:使用合适的统计方法,对测量数据进行处理和分析,以评估误差的大小和分布。
控制误差的方法包括:1.合理设计实验:在实验过程中,根据实验目的和特点,合理设计实验方案,减少系统误差和随机误差的产生。
第2章定量分析中的误差及分析数据的处理(上)§2-1定量分析的误差§2-1-1 误差的种类、性质及产生的原因1. 系统误差——由某种固定原因引起的误差(1) 特点a.单向性:对分析结果的影响比较恒定;b.重现性:在同一条件下,重复测定,重复出现;c.可测性:可以测定,可以消除。
产生的原因?(2) 系统误差产生的原因a.方法误差——选择的方法不够完善例:重量分析中沉淀的溶解损失;滴定分析中指示剂选择不当。
b.仪器误差——仪器本身的缺陷例:天平两臂不等,砝码未校正;滴定管,容量瓶未校正。
c.试剂误差——所用试剂有杂质例:去离子水不合格;试剂纯度不够(含待测组份或干扰离子)。
d.主观误差——操作人员主观因素造成例:对指示剂颜色辨别偏深或偏浅;滴定管读数不准,洗涤沉淀不充分等。
2.随机误差(偶然误差——由某些无法控制及避免的偶然因素造成的)(1) 特点a.不恒定b.难以校正c.服从正态分布(统计规律)(2) 产生的原因a.偶然因素(温度、电压等)b.分析仪器读数的不确定性方向不定,大小不定,难以预测3. 过失误差重作实验!误差如何定量表示?一、误差与准确度1. 绝对误差E a ──测定结果与真实值之间的差值测得值-真实值(E a =x-x T )真值——有时用标准值或多次测定的平均值代替准确度──分析结果与真实值的接近程度准确度的高低用误差的大小来衡量误差──测得值与真值(客观存在的真实数值)的差值误差的绝对值越小准确度越高,误差一般用绝对误差和相对误差来表示。
§2-1-2准确度与精密度三、准确度和精密度的关系——分析结果的衡量指标。
准确度──分析结果与真实值的接近程度精密度──分析结果相互的接近程度表示方法来源对结果的影响准确度——绝对误差——系统误差——正确性相对误差偶然误差精密度——平均偏差——偶然误差——重现性标准偏差相对平均偏差极差§2-2、提高分析结果准确度的方法1. 系统误差的减免(1) 方法误差——采用标准方法,对照实验用新方法对标准样品进行测定,将测定结果与标准值相对照(2) 仪器误差——校正仪器(3) 试剂误差——作空白实验:通常用蒸馏水代替试样,而其余条件均与正常测定相同2. 偶然误差的减免——增加平行测定的次数:一般分析实验平行测定3-4次3.控制测量的相对误差任何测量仪器的测量精确度都是有限度的由测量精度的限制而引起的误差又称为测量的不确定性,属于随机误差例如,滴定管读数误差滴定管的最小刻度为0.1 mL,要求测量精确到0.01 mL,最后一位数字只能估计最后一位的读数误差在正负一个单位之内,即±0.01 mL在滴定过程中要获取一个体积值V(mL)需要两次读数按最不利的情况考虑,两次滴定管的读数误差相叠加,则所获取的体积值的读数误差为±0.02 mL这个最大可能绝对误差的大小是固定的,是由滴定管本身的精度决定的——绝对误差可以设法控制体积值本身的大小而使由它引起的相对误差在所要求的±0.1%之内§2-3 有效数字及其运算法则2-3-1 有效数字1.实验过程中常遇到的两类数字(1)测量值或计算值。