高中数学函数图象专题例题+练习
- 格式:doc
- 大小:377.50 KB
- 文档页数:2
高三数学函数图像试题1.下列四个图中,函数y=的图象可能是( )A. B. C. D.【答案】C.【解析】当时,有,,∴,故排除A,B,又∵当时,有,,∴,故排除D,∴选C.【考点】1.函数的单调性与奇偶性;2.指对数的性质.2.设表示不超过实数的最大整数,则在坐标平面上,满足的点所形成的图形的面积为__________.【答案】4【解析】设都是整数,则满足的点形成的图形是单位正方形(,),其面积为1,而在椭圆上整点有,共4个,因此满足题设条件的点形成的图形是4个单位正方形,其面积为4.【考点】函数图象,图形面积.3.已知函数的图象大致为()【答案】A【解析】,的图象始终位于的图象的上方,所以函数值为正数,排除当取时,,排除.选.【考点】函数的图象.4.已知定义在R上的函数对任意的x满足,当-l≤x<l时,.函数若函数在上有6个零点,则实数a的取值范围是()A.B.C.D.【答案】【解析】由已知,,所以,是周期为的周期函数.函数在上有个零点,即的图象有个交点.结合函数的图象的示意图可知,当,两函数图象有两个交点,当时,两函数图象有一个交点;所以,时,两函数图象应有三个交点,.解得或,故选.【考点】函数的周期性,函数的图象,函数的零点,对数函数的性质.5.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.6.函数的图像大致为( ).【答案】A【解析】函数有意义,需使,其定义域为,排除C,D,又因为,所以当时函数为减函数,故选A.7.已知函数的图象关于直线对称,则可能是()A.B.C.D.【答案】C【解析】∵函数的图象关于直线对称,∴,∴,当时,,故选C.【考点】由的部分图象确定其解析式.8.已知定义在R上的函数满足:,,则方程在区间上的所有实根之和为( )A.B.C.D.【答案】C【解析】由题意知函数的周期为,则函数在区间上的图象如下图所示:由图形可知函数在区间上的交点为,易知点的横坐标为,若设的横坐标为,则点的横坐标为,所以方程在区间上的所有实数根之和为.【考点】数形结合图像周期性9.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.10.已知函数,则的图象大致为()【答案】A【解析】,令,则,在同一坐标系下作出两个函数的简图,根据函数图象的变化趋势可以发现与共有三个交点,横坐标从小到大依次设为,在区间上有,即;在区间有,即;在区间有,即;在区间有,即.故选【考点】1转化思想;2函数图像。
函数图像问题高考试题精选一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A.B.C. D.2.函数y=x+cosx的大致图象是()A.B.C.D.3.函数y=的图象大致是()A.B. C.D.4.函数y=xln|x|的大致图象是()A. B.C.D.5.函数f(x)=x2﹣2|x|的图象大致是()A.B.C.D.6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.8.函数y=xln|x|的图象大致是()A.B.C.D.9.f(x)=的部分图象大致是()A.B.C.D.10.函数的图象大致为()A.B.C.D.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A.B.C.D.13.函数的部分图象大致为()A.B.C.D.14.函数f(x)=的部分图象大致为()A.B.C.D.15.函数的部分图象大致为()A.B.C.D.16.函数y=x(x2﹣1)的大致图象是()A.B.C.D.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.18.函数f(x)=的部分图象大致是()A..B..C..D.. 19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B. C.D.20.函数的图象大致是()A.B.C.D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.22.函数的图象大致是()A.B.C.D.23.函数y=的大致图象是()A.B.C.D.24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A. B. C.D.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A.B.C.D.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A. B. C. D.27.函数y=1+x+的部分图象大致为()A.B.C.D.28.函数y=的部分图象大致为()A.B.C.D.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.30.函数f(x)=e ln|x|+的大致图象为()A.B. C.D.31.函数y=的一段大致图象是()A.B.C.D.32.函数的图象大致是()A.B.C.D.33.函数的大致图象是()A.B.C.D.34.函数的图象大致为()A.B.C.D.二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.36.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.函数图像问题高考试题精选参考答案与试题解析一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A.B.C. D.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)e x,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.2.函数y=x+cosx的大致图象是()A.B.C.D.【解答】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.3.函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D4.函数y=xln|x|的大致图象是()A. B.C.D.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.5.函数f(x)=x2﹣2|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=x2﹣2|x|,∴f(3)=9﹣8=1>0,故排除C,D,∵f(0)=﹣1,f()=﹣2=0.25﹣<﹣1,故排除A,故选:B当x>0时,f(x)=x2﹣2x,∴f′(x)=2x﹣2x ln2,故选:B6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C不正确故选:A8.函数y=xln|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=xln|x|,可得f(﹣x)=﹣f(x),f(x)是奇函数,其图象关于原点对称,排除A,D,当x→0时,f(x)→0,故排除B又f′(x)=lnx+1,令f′(x)>0得:x>,得出函数f(x)在(,+∞)上是增函数,故选:C.9.f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵f(﹣x)=f(x)∴函数f(x)为奇函数,排除A,∵x∈(0,1)时,x>sinx,x2+x﹣2<0,故f(x)<0,故排除B;当x→+∞时,f(x)→0,故排除C;故选:D10.函数的图象大致为()A.B.C.D.【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e﹣1,当x=e时,f(e)=,排除选项D.故选:C.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,e x+1→2,x(e x﹣1)→0,∴→+∞,排除C,故选A.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A.B.C.D.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.13.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.14.函数f(x)=的部分图象大致为()A.B.C.D.【解答】解:函数f(x)==﹣,当x=0时,可得f(0)=0,f(x)图象过原点,排除A.当﹣<x<0时;sin2x<0,而|x+1|>0,f(x)图象在上方,排除C.当x<﹣1,x→﹣1时,sin(﹣2)<0,|x+1|→0,那么f(x)→∞,当x=﹣时,sin2x=﹣,y=﹣=,对应点在第二象限,排除D,B满足题意.故选:B.15.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.16.函数y=x(x2﹣1)的大致图象是()A.B.C.D.【解答】解:∵函数y=x(x2﹣1),令f(x)=x(x2﹣1),则f(﹣x)=﹣x(x2﹣1)=﹣f(x),故函数f(x)为奇函数,又当0<x<1时,f(x)<0,综上所述,函数y=x(x2﹣1)的大致图象是选项A.故选:A.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y′=1﹣2cosx,由y′=0解得x=,∴当x=时,函数取极值,故D适合,故选:D.18.函数f(x)=的部分图象大致是()A..B..C..D..【解答】解:由x2+|x|﹣2=0,解得x=﹣1或x=1,∴函数的定义域为(﹣∞,﹣1)∪(﹣1,1)∪(1,+∞),∵f(﹣x)==﹣f(x),∴f(x)为奇函数,∴f(x)的图象关于原点对称,故排除A,令f(x)=0,解得x=0,故排除C,当x=时,f()=<0,故排除B,故选:D19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B. C.D.【解答】解:由y=﹣2x2+2|x|知函数为偶函数,即其图象关于y轴对称,故可排除B,D.又当x=2时,y=﹣2•(﹣2)2+22=﹣4.所以,C是错误的,故选:A.20.函数的图象大致是()A.B.C.D.【解答】解:解:定义域为(﹣∞,0)∪(0,+∞),f(x)=)=﹣,∴f(﹣x)=f(x),f(x)为偶函数,.∴其图象关于y轴对称,可排除A、C,;又当x→0时,cos(πx)→1,x2→0,∴f(x)→﹣∞.故可排除B;而D均满足以上分析.故选:D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.【解答】解:函数f(x)=(x∈[﹣2,2])满足f(﹣x)=﹣f(x)是奇函数,排除D,x=1时,f(1)=>0,对应点在第一象限,x=2时,f(2)=<0,对应点在第四象限;所以排除B,C;故选:A.22.函数的图象大致是()A.B.C.D.【解答】解:函数满足f(﹣x)=﹣f(x),故函数图象关于原点对称,排除A、B,当x∈(0,)时,,故排除D,故选:C23.函数y=的大致图象是()A.B.C.D.【解答】解:函数y=的导数为,令y′=0,得x=,时,y′<0,时,y′>0,时,y′<0.∴函数在(﹣),()递减,在()递增.且x=0时,y=0,故选:C24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A. B. C.D.【解答】解:函数y=sinx(1+cos2x),定义域为[﹣2,2]关于原点对称,且f(﹣x)=sin(﹣x)(1+cosx)=﹣sinx(1+cosx)=﹣f(x),则f(x)为奇函数,图象关于原点对称,排除D;由0<x<1时,y=sinx(1+cos2x)=2sinxcos2x>0,排除C;又2sinxcos2x=0,可得x=±(0<x≤2),则排除A,B正确.故选B.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A.B.C.D.【解答】解:函数f(x)=(x2﹣3)•ln|x|是偶函数;排除选项A,D;当x→0时,f(x)→+∞,排除选项B,故选:C.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A. B. C. D.【解答】解:函数f(x)=﹣e﹣ln|x|+x是非奇非偶函数,排除A,D;当x>0时,f(x)=﹣e﹣lnx+x=x﹣,函数是增函数,排除C;故选:B.27.函数y=1+x+的部分图象大致为()A.B.C.D.【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,点x=π时,y=1+π,排除B.故选:D.28.函数y=的部分图象大致为()A.B.C.D.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.【解答】解:函数f(x)=x•ln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除B;故选:D.30.函数f(x)=e ln|x|+的大致图象为()A.B. C.D.【解答】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.31.函数y=的一段大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.32.函数的图象大致是()A.B.C.D.【解答】解:由题意,函数在(﹣1,1)上单调递减,在(﹣∞,﹣1),(1,+∞)上单调递减,故选A.33.函数的大致图象是()A.B.C.D.【解答】解:f(﹣x)===﹣f(x),∴f(x)是奇函数,图象关于原点对称,故A,C错误;又当x>1时,ln|x|=lnx>0,∴f(x)>0,故D错误,故选B.34.函数的图象大致为()A.B.C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.36.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y ﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.第31页(共31页)。
高中数学基本初等函数图像题专题训练含答案姓名:__________ 班级:__________考号:__________一、选择题(共20题)1、函数的图象大致是 ( )A .B .C .D .2、已知函数的图象如图所示,则该函数的解析式可能是()A .B .C .D .3、函数在区间上的图象大致是()A . B .C .D .4、函数的图象大致为()A .B .C .D .5、 A . B .C .D .6、下列图象中不能作为函数的是()A .B .C .D .7、设函数满足对,都有,且在上单调递增,,,则函数的大致图象是()A .B .C .D .8、若方程在区间有解,则函数图象可能是()A .B .C .D .9、函数的图象大致为()A .B .C .D .10、函数的大致图象为()A .B .C .D .11、函数,图象大致为A. B .C .D .12、函数的图象大致是()A .B .C .D .13、已知函数,,则的图象不可能是()A .B .C .D .14、函数的图像可能是()A .B .C .D .15、函数的图像大致为()A .B .C .D .16、函数的图象大致为A .B .C .D .17、函数在其定义域上的图象大致为()A .B .C .D .18、函数的图象大致形状是()A .B .C .D .19、已知,函数与的图象可能是()A .B .C .D .20、函数的图象大致为()A .B .C .D .============参考答案============一、选择题1、B【解析】【分析】根据题意,先分析函数的奇偶性,排除AC ,再判断函数在上的符号,排除 D ,即可得答案.【详解】∵ f ( x ) 定义域 [ - 1 , 1 ] 关于原点对称,且,∴ f ( x ) 为偶函数,图像关于y 轴对称,故AC 不符题意;在区间上,,,则有,故 D 不符题意, B 正确.故选: B .2、D【解析】【分析】根据函数的图象结合函数的定义域,复合函数的奇偶性,利用排除法,即可得到结果 . 【详解】由图象可知函数是奇函数,函数和由复合函数的奇偶性可知,这两个函数为偶函数,故排除 A , C ;对于函数,由于时,,此时无意义,所以函数不经过原点,故 B 错误;故 D 满足题意.故选: D.3、A【解析】【分析】先判断函数的奇偶性,再由,进而得到正确选项 .【详解】∵ 函数,故函数为奇函数,排除 BD ;,可排除 C.故选: A.4、 B【分析】根据函数的奇偶性可排除 C ,再根据的符号即可排除 AD ,即可得出答案.【详解】解:函数的定义域为R ,因为,所以函数是偶函数,故排除 C ;,故排除 A ;,故排除 D.故选: B.5、【分析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象 .【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且时,,据此可知选项B 错误 .故选: A.【点睛】函数图象的识辨可从以下方面入手: (1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6、 B【分析】根据函数的定义可知,对于x 的任何值y 都有唯一的值与之相对应,分析图象即可得到结论.【详解】由函数的定义可知,对定义域内的任意一个自变量x 的值,都有唯一的函数值y 与其对应,故函数的图象与直线x =a 至多有一个交点,图 B 中,存在x =a 与函数的图象有两个交点,不满足函数的定义,故 B 不是函数的图象.故选: B7、 A【分析】判断的奇偶性排除 BD ,再由当时,得出答案 .【详解】令,则函数为偶函数,故排除 BD当时,,则,故排除 C故选: A【点睛】关键点睛:本题关键是采用排除法,由奇偶性排除 BD ,再由当时,排除 C.8、 D【分析】由题意可得在区间上,能够成立,结合所给的选项,得出结论【详解】解:方程在区间上有解,在区间上,能够成立,结合所给的选项,只有 D 选项符合.故选: D .9、 A【分析】由条件判断函数为奇函数,且在为负数,从而得出结论 .【详解】,因此函数为奇函数,图像关于原点对称排除;当时,,,因此.故选:.【点睛】本题主要考查的是函数图像的应用,奇偶性的应用,根据奇偶函数的对称性进行判断是解决本题的关键,是中档题 .10、 A【分析】判断函数的奇偶性和对称性的关系,利用极限思想进行求解即可【详解】解:函数,,,,则函数为非奇非偶函数,图象不关于 y 轴对称,排除 C , D ,当,排除 B ,故选 A【点睛】本题主要考查函数图象的识别和判断,利用函数的对称性以及极限思想是解决本题的关键11、 D【分析】根据函数的奇偶性和函数图像上的特殊点对选项进行排除,由此得出正确选项 .【详解】,故函数为奇函数,图像关于原点对称,排除选项 .由排除选项 . 由,排除 C 选项,故本小题选 D.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性的判断方法,属于基础题 .12、 C【分析】根据函数的奇偶性和值域即可判断 .【详解】所以为偶函数,所以图象关于轴对称,故排除 B ,当时,故排除 A ,当时,故排除 D故选: C .13、 D【分析】先分析出为偶函数 . ,其图像关于y 轴对称,即可得到答案 .【详解】定义域为 R.因为,所以为偶函数 . ,其图像关于y 轴对称,对照四个选项的图像,只能选 D.故选 :D14、 B【分析】根据、分类讨论的图象,利用导函数研究它在各个区间上的单调性,分别判断两个区间某一部份的单调性即可得到它的大致图象;【详解】1 、当时,,即,令,则,∴ 时,即单调递增,故,∴ 此时,,即在单调递增,故排除D 选项;2 、当时,,令,则,∴ ,,故有即,所以,∴ 在上,而,故在上一定有正有负,则有B 正确;故选: B【点睛】本题考查了利用导数研究函数单调性,并确定函数的大致图象,注意按区间分类讨论,以及零点、极值点的讨论15、 B【分析】由函数为偶函数可排除 AC ,再由当时,,排除 D ,即可得解.【详解】设,则函数的定义域为,关于原点对称,又,所以函数为偶函数,排除 AC ;当时,,所以,排除 D.故选: B.16、 C【分析】由可排除 A 、 D ;再利用导函数判断在上的单调性,即可得出结论 . 【详解】因为,故排除 A 、 D ;,令,在是减函数,,在是增函数,,存在,使得,单调递减,单调递增,所以选项 B 错误,选项 C 正确.故选: C【点睛】本题考查由解析式选择函数图象的问题,利用导数研究函数单调性是解题的关键,考查学生逻辑推理能力,是一道中档题 .17、 D【分析】求函数的定义域 , 判断函数的奇偶性和对称性, 利用排除法, 进行判断即可【详解】函数的定义域为.因为,,所以是奇函数,图象关于原点对称,排除 A,B ;当,,排除 C.故选 :D.18、 D【分析】利用排除法,先判断函数的奇偶性,再取特殊值即可判断【详解】解:函数的定义域为,因为,所以为偶函数,所以其图像关于轴对称,所以排除 A ,B ,因为,所以排除 C ,故选: D19、 B【分析】根据函数的定义域,判断两个函数的单调性,即可求解 .【详解】,函数在上是增函数,而函数定义域为,且在定义域内是减函数,选项 B 正确》故选 :B.【点睛】本题考查函数的定义域、单调性,函数的图像,属于基础题 .20、 A【分析】分析函数的奇偶性,并结合函数的解析式知:当时,即可确定大概函数图象 . 【详解】根据题意,设,其定义域为,有,则为奇函数,其图象关于原点对称,排除 C 、 D ,当时,,,必有,排除 B ,故选: A.【点睛】关键点点睛:分析函数的奇偶性与函数值符号,应用间接法确定函数图象 .。
高三数学函数图像试题答案及解析1.函数在上的图像大致为()【答案】A【解析】函数是奇函数,所以C,D被排除;当时,,,由此判断,函数原点右侧开始时应该是正数,所以选A.【考点】函数的图像与性质2.如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )【答案】B【解析】通过圆心角α将弧长x与时间t联系起来.圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cos=1-t,即cos=1-t,则y=cos x=2cos2-1=2(1-t)2-1=2(t-1)2-1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.3.若函数的图像如右图所示,则下列函数图像正确的是()【答案】B【解析】由题意可得.所以函数是递减的即A选项不正确.B正确. 是递减,所以C不正确. 图象与关于y轴对称,所以D不正确.故选B.【考点】函数的图象.4.已知函数f(x)=|lgx|,若a≠b,且f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【答案】C【解析】函数f(x)=|lgx|的图象如图所示,由图象知a,b一个大于1,一个小于1,不妨设a>1,0<b<1.∵f(a)=f(b),∴f(a)=|lga|=lga=f(b)=|lgb|=-lgb=lg.∴a=.∴a+b=b+>2=2.5.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为________.【答案】【解析】由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图像如图所示,结合图像可知,当x∈[2,3]时,y=x2-5x+4∈,故当m∈时,函数y=m与y=x2-5x+4(x∈[0,3])的图像有两个交点.6.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.7.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.9.已知,则函数的零点个数为()A.1B.2C.3D.4【答案】D【解析】由题意可知,要研究函数的零点,只要研究函数与函数的交点个数,画出两个函数的图象,如图,很明显是4个交点.【考点】1.函数的零点;2.函数的图象.10.函数的图象大致是().【答案】C【解析】不难知道,函数是奇函数,故排除A;又,令得,而此方程有无穷个解,且在每个解的两边函数值不同号,所以函数有无穷多个极值点,故可排除B,D.11.已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.记曲线关于曲线的关联点的个数为,则( ) A.B.C.D.【答案】B【解析】设则的中点为所以有,因此关联点的个数就为方程解得个数,由于函数在区间上分别单调增及单调减,所以只有一个交点,即.【考点】函数图像12.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.13.已知函数y=f(x)的图象如图所示,请根据已知图象作出下列函数的图象:①y=f(x+1);②y=f(x)+2;【答案】【解析】(1)将函数y=f(x)的图象向左平移一个单位得到y=f(x+1)的图象(如图①所示),将函数y=f(x)的图象向上平移两个单位得到y=f(x)+2的图象(如图②所示).14.已知函数,,若在区间内,函数与轴有3个不同的交点,则实数的取值范围是()A.B.C.D.【答案】C【解析】∵,∴,∴,∴,∴,∴当时,,∵函数与x轴有3个不同交点,∴函数与有3个不同的交点,函数的图像如图所示,直线与相切是一个边界情况,直线过时是一个边界情况,符合题意的直线需要在这2条直线之间,∵,∴,∴,所以切线方程为,与相同,即,当过点时,,综上可得:,故选C.【考点】1.导数的运算;2.函数图像;3.曲线的切线.15.函数y=lnx-1的图象关于直线y=x对称的图象大致是 ( )A. B. C. D.【答案】A【解析】因为关于直线y=x对称点的关系为,所以函数y=lnx-1的关于直线y=x对称的函数的解析式为.即相当于将函数的图像向左平移一个单位,显然B,D不正确,C 选项中的图像在y轴的交点过低,所以不正确.故选A.【考点】1.函数的对称性.2.指数函数的图像.3.函数图像的平移知识.16.下列函数图象与x轴均有公共点,其中能用二分法求零点的是().【答案】C【解析】只有零点两侧的函数值符号相反且在零点附近连续时才可用二分法.17.函数y=的图象大致是().【答案】D【解析】由y=知为奇函数,排除A,B.根据函数有两个零点x=±1,排除C.18.函数y=-2sin x的图象大致是 ().【答案】C【解析】当x=0时,y=0-2sin 0=0,故函数图象过原点,可排除A.又∵y′=-2cos x,当x在y轴右侧趋向0时,f′(x)<0,此时函数为减函数;当x=2 π时,f′(2 π)=-2 cos 2 π=-<0,所以x=2 π应在函数的减区间上,故选C19.函数的图象大致是( )【答案】D【解析】因为的定义域为,且,故可排除,所以应选D.【考点】1、函数的定义域;2、函数的性质;函数的图象.20.函数的图象大致是( )【答案】A【解析】,故此函数在上为增函数,在为减函数;且只有一个根,故只有一个零点.所以选A.【考点】函数的性质与图像.21.随着生活水平的提高,私家车已成为许多人的代步工具。
高一数学函数图像试题1.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系表示的图象只可能是A. B. C. D.【答案】A【解析】利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下的体积相同,当时间取1.5分钟时,液面下降高度与漏斗高度的一半比较,由于所给的圆锥形漏斗上口大于下口,当时间取0.5t时,漏斗中液面下落的高度不会达到漏斗高度的一半,对比四个选项的图象可得结果.故选A.本题考查函数图象,还可以正面分析得出结论:圆柱液面上升速度是常量,则V(这里的V是漏斗中剩下液体的体积)与t成正比(一次项),根据圆锥体积公式V=πr2h,可以得出H=at2+bt中,a为正数,另外,t与r成反比,可以得出H=中,b为正数.所以选择A.【考点】函数的图像,,函数的性质及应用2.一高为H、满缸水量为V的鱼缸的轴截面如图所示,其底部碰了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为V,则函数的大致图象可能是( )【答案】B【解析】根据题目所给鱼缸图形可以分析出:水深的变换是开始快,中间慢,最后快,所以答案是B.【考点】函数图像问题.3.已知函数在时取得最大值,在时取得最小值,则实数的取值范围是()A.B.C.D.【答案】C【解析】设,则,依题意知在时取得最大值,而在时取得最小值,结合二次函数的图像可知即,也就是,所以,故选C.【考点】1.余弦函数的值域;2.二次函数的图像与性质.4.若函数图象关于对称,则实数的值为()A.B.C.D.【答案】C【解析】∵函数图象关于对称,则,即,则或,即.【考点】函数的图象的对称性.5.函数的图象大致是()【答案】A.【解析】因为f(2)=f(4)=0,所以函数在y轴的右边最少有两个交点.只能选A,D.由因为f(-1)=-0.5.所以D选项排除.故选A.由于函数图像不是很清晰所以采用特值排除法等.【考点】1.特值法研究较复杂的图像.2.排除法.6.当0<≤时,,则a的取值范围是A.(0,)B.(,1)C.(1,)D.(,2)【答案】B【解析】做出函数的图像,使其当0<≤时观察图像可知当时,所以当时有当0<≤时,成立【考点】函数性质及数形结合法点评:本题中将不等式成立转化为两函数值的大小关系,进而结合函数图像使其满足相应的位置关系,求得参数范围7.函数的图象A.关于原点对称B.关于y轴对称C.关于x轴对称D.关于直线对称【答案】B【解析】根据题意,由于,所以,因此根据偶函数的定义可知图像关于y轴对称,故选B.【考点】函数图像的对称性点评:解决关键是理解关于原点对称说明是奇函数,关于y轴对称说明是偶函数,属于基础题。
三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
高三数学函数图像试题答案及解析1.设函数f(x)=x+的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x).(1)求g(x)的解析式;(2)若直线y=m与C2只有一个交点,求m的值和交点坐标.【答案】(1)g(x)=x-2+.(2)当m=0时,经检验合理,交点为(3,0);当m=4时,经检验合理,交点为(5,4).【解析】解:(1)设点P(x,y)是C2上的任意一点,则P(x,y)关于点A(2,1)对称的点为P′(4-x,2-y),代入f(x)=x+,可得2-y=4-x+,即y=x-2+,∴g(x)=x-2+.(2)由消去y得x2-(m+6)x+4m+9=0,Δ=[-(m+6)]2-4(4m+9),∵直线y=m与C2只有一个交点,∴Δ=0,解得m=0或m=4.当m=0时,经检验合理,交点为(3,0);当m=4时,经检验合理,交点为(5,4).2.如图,是张大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是()【答案】D【解析】根据图象可知在第一段时间张大爷离家距离随时间的增加而增加,在第二段时间内,张大爷离家的距离不变,第三段时间内,张大爷离家的距离随时间的增加而减少,最后回到始点位置,对比各选项,只有D正确.3.已知函数f(x)=x1,x2,x3,x4,x5是方程f(x)=m的五个不等的实数根,则x1+x2+x3+x4+x5的取值范围是()A.(0,π)B.(-π,π)C.(lg π,1)D.(π,10)【答案】D【解析】函数f(x)的图象如图所示,结合图象可得x1+x2=-π,x3+x4=π,若f(x)=m有5个不等的实数根,需lg π<lg x5<1,得π<x5<10,又由函数f(x)在[-π,π]上对称,所以x1+x2+x3+x4=0,故x1+x2+x3+x4+x5的取值范围为(π,10).4.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.5.已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是.【答案】【解析】由题意得函数为偶函数,因此当有4个零点时,在上有且仅有两个零点,所以即【考点】二次函数的图象与性质,零点问题6.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】由于函数的最小正周期为,所以.所以函数.所以将函数向右平移即可得到.故选B.【考点】1.函数的平移.2.函数的诱导公式.7.已知函数f(x)=,若,则a的取值范围是()A.B.C.[-2,1]D.[-2,0]【答案】D【解析】由题意作出的图象(如图)当a>0时直线y=ax过一、三象限(如图),必与y=ln(x+1)相交,所以a≤0当a≤0时,直线y=ax过三、四象限对x>0,|f(x)|=ln(x+1)> ax成立;对x<0,由|f(x)|=x2-2x≥ax a≥x-2,而当x<0时x-2<-2,所以a≥-2综合知-2≤a≤08.已知函数f(x)=若|f(x)|≥ax,则a的取值范围是________.【答案】[-2,0]【解析】作出函数y=|f(x)|的图象,当|f(x)|≥ax时,必有k≤a≤0,其中k是y=x2-2x(x≤0)在原点处的切线斜率,显然k=-2.所以a的取值范围是[-2,0].9.若函数f(x)=的图象如图,则m的取值范围是________.【答案】(1,2)【解析】∵函数f(x)的定义域为R,∴x2+m恒不等于零,∴m>0.由题图知,当x>0时,f(x)>0,∴2-m>0⇒m<2.又∵在(0,+∞)上函数f(x)在x=x0(x>1)处取得最大值,而f(x)=,∴x=>1⇒m>1.综上,1<m<2.10.若函数满足,且时,,函数,则函数在区间内的零点的个数为____.【答案】9【解析】因为,所以函数是周期为2函数.因为时,,所以作出它的图象,利用函数是周期为2函数,可作出在区间上的图象,如图所示:故函数在区间内的零点的个数为9,故答案为9.【考点】函数的零点;函数的周期性.11.已知函数,则不等式的解集为.【答案】【解析】函数的图象如图,由不等式知,,从而得到不等式的解集为.【考点】函数的图象和性质的综合运用..12.设D={(x,y)|(x-y)(x+y)≤0},记“平面区域D夹在直线y=-1与y=t(t∈[-1,1])之间的部分的面积”为S,则函数S=f(t)的图象的大致形状为()【答案】C【解析】由题意,有二次函数图像可得,答案选C.【考点】函数的图象与图象变化.13.已知函数,若方程有且只有两个不相等的实数根,则实数a的取值范围为()A、 B、C、 D、。
高中数学函数的图像练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 函数y=x sin x的部分图象是()A. B.C. D.2. 已知定义在区间[0, 4]上的函数y=f(x)的图象如图所示,则y=−f(1−x)的图象为()A. B.C. D.3. 设f′(x)f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象最有可能的是( )A. B.C. D.4. 函数y=ln|x−1|的图象大致形状是( )A. B. C. D.5. 函数f(x)=1+log2x与g(x)=2−x+1在同一直角坐标系下的图象大致是()A. B.C. D.6. 设函数y=f(x)定义在实数集R上,则函数y=f(a−x)与y=f(x−a)的图象()A.关于直线y=0对称B.关于直线x=0对称C.关于直线y=a对称D.关于直线x=a对称7. 已知定义在R上的函数y=f(x)的图象如下图所示,则函数y=1−f(−x)的图象为()A. B.C. D.8. 将函数g(x)=(x+1)lg|x|的图象向右平移1个单位长度得到函数f(x)的图象,则f(x)的|x+1|图象大致为( )A.B.C.D.的图象是()9. 函数y=xx+1A. B.C. D.10. 函数y=x sin x+cos x−1在区间[−π,π]上的图象大致为()A. B.C. D.11. 设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是( )A. B.C. D.+1的图象是( )12. 函数f(x)=11−xA. B. C. D.13. 函数f(x)=e|x|−2|x|−1的图象大致为()A. B.C. D.14. 函数y=−x4+x2+2的图象大致为( ) A.B.C.D.15. 设函数f(x)=ax+b的图象如图所示,则a、b、c的大小关系是()x2+cA.a>b>cB.a>c>bC.b>a>cD.c>a>b的图象向左平移1个单位长度,得到函数g(x)的图象,则函数16. 将函数f(x)=x−12x−x2g(x)的图象大致是()A. B.C. D.17. 函数f(x)=x−x ln|x|的大致图象是()A. B.C. D.18. 当a>0时,函数f(x)=(x2−2ax)e x的图象大致是()A. B.C. D.19. 若实数x,y满足|x−1|−ln1y=0,则y是x的函数的图象大致是()A. B.C. D.20. (福建厦门一次质检)已知函数f(x)的图象如图所示,则该函数的解析式可能是()A.f(x)=ln|x|e x B.f(x)=e x ln|x| C.f(x)=ln|x|xD.f(x)=(x−1)ln|x|参考答案与试题解析高中数学函数的图像练习题含答案一、选择题(本题共计 20 小题,每题 3 分,共计60分)1.【答案】A【考点】函数的图象变换【解析】判断函数的奇偶性以及x∈(0, π)时的函数值,推出结果即可.【解答】解:函数y=x sin x是偶函数,可知B,D不正确;当x∈(0, π)时,函数y>0,可知函数的图象为:A.故选:A.2.【答案】D【考点】函数的图象变换【解析】先找到从函数y=f(x)到函数y=−f(1−x)的平移变换规律是,即可求出结果【解答】解:y=f(x)沿y轴对称得到y=f(−x)的图象,再沿x轴对称得到y=−f(−x)图象,最后先向右平移一个单位得到y=−f(1−x)的图象,故只有D符合,故选:D.3.【答案】C【考点】函数的图象变换【解析】根据f′(x)的图象,由f′(x)的符号,确定原函数f(x)的单调性,确定f(x)的图象.【解答】解:从f′(x)的图象可以看出,当x∈(−∞,0)时,f′(x)>0,f(x)在(−∞,0)上为增函数;当x∈(0,2)时,f′(x)<0,f(x)在(0,2)上为减函数;当x∈(2,+∞)时,f′(x)>0,f(x)在(2,+∞)上为增函数,符合的图象是C.故选C.4.【答案】D【考点】函数的图象变换【解析】先化简函数的解析式,函数中含有绝对值,故可先去绝对值讨论,结合指数函数的单调性及定义域、对称性,即可选出答案.【解答】解:y=ln|x−1|,则x≠1,是将y=ln|x|的图像往右平移一个单位,而y=ln|x|是一个关于y轴对称的偶函数,且在(0,+∞)是增函数,故y=ln|x−1|的图象关于x=1对称,且在(1,+∞)是增函数,在(−∞,1)上是减函数. 故选D.5.【答案】C【考点】函数的图象变换对数函数的图象与性质指数函数的图象【解析】根据函数f(x)=1+log2x与g(x)=2−x+1解析式,分析他们与同底的指数函数、对数函数的图象之间的关系,(即如何变换得到),分析其经过的特殊点,即可用排除法得到答案.【解答】解:∵f(x)=1+log2x的图象是由y=log2x的图象上移1个单位而得,∴其图象必过点(1, 1),单调递增,故排除A,又∵g(x)=2−x+1=2−(x−1)的图象是由y=2−x的图象右移1个单位而得,故其图象也必过(1, 1)点,及(0, 2)点,故排除B,D.故选C.6.【答案】D【考点】函数的图象变换【解析】本选择题采用取特殊函数法.根据函数y=f(x)定义在实数集上设出一个函数,由此函数分别求出函数y=f(x−a)与y=f(a−x),最后看它们的图象的对称即可.【解答】解:令t=x−a,因为函数y=f(−t)与y=f(t)的图象关于直线t=0对称,所以函数y=f(a−x)与y=f(x−a)的图象关于直线x=a对称.故选D.7.【答案】C【考点】函数的图象变换【解析】先找到从函数y =f(x)到函数y =−f(1−x)的平移变换规律是,即可求出结果【解答】解:∵ y =1−f(−x)的图象可以由y =f(x)的图象先关于原点对称,再向上平移一个单位得到.故选C .8.【答案】D【考点】函数的图象函数的图象变换【解析】此题暂无解析【解答】解:易求得f (x )=g (x −1)=x lg |x−1||x|,其定义域为(−∞,0)∪(0,1)∪(1,+∞),当x <0时,−x +1>1,函数f (x )=x lg |x−1||x|=x lg (−x+1)−x=−lg (−x +1)<0,故排除AB 选项;当0<x <1时,0<−x +1<1,故函数f (x )=x lg |x−1||x|=x lg (−x+1)x=lg (−x +1)<0,故排除C 选项;当x >1时,函数f(x)=x lg |x−1||x|=x lg (x−1)x =lg (x −1),该函数图象可以看成将函数y =lg x 的图象向右平移一个单位得到.故选D .9.【答案】C【考点】函数的图象变换【解析】由图象的平移即可判断答案.【解答】解:y =x x+1=1−1x+1,则y =1−1x+1的图象是由y =−1x ,先向左平移一个单位,再向上平移一个单位得到. 故选C .10.【答案】C【考点】函数的图象函数奇偶性的判断函数的图象变换【解析】因为f(x)=x sin x+cos x−1,则f(−x)=x sin x+cos x−1=f(x),即f(x)为偶函数,其函数图象关于y轴对称,据此可知选项A,B错误;且当x=π时,y=πsinπ+cosπ−1=−2<0,据此可知选项D错误,故选C.【解答】解:因为f(x)=x sin x+cos x−1,则f(−x)=x sin x+cos x−1=f(x),即f(x)为偶函数,其函数图象关于y轴对称,据此可知选项A,B错误;且当x=π时,y=πsinπ+cosπ−1=−2<0,据此可知选项D错误,故选C.11.【答案】D【考点】函数的图象变换函数的单调性与导数的关系【解析】利用导数与函数单调性的关系即可得出.【解答】解:A,直线为导函数图象,抛物线为原函数图象,当x<0时,f′(x)<0,故f(x)单调递减,当x>0时,f′(x)>0,故f(x)单调递增,故选项正确;B,导函数单调递减且恒大于0,原函数单调递增,故选项正确;C,导函数单调递增且恒大于0,原函数单调递增,故选项正确;D,若上线为导函数图象,则导函数恒大于等于0,原函数应单调递增;若下线为导函数图象,则导函数恒小于等于0,原函数应单调递减,均不符合,故此选项错误.故选D.12.【答案】B【考点】函数的图象变换【解析】直接整理函数f(x),可知函数是平移所得,即可得到答案.【解答】解:∵f(x)=11−x +1=−1x−1+1,∴函数f(x)是由函数y=−1x向右移动一个单位,再向上移动一个单位所得,∴选项B满足.故选B.13.【答案】C【考点】函数的图象函数图象的作法利用导数研究函数的单调性函数的图象变换函数奇偶性的判断【解析】此题暂无解析【解答】解:函数f(x)=e|x|−2|x|−1是偶函数,排除选项B;当x>0时,函数f(x)=e x−2x−1可得f′(x)=e x−2当x∈(0,ln2)时,f′(x)<0,函数是减函数,当x>ln2时,函数是增函数,排除选项A,D.故选C.14.【答案】D【考点】利用导数研究函数的单调性函数的图象变换【解析】根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可.【解答】解:函数过定点(0, 2),排除A,B.函数的导数f′(x)=−4x3+2x=−2x(2x2−1),由f′(x)>0得2x(2x2−1)<0,得x<−√22或0<x<√22,此时函数单调递增,由f′(x)<0得2x(2x2−1)>0,得x>√22或−√22<x<0,此时函数单调递减,排除C.故选D.15.【答案】B【考点】函数解析式的求解及常用方法函数的图象变换【解析】由函数图象可得f(0)=bc =0,解得b=0,又f(1)=a1+c=1,故a=c+1,再由f′(1)=0,可得c 的值,进而可得a 的值,故可比较大小.【解答】解:由函数图象可得f(0)=b c =0,解得b =0, 又f(1)=a 1+c =1,故a =c +1,又f′(x)=a(x 2+c)−2x(ax+b)(x 2+c)2=−ax 2−2bx+ac (x 2+c)2,由图可知x =1为函数的极值点,故f′(1)=0,即−a +ac =0,解得c =1,a =2,故a >c >b ,故选B16.【答案】B【考点】函数的图象变换函数奇偶性的性质函数的图象【解析】左侧图片未给解析【解答】解:g (x )=f (x +1)=x+1−12(x+1)−(x+1)2=x 1−x 2.因为g (x )=−g (−x ),所以g (x )为奇函数,排除A ;g (x )有唯一的零点,排除C ;g(12)=23>0,排除D ; 只有B 符合条件.故选B .17.【答案】C【考点】函数的图象变换利用导数研究函数的单调性函数奇偶性的判断【解析】此题暂无解析【解答】解:f(−x)=−x +x ln |−x|=−(x −x ln |x|)=−f(x),故f(x)是奇函数,排除A,D ;当x >0时,f(x)=x −x ln x ,则f ′(x)=−ln x ,令f ′(x)=−ln x >0,解得0<x <1,令f ′(x)=−ln x <0,解得x >1,故f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,排除B.故选C.18.【答案】B【考点】函数的图象变换利用导数研究函数的单调性导数的乘法与除法法则指数函数综合题【解析】利用函数图象的取值,函数的零点,以及利用导数判断函数的图象.【解答】解:由f(x)=0,解得x2−2ax=0,即x=0或x=2a,∵a>0,∴函数f(x)有两个零点,∴A,C不正确;设a=1,则f(x)=(x2−2x)e x,∴f′(x)=(x2−2)e x,由f′(x)=(x2−2)e x>0,解得x>√2或x<−√2.由f′(x)=(x2−2)e x<0,解得−√2<x<√2,即x=−√2是函数的一个极大值点,∴D不成立,排除D.故选B.19.【答案】B【考点】函数的图象变换【解析】先化简函数的解析式,函数中含有绝对值,故可先去绝对值讨论,结合指数函数的单调性及定义域、对称性,即可选出答案.【解答】=0,解:∵|x−1|−ln1y∴f(x)=(1)|x−1|其定义域为R,e)x−1,当x≥1时,f(x)=(1e<1,故在[1, +∞)上为减函数,因为0<1e又因为f(x)的图象关于x=1轴对称,对照选项,只有B正确.故选B.20.【答案】A【考点】函数的图象变换【解析】此题暂无解析【解答】因为当x=±1时,ln|x|=0,所以图中函数图象与x轴的交点为(±1,0).因为当x=−1e+1>0,故排除选项C,D;B选项时,C选项中,f(x)=e>0,D选项中,f(x)=1e中,当x→+∞时,e x→+∞,ln|x|→+∞,所以此时e x ln|x|→+∞,故排除选项B,故选A.本题考查函数的图象.【考向分析】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点.解决这类问题的方法一般是利用间接法,即由函数的性质排除不符合条件的选项.。
函数的图像练习题一、选择题1. 函数f(x) = 2x + 3的图像是一条直线,其斜率k等于:A. 2B. 3C. 1D. 02. 函数g(x) = x^2的图像是一个:A. 直线B. 抛物线C. 双曲线D. 圆3. 函数h(x) = 1/x的图像在第一象限和第三象限是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增4. 若函数f(x) = |x|的图像是V形,其顶点坐标为:A. (0, 1)B. (0, 0)C. (1, 0)D. (-1, 0)5. 函数y = sin(x)的图像在x=π/2处的值是:A. 1B. -1C. 0D. π/2二、填空题6. 函数f(x) = x^3 - 3x^2 + 2x + 1的图像是一个______,其拐点坐标为______。
7. 函数y = cos(x)的图像在x=0处的值为______,并且其图像是______对称的。
8. 若函数y = ln(x)的图像在x=1处的值是0,那么其图像在x=e处的值为______。
9. 函数y = tan(x)的图像在x=π/4处的值是______,并且其图像在每一个周期内都有______。
10. 函数y = e^x的图像是一条______的曲线,并且随着x的增大,y 值______。
三、简答题11. 描述函数y = x^2 + 1的图像特征,并说明其顶点坐标。
12. 解释函数y = 1/(1+e^(-x))的图像为什么被称为S型曲线,并简述其性质。
13. 说明函数y = log_a(x)(a>0,a≠1)图像的渐近线,并讨论a的取值对图像的影响。
14. 函数y = sqrt(x)的图像在x轴的正半轴上是单调递增的,请解释原因。
15. 函数y = sin(x) + cos(x)的图像有哪些特征?请列出至少三个。
四、计算题16. 给定函数f(x) = 3x - 2,求其在x=1时的值,并绘制其图像的大致形状。
高一数学函数图像试题答案及解析1.如图,点A、C都在函数的图象上,点B、D都在轴上,且使得△OAB、△BCD都是等边三角形,则点D的坐标为.【答案】.【解析】如下图所示,分别过点A、C作轴的垂线,垂足分别为E,F.设,,则,,所以点A、C的坐标为、,所以,解得,所以点D的坐标为.【考点】反比例函数图像上点的坐标特征;等边三角形的性质.2.偶函数与奇函数的定义域均为,在,在上的图象如图,则不等式的解集为()A.B.C.D.【答案】C【解析】是偶函数,偶函数的图像关于轴对称,结合图像知的解集,的解集;是奇函数,奇函数的图像关于原点对称,结合图像知的解集,的解集;等价于或,所以解集为,故选C.【考点】1.函数的图像;2.函数的奇偶性.3.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x)(实线表示),另一种是平均价格曲线y=g(x)(虚线表示)(如f(2)=3是指开始买卖后两个小时的即时价格为3元g(2)=3表示2个小时内的平均价格为3元),下图给出四个图象:其中可能正确的图象序号是 .A.①②③④B.①③④C.①③D.③【答案】D【解析】①错,因为即时价格是下降的,所以从开始后,平均价格应在即时价格的上面,不会有交点;②错,因为,如果平均价格不变,那么即时价格也应不变;③正确,因为开始即时价格是上升的,所以一段时间的平均价格应该在他的下面,后即时价格下降了,那么经过一段时间,会出现平均价格在即时价格的上面;④错,即时价格为折线,平均价格应为曲线.故选D.【考点】函数的图像4.已知 ,,则函数的图象必定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】函数的图象可以看作是由函数的图象向下平移个单位而得到;因为,所以函数单调递减,又,函数图象与轴交点纵坐,如图所示,图象不可能过第一象限.故选A.【考点】1、指数函数的图象与性质;2、函数图象变换.5.已知,若对任意与的值至少有一个为正数,则实数的取值范围是()A.B.C.D.【答案】B【解析】(采用特值检验法),若,满足题意,可排除A、D,若,,显然满足题意,故选B.【考点】二次函数、一次函数的图像与性质的综合运用.6.已知幂函数的图象经过点(4,2),则()A.B.4C.D.8【答案】B【解析】因为幂函数的图象经过点(4,2),所以有,解得,所以.【考点】幂函数解析式与图象.7.函数的图象的大致形状是A. B. C. D.【答案】C【解析】由题意函数可化为,又,故当时,函数为增函数,且,那么可排除B、D选项;而当时,函数为减函数,且.所以正确答案为C.【考点】1.分段函数;2.函数单调性、图像.8.同时满足以下三个条件的函数是()①图像过点;②在区间上单调递减③是偶函数.A.B.C.D.【答案】C【解析】选项A中,函数对称轴为x=-1,所以不是偶函数,排除A;选项B中,函数在区间上单调递增,排除B;选项D中,函数图像不过点,排除D.故选择C.【考点】函数的图像和性质.9.已知函数,则函数的反函数的图象可能是()【答案】D【解析】函数的图像恒过(0,1)点,函数的图像恒过(-1,1),则其反函数的图像恒过(1,-1)而选项A恒过(0,0),选项B恒过(2,0),选项C恒过(1,0),故排除;所以正确选项为D【考点】1、函数图像的平移;2、反函数的性质.10.设函数的图像过点,其反函数的图像过点,则等于 ( ) A.1B.2C.3D.【答案】D【解析】本题考查了互为反函数的函数图象之间的关系、指数式和对数式的互化等函数知识;根据反函数的图象过点,则原函数的图象过点,再由函数的图象过点,构建方程即可求得的值.由图象过点,得转化为解得故选D【考点】对数函数性质,反函数.11.设奇函数f(x)的定义域为[-5,5],在上是减函数,又f(-3)=0,则不等式xf(x)<0的解集是 .【答案】【解析】先根据奇函数图象关于原点对称得到其在上的图象,在把所求不等式转化结合图象即可得到结论.由题意可画之内的示意图,因为所以自变量和函数值符号相反,由图可知【考点】函数奇偶性的性质;函数的图象;其他不等式的解法.12.定义运算则函数的图象是 ().【答案】A【解析】本题主要考查学生阅读理解能力,关键是能不能把所定义的新运算转化为大家已经熟悉的知识.时,,时,,∴∴的图象选A.【考点】分段函数的图象.13.函数在上取得最小值,则实数的集合是()A.B.C.D.【答案】C【解析】由零点分段法,我们可将函数f(x)=(2-x)|x-6|的解析式化为分段函数的形式,然后根据分段函数分段处理的原则,画出函数的图象,进而结合图象数形结合,可得实数a的集合。
高中数学函数图象
例1.作图:(1)y =a |x -1|,(2)y =log |(x -1)|
a ,(3)y =|log a (x -1)|(a >1).
例2.函数y =ln 1
|2x -3|
的图象为( )
例3.函数f (x )=1
1+|x |
的图象是( )
例4.若函数y =(12
)|1-
x |+m 的图像与x 轴有公共点,则m 的取值范围是________.
例5.已知函数f (x )=|x 2-4x +3|
(1)求函数f (x )的单调区间,并指出其增减性;
(2)若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.
1、设10<<a ,在同一直角坐标系中,函数x
a y -=与)
(log x y a -=的图象是( )
2、函数||log 2x y =的图象大致是 ( )
3、当1>a 时,在同一坐标系中函数x
a y -=与x
y a log =的图像( )
4、 .函数y =1
-
1
1
-x 的图象是( )
5、已知下图①的图象对应的函数为y =f(x),则图②的图象对应的函数在下列给出的四式中,只可能是( )
A .y =f(|x|)
B .y =|f(x)|
C .y =f(-|x|)
D .y =-f(|x|)
6、二次函数b ax y +=2
与一次函数)(b a b ax y >+=在同一个直角坐标系的图像为( )
7、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )
y y y y
O x O x O x O x
A B C D
1
1
1
1
8、当a ≠0时,函数y a x b
=+和y b a x
=的图象只可能是 ( )
9.函数y=2x+1的图象是
( )
10、函数lg ||
x y x
=
的图象大致是 ( )。