合成微球AlOOH@Fe3O4纳米复合物
- 格式:pdf
- 大小:1.76 MB
- 文档页数:8
一种Au@Fe3O4纳米复合粒子的快速合成方法邢艳;呼国茂;骆志义【期刊名称】《广东化工》【年(卷),期】2016(43)20【摘要】团簇状的Au@Fe3O4纳米复合粒子采用两步法进行合成.首先通过共沉淀法合成柠檬酸修饰的Fe3O4纳米粒子;其次以柠檬酸纳为温和的还原剂将HAuCl4快速还原为Au纳米粒子而沉积在Fe3O4的表面.并考察了HAuCl4及柠檬酸修饰的Fe3O4纳米粒子用量对合成过程的影响.采用紫外-可见分光光度计(UV-vis)、动态光散射仪(DLS)及透射扫描电镜(TEM)等测试手段对所制备的纳米粒子进行了表征.结果表明:当V(1% HAuCl4)=1.8 mL,m(柠檬酸修饰的Fe3O4)=12.5 mg时,Au@Fe3O4纳米复合粒子的中心Au纳米粒子的粒径大小为20~50 nm左右而周围包覆的Fe3O4纳米粒子的大小为10hm左右,且其在水中能够稳定的存在3个月而粒径大小无明显的变化.【总页数】3页(P62-63,50)【作者】邢艳;呼国茂;骆志义【作者单位】榆林学院化学与化工学院,陕西榆林719000;中国神华煤制油化工有限公司鄂尔多斯煤制油分公司,内蒙古鄂尔多斯017209;西北大学国家微检测中心,陕西西安710069【正文语种】中文【中图分类】TQ【相关文献】1.一种纳米ZnO粉体的合成方法 [J], ;2.连续快速合成核壳型纳米复合粒子 [J], 王东光;张仁坤;竺柏康;王玉华;陶亨聪3.一种小粒径纳米二氧化钛合成方法及催化性能研究 [J], 张景;姚州威;刘兰芳4.介晶结构四氧化三铁纳米粒子的一种简易合成方法 [J], 万家齐; 张博文; 王宇飞; 陈克正5.一种铁酸镁/硫化钼异质结纳米线的合成方法和用途 [J],因版权原因,仅展示原文概要,查看原文内容请购买。
小议自组装及界面引发聚合制备中空磁性纳米复合微球1 引言随着材料科学在生物医学技术领域中的飞速发展,磁性纳米微球在组织工程、靶向给药、固定蛋白质/酶、细胞分离、生物标记以及癌细胞理疗等方面的巨大应用潜力引起了人们极大的研究兴趣。
特别是上世纪70 年代Widder 等人提出的磁靶向给药系统(magnetictargeting drug delivery system,MTDDS),在一些疾病治疗尤其是恶性肿瘤的治疗方面显示出极为诱人的应用前景。
在这一系统中,通常形成磁性粒子为核、无机物或有机物为壳的结构,并将药物分子包埋在壳层中,可以在外加磁场的作用下定向移动和定位集中至病灶处并释放药物。
采用MTDDS 可以在病变组织局部获得较高的药物浓度,从而降低药物的使用剂量以及对健康组织的毒副作用,提高药物的治疗效率。
在选择性溶剂中两亲性分子可以通过自组装行为形成胶束,而本文采用的两亲性磁性纳米粒子同样可以在油-水界面进行自组装。
在含有磁性纳米粒子的界面引发单体聚合聚合,可以成功制备出无毒、生物相容的PNIPAM/Fe3O4中空磁性纳米复合微球。
与普通核/壳结构相比,该中空磁性纳米复合微球具有磁性稳定、靶向性强、药物包含率高的特点,并且由于PNIPAM的温敏性,还可以控制释药速度,从而为靶向药物治疗提供了可靠的载药工具。
这种复合微球以其独特的结构、优异的性质在生物医药领域有着非常广阔的应用前景。
2 实验部分2.1 原料三氯化铁(FeCl3):分析纯,北京化学试剂公司;硫酸亚铁(FeSO4·7H2O):分析纯,北京化学试剂公司;氨水(NH3·H2O) :分析纯(25wt%),北京化学试剂公司;油酸(OA) :化学纯,北京化学试剂公司;N-异丙基丙烯酰胺(NIPAM):分析纯,北京百灵威化学公司;烷基酚聚氧乙烯醚(OP10):化学纯,北京化学试剂公司;山梨醇酐脂肪酸酯(Span80):分析纯,北京百灵威化学公司;二乙烯基苯(BVD):分析纯,北京百灵威化学公司;过氧化苯甲酰(BPO):分析纯,北京化学试剂公司;四亚乙基五胺(TEPA):分析纯,北京百灵威化学公司;甲苯(C6H5CH3):分析纯,北京化学试剂公司;去离子水。
四氧化三铁@二氧化硅复合微球合成2。
实验部分所有的试剂是市面上买得到的来自上海化学药品公司,纯度为分析纯,没有进一步的净化。
2.1。
单分散的Fe3O4微球的合成。
这次合成根据先前的报道的方法并进行了一些小修改。
1.35克的FeCl3 ·6H2O是溶解在乙二醇40ml中,形成一个无色透明溶液,然后加入1.0克的聚乙二醇20000和3.6克NaAc·3H2O。
溶液一直搅拌,直到充分溶解。
最后一步,将混合物转换到成一个50ml容器内,放入聚四氟乙烯釜中,温度为200°C,加热8 h。
产品收集后并用去离子水和乙醇漂洗几次,然后放在60度真空干燥器为进一步干燥6小时。
2.2。
磁性微球Fe3O4@SiO2合成复合材料。
合成根据Stober 方法并有一点修改。
通常,0.2g的准备Fe3O4微球混合物中分散在20ml的乙醇和4ml的去离子水中,由超声波处理大约十分钟。
然后在连续的机械搅拌下,将1ml的氨溶液(25%)和0.8ml四乙基正硅酸盐(TEOS)连续添加到混合物中。
反应可以室温条件下进行3 h连续的机械搅拌。
最后手机产品并洗净,然后在真空干燥器60°C,干燥3 h,为进一步使用。
2.3。
单分散的Ag覆盖 Fe3O4@SiO2复合微球的合成。
首先,0.05克的Fe3O4@SiO2复合微球分散在为30ml 含0.1摩尔二铵合银溶液中,同时伴有机械搅拌0.5 h,以确保Fe3O4@SiO2复合微球吸附有足够多的二铵合银。
然后,收集微球并用去离子水洗涤2次。
下一步,将微球溶解于为30毫升0.5摩尔的葡萄糖溶液。
溶液采用水浴50°C加热1 h。
在加热过程中,溶液保持机械搅拌。
最终产品收集并洗净,然后在60°真空干燥C3 h。
需要的药品:FeCl3·6H2O ;乙烯乙二醇;聚乙二醇;去离子水;乙醇;NaAc·3H2O;氨水(25%),TEOS需要的仪器:50ml 烧杯2个,100ml烧杯1个50ml 量筒1个,玻璃棒,胶头滴管,天枰,磁力搅拌机,聚四氟乙烯高压反应釜,真空干燥器,超声波震动仪。
SiO2@Fe3O4复合纳米微球的合成及其对盐酸表柔比星的载药性能吴玲;徐箐;李娣;姜德立;陈敏【摘要】目的:制备新型磁性纳米微球SiO2@Fe3O4,并考察其对盐酸表柔比星的载药性能.方法:以水热法制备的Fe3O4作为核,无水乙醇和水为共溶剂,一定浓度的氨水为催化剂,通过正硅酸四乙酯(tetraethyl orthosilicate,TEOS)的水解与缩合制备SiO2@Fe3O4复合纳米微球,通过X射线衍射(XRD)法、透射电子显微镜(TEM)、红外吸收光谱(FT-IR)等测试样品的物相与结构,通过外加磁场测试其磁响应性,并通过药物吸附和缓释实验检测该纳米微球对表柔比星的载药性能.结果:当V(TEOS)=0.8 mL,V(氨水)=1.25 mL,V(水)∶V(无水乙醇)=1∶5时,SiO2在Fe3O4微球表面包覆均匀完整,厚度约为60 nm.药物吸附实验显示,制备的SiO2@Fe3O4复合纳米微球对表柔比星的吸附率为51.9%,磁响应性、体外稳定性和缓释效果均较好.结论:新型磁性纳米微球SiO2@Fe3O4能有效吸附和缓释表柔比星,具有良好的磁响应性,可作为靶向纳米药物载体.【期刊名称】《江苏大学学报(医学版)》【年(卷),期】2018(028)002【总页数】5页(P169-173)【关键词】盐酸表柔比星;SiO2@Fe3O4;靶向药物载体【作者】吴玲;徐箐;李娣;姜德立;陈敏【作者单位】南京中医药大学附属医院检验科,江苏南京210029;江苏大学化学化工学院,江苏镇江212013;江苏大学化学化工学院,江苏镇江212013;江苏大学化学化工学院,江苏镇江212013;江苏大学化学化工学院,江苏镇江212013【正文语种】中文【中图分类】R979.1盐酸表柔比星属于蒽环类抗生素,是一种高效、广谱的抗肿瘤药,主要应用于乳腺癌、胃癌、肺癌、卵巢癌、膀胱癌和非霍奇金淋巴瘤的治疗,为同类药物的首选[1-4]。
Fe3O4包覆聚苯乙烯磁性微球的制备及性能薛永萍;艾常春;汤璐;吴元欣【摘要】为研究一种应用于磁稳定流化床反应器的新型高分子磁性微球的制备方法及性能,采用悬浮聚合法制备了Fe3O4纳米粒子包覆聚苯乙烯磁性微球,研究了搅拌速率、加入磁性Fe3O4纳米粒子的时间等因素对复合微球粒径及性能的影响,运用扫描电子显微镜(SEM)、X射线衍射(XRD)、振动样品磁强计(VSM)、热重(TGA)等测试手段,表征了磁性聚苯乙烯微球的形貌特征、结构、粒径、磁学性能及Fe3O4的包覆量.实验结果表明:在搅拌转速为600 r/min,80℃保温10 min加入修饰Fe3O4纳米粒子,制备所得的磁性聚苯乙烯微球为粒径分布均匀的球状微粒;Fe3O4的包覆量达到5%,最高饱和磁化强度为3.73 emu/g,具有较好的超顺磁性,可应用于磁稳定流化床反应器.【期刊名称】《材料科学与工艺》【年(卷),期】2016(024)002【总页数】5页(P75-79)【关键词】悬浮聚合;Fe3O4磁性纳米粒子;表面修饰;包覆;磁性聚苯乙烯微球【作者】薛永萍;艾常春;汤璐;吴元欣【作者单位】武汉工程大学化工与制药学院,武汉430073;武汉工程大学邮电与信息工程学院,武汉430073;武汉工程大学化工与制药学院,武汉430073;武汉工程大学邮电与信息工程学院,武汉430073;武汉工程大学化工与制药学院,武汉430073【正文语种】中文【中图分类】TQ050.4随着科技的快速发展,高分子磁性微球在化工、生物、医学、环境等领域具有广泛的应用前景,近年来备受国内外研究人员的高度关注[1-5].由于Fe3O4纳米粒子具有超顺磁性和饱和磁化强度高等优异的磁学性能,使其得到广泛的应用[6-8],但由于其比表面积大、表面能高而更容易团聚,因此常采用硅烷基无机分子、聚乙二醇等有机分子对其进行表面修饰以防团聚[9].另外,对Fe3O4纳米粒子进行表面修饰也可使其具有更好的生物相容性和稳定的化学特性,从而满足其在生物技术、医学领域以及药物传递等方面的应用需求[10-15].吴元欣(1957—),男,教授,博士生导师,首批新世纪百千万人才工程国家级人选.目前,国内外研究更多的是以Fe3O4纳米粒子为核,聚合物为壳的核壳式磁性复合材料,并已应用于多个领域.如文献[16]报道,采用悬浮聚合法制备了微米级的磁性聚苯乙烯微球,并进一步对其磁性进行改性分别得到磁性阳离子交换树脂和磁性阴离子交换树脂.Fried等应用修饰的磁性polyclonal anti-Fab抗体微球成功地对人体CD4、CD8、CD19、CD34等细胞进行了分离,其分离率也达99.9%以上[17].Li等将胰蛋白酶固定于磁性材料表面上,并将其应用于毛细管微流控芯片酶解反应器[18].Sinan等以戊二醛交联法将转化酵素固定于磁性聚乙烯醇微球上,用于蔗糖的水解[19].综上可知,国内外对以高分子聚合物为核、Fe3O4纳米粒子为壳的高分子复合材料的研究甚少,但由于其独特的核壳结构及特殊的性质必将成为未来科学研究的热点.本文采用悬浮聚合法制备合成一种以高分子材料为核,磁性材料为壳的核/壳结构新型高分子磁性材料,并将其应用于磁稳定流化床反应器[20].1.1 实验材料Fe3O4(AR),SDBS(CP),St(AR),DVB (AR),BPO(CP),paraffin(CP),gelatin(CP),Mg2SO4(AR),Na2CO3(AR)均购自国药集团化学试剂有限公司.1.2 磁性材料表征采用D8 ADVANCE型X射线粉体衍射仪(德国BRUKER,AXS公司)对样品的晶型进行分析.采用JSM-6700F扫描电镜(日本电子株式会社)分析样品的形貌及微观结构.采用振动样品磁强计(美国VSM-4HF,ADE公司)对样品进行磁学性能的测试.采用热重分析仪(美国SDT Q600,TA仪器公司)分析样品中Fe3O4的包覆率.1.3 Fe3O4纳米粒子的表面修饰准确称量6.0 g纳米Fe3O4(200~300 nm)磁粉、13.5 g十二烷基苯磺酸钠(SDBS)于500 mL三口烧瓶,并加入175 mL无水乙醇和175 mL蒸馏水,超声分散30 min,使其分散均匀.在氮气保护下,于40℃恒温水浴,600 r/min搅拌5 h.经无水乙醇和蒸馏水多次洗涤抽滤,置于60℃真空干燥48 h.其反应过程如下:1.4 聚苯乙烯磁性微球的制备称取0.22 g明胶于500 mL三口烧瓶,加入80 mL蒸馏水,浸泡12 h;并于35℃水浴,一定转速下搅拌1 h,依次加入0.2 g过氧化苯甲酰、7 mL二乙烯苯、24 mL苯乙烯和11 mL液蜡;继续搅拌30 min,升温至45℃(升温速率为5℃/10 min),加入0.63 g无水碳酸钠和1.25 g无水硫酸镁;再次升温至80℃,保温一段时间后,加入2.0 g经SDBS修饰的Fe3O4磁粉并保温4 h;继续升温至95℃,保温2 h;待溶液降温至80℃,洗涤抽滤并置60℃真空干燥24 h.2.1 扫描电镜分析(SEM)图1中S1~S3为聚苯乙烯微球的SEM照片,S4~S6磁性聚苯乙烯微球的SEM照片.从图1中S1~S3的SEM照片可知,制备所得聚苯乙烯微球为表面光滑,粒径为150~200 μm,具有较好分散性的球状微粒.由S4~S6样品的SEM照片可知,经表面修饰的Fe3O4制备得到的磁性聚苯乙烯微球的粒径在250~300 μm,依然具有较好分散性的球状微粒.相比而言,包覆了Fe3O4纳米粒子后的微球,粒径增大,且表面较为粗糙.由此说明Fe3O4纳米粒子已包覆于聚苯乙烯微球表面. 2.2 X-射线衍射分析(XRD)图2(a)和(b)分别为SDBS修饰的Fe3O4纳米粒子和PS@Fe3O4磁性微球的X射线衍射谱图.由图2可知,经SDBS修饰的Fe3O4纳米粒子和制备合成的聚苯乙烯磁性微球均在2θ=18.3°、30.2°、35.5°、43.1°、53.6°、57.0°和62.8°处仍出现了不同峰强度的衍射峰,这与文献[15]中Fe3O4的特征衍射峰位置相一致.由此可见,Fe3O4纳米粒子在修饰过程中没有破坏铁氧体的晶体结构;同时也表明在悬浮聚合过程中亦没有改变铁氧体的晶体结构.另外,PS@Fe3O4磁性微球的衍射峰比Fe3O4纳米粒子的强度弱,其原因主要是由于聚苯乙烯的存在而削弱了Fe3O4的衍射峰强度.同时在2θ=20°出现了一较大的衍射弥散峰,这是典型的非晶态聚苯乙烯衍射峰.2.3 热重分析(TGA)图3(a)和(b)分别为用SDBS修饰和未修饰的Fe3O4纳米粒子制备所得磁性聚苯乙烯微球的热分析曲线.由图3可知:聚苯乙烯磁性微球在200℃以下表现为水分及残留无机物的挥发;第2个失重平台分解温度为390℃,表明此时聚苯乙烯开始热熔,此区间的放热峰主要是PS的相变.随着温度的不断升高,PS的热熔逐渐转化为无规则热降解断链反应,在450℃左右时PS的断链反应最大,故在450℃的区间放热峰主要是PS的反应热.从450℃以后热失重趋于平缓,特别是500℃以后,样品质量几乎不发生变化,表明聚苯乙烯磁性微球样品中聚苯乙烯微球已完全分解,由此可确定Fe3O4的包覆量.由图3可得,用SDBS修饰和未修饰的Fe3O4制备得到的聚苯乙烯磁性微球中Fe3O4的包覆率分别为5%和3%.2.4 磁学性能分析(VSM)经SDBS修饰和未修饰的Fe3O4纳米粒子在室温下测得的磁滞回线见图4所示.由图4可知,用SDBS修饰Fe3O4纳米磁粉的磁学性能不但没有下降,反而有所提高,且表现出更好的超顺磁性.这一结果进一步说明采用SDBS对Fe3O4纳米粒子的表面修饰是有效可行的.图5为在600 r/min转速下,当反应体系达80℃,分别在保温0、5、10、15和20 min时加入已修饰的Fe3O4纳米磁粉所测得的VSM图.由图5可知:当外加磁场强度达5 100 Oe时,聚苯乙烯磁性微球的磁化达到饱和,其磁化强度趋于定值.通过比较图5中的5条磁滞回线可知,随着保温时间的增大,PS@Fe3O4磁性复合材料的磁强先增大后降低.在80℃保温10 min加入SDBS修饰的Fe3O4纳米磁粉所能达到的磁化强度最大,其最大饱和磁化强度为3.73 emu/g.其主要原因在于保温时间小于10 min,聚苯乙烯微球尚未完全形成,依然为较软的液滴,导致加入的Fe3O4纳米磁粉不能全部包覆于聚苯乙烯微粒的包面及其孔内;而当保温时间超过10 min,此时的聚苯乙烯微球已完全成球状颗粒,且已有较高的硬度,以致于Fe3O4纳米磁粉也不能很好地包覆于其表面及孔内.由此可见,在保温10 min加入Fe3O4纳米磁粉可得到包覆率较高的磁性聚苯乙烯微球.图6为不同搅拌速率下聚苯乙烯磁性微球的VSM图.在上述优化保温时间条件下,分别考察了400、500、600、700、800及900 r/min转速下对样品磁强的影响.由图6可知:随着转速的增大,磁性PS@Fe3O4复合材料的磁强先增大后降低.当转速为600 r/min时磁化强度最大,其最大饱和磁化强度为3.00 emu/g.这一结果和图5所得的最大饱和磁化强度3.73 emu/g在数值上有所不同,主要是由于检测样品不是同一批次所致.比较图中转速分别为700和500 r/min所测得的磁化强度,前者小于后者.影响这一结果的主要原因在于,转速过高时,纳米四氧化三铁粒子间的作用力增强进而团聚,使其包覆率下降.实验中亦发现,当搅拌转速为400、 800和900 r/min时,所得产品量非常少,且粒径很大,同时发生严重的团聚现象.因此没有进行相关检测.综合图5和图6,制备磁性聚苯乙烯微球的最佳条件为600 r/min,80℃ 保温10 min时加入修饰 Fe3O4纳米粒子.此时得到粒径均匀,且Fe3O4包覆量较大的磁性微球.2.5 耐酸性能分析分别取10 mL的1.0、1.5、2.0、2.5、3.0、4.0、5.0、6.0 mol/L的盐酸于烧杯中,向烧杯中分别加入0.2 g的聚苯乙烯磁性微球和经SDBS修饰的Fe3O4纳米粒子.观察颜色变化并记录溶解时间,结果如表1所示.比较表1中2种微球在不同浓度盐酸中的溶解时间,可得PS@Fe3O4微球的耐酸性明显优于经SDBS修饰的Fe3O4纳米粒子.结果说明在酸性条件下,该方法制备得到的磁性高分子新型微球具有极大的应用价值.1)以SDBS为表面活性剂修饰Fe3O4纳米粒子,使其表面带有双键集团而更好地包覆于高分子材料.2)实验所得新型PS@Fe3O4磁性材料为粒径在250~300 μm的球型微球,具有较好的超顺磁性.在搅拌速率600 r/min,80℃保温10 min加入经SDBS修饰的Fe3O4纳米粒子条件下所得到的高分子磁性材料中Fe3O4的包覆量达到5%,最高饱和磁化强度为3.73 emu/g.3)在后续的研究中,有望将其应用于磁稳定流化床反应器,并寻找一反应体系,模拟并建立以磁性聚苯乙烯微球为催化剂催化该反应体系的数学模型.【相关文献】[1]YOUSEFI L,RAMAHI O M.Miniaturised antennas using artificial magnetic materials with fractal Hilbert inclusions[J].Electronics Letters,2010,46(12): 816-817.[2]HUSSAIN Z,KHAN K M, HUSSAIN K,et al. Microwave-metal interaction pyrolysis of waste polystyrene in a copper coil reactor[J].Energy Sources,2014,36(18):1982-1989.[3]牛宁宁,周雷激,刘国安,等.分散聚合法制备液相芯片聚苯乙烯磁性复合微球的研究[J].化学研究与应用,2012,24(4):503-508. NIU Ningning,ZHOU Leiji,LIU Guoan,etal. Preparation of polystyrene magnetic microspheres for liquid chips by dispersion polymerization[J].Chemical Research and Application,2012,24(4):503-508.[4]TIMKO M,KONERACKA M,KOPCANSKY P,et al. Application ofmagnetizable complex systems in biomedicine[J].Czechoslovak Journal of Physics,2004,54:599-606.[5]YEN Y C,LEE T,CHIU D,et al.Polystyrene foams with inter-connected carbon particulate network[J]. Journal of Cellular Plastics,2014,50(5):437-448.[6] HOLLEY D W,RUPPEL M,MAYS J W,et al.Polystyrene nanoparticles with tunable interfaces and softness[J].Polymer(United Kingdom),2014,55 (1):58-65.[7]雷静雯,吴迪,周兴平.聚苯乙烯磁性微球的羧基化修饰[J].纳米加工工艺,2014,11(6):32-38. LEI Jingwen,WU Di,ZHOU Xingping.Carboxylic modification of magnetic polystyrene microspheres[J]. Nano-processing Technique,2014,11(6):32-38.[8]ROSSI G,BARNOUD J,MONTICELLI L.Polystyrene nanoparticles perturb lipid membranes[J].Journal of Physical Chemistry Letters,2014,5(1):241-246.[9]YAN F,ZHENG X,SUN Z,et al.Effect of surface modification ofFe3O4nanoparticles on the preparation of Fe3O4/polystyrene composite particlesvia miniemulsion polymerization[J].Polymer Bulletin,2012,68(5):1305-1314. [10]廖其龙,卢忠远.惯性约束聚变靶丸材料磁性聚苯乙烯的制备[J].原子能材料科学,2005,39(6):555-558. LIAO Qilong,LU Zhongyuan.Fabrication of magnetic polystyrene used as inertial confinement fusion target material[J].Atomic Energy Science and Technology,2005,39(6):555-558.[11]ZHANG J,YU D,CHEN W,et al.Preparation of poly(styrene glucidyl methacrylate)/Fe3O4composite microspheres with high magnetic contents[J].Journalof Magnetism and Magnetic Materials,2009,321(6): 572-577.[12]ZHAO J L,YIU R.Preparation and application of Fe3O4/polystyrene magnetic microspheres [J]. Polymer Materials Science and Engineering,2009,25(10):109-111.[13]UTLAN G,SAYAR F,BATAT P,et al.Synthesis and characterization of nanomagnetite particles and their polymer coated forms[J].Journal of Colloid and Interface Science,2011,353(2):372-379.[14]邓联文,黄生祥,刘鑫,等.聚苯乙烯-磁性吸收剂复合材料微波吸收特性研究[J].功能材料,2012,43 (6):764-767. DENG Lianwen,HUANG Shengxiang,LIU Xin,et al.Preparation and microwave absorbing capability of polystyrene/magnetic filler composite [J].Journal of Functional Materials,2012,43(6):764-767.[15]UTLAN G,SAYAR F,BATAT P,et al.Preparation and properties of soft magnetic particles based on Fe3O4and hollow polystyrene microsphere composite [J].Matericals Chemistry and Physics,2006,100: 10-14.[16]LEE Y,RHO J,JUNG B.Suspension polymerization preparation of magnetic ionexchange resins by the styrene with magnetite[J].Appl Poly Sci,2003,89 (8):2058-2067.[17]FRIED L P,NOBLE P B,ZANKER K S.T lymphocyte locomotion in a three dimensional eollgaen matrix: expression and function of cell adhesion molecules[J]. Journal of Immunology,1995,154:4973-4985.[18]LI Y,QI D W,DENG C H,et al.Cerium ionchelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrixassisted laser desorption ionization mass spectrometry [J].Journal of Proteome Research,2008,7(4): 1767-1777.[19]VIJAYAKUMA R,KOLTYPIN Y,FELNER I,et al. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4patticles[J].Mater Sci Eng A,2000,286:101-105.[20]HE Y C,ZHANG L F,WU Y X,et al.The cold model experiment of diphenyl carbonate(DPC)by carbonylation in magnetically stabilized reactor[J]. Chemcial Engineering,2014,42(6):63-68.。
Fe3O4/SiO2复合纳米磁性微球制备及用于DNA分离纯化研究生物化学与分子生物学:王森指导教师:杨婉身教授近年来,随着纳米材料科学的发展,生化分离技术开辟了一个新的领域,即利用复合纳米磁性微球进行核酸、蛋白质等生物大分子的分离纯化,它具有很多传统技术不具备的优点,展现了广阔的发展前途。
本文制备一种新型的Fe3O4/SiO2复合纳米磁性微球,对其进行表征并应用于DNA分离纯化,结果如下:1.采用改进的化学共沉淀法制备Fe3O4纳米微球。
透射电子显微镜鉴定其粒径大小为6nm~12nm,粒径分布均匀且分散性较好;其饱和磁化强度为62.6emu/g,具有超顺磁性;X 射线衍射结果显示自制的Fe3O4属于立方尖晶石型结构;578cm-1和3421cm-1处强烈红外吸收光谱也和标准Fe3O4的特征吸收峰吻合。
2.采用溶胶凝胶工艺,在醇水溶液中以氨水为碱催化剂,以自制的Fe3O4纳米微球为核,以正硅酸乙酯(TEOS)为前驱体,分别制备出一次包被Fe3O4/SiO2复合纳米磁球(1号磁球)和两次包被Fe3O4/SiO2复合纳米磁球(2号磁球)。
1号磁球直径大小为20nm~30nm左右,2号磁球为30nm~50nm左右,分散效果比较理想;饱和磁化强度分别为1号55.2emu/g,2号51.8emu/g,具有超顺磁性;X射线衍射图谱与标准Fe3O4图谱相一致,没有明显SiO2衍射峰的存在,说明包覆SiO2以无定型的形态存在。
1097 cm-1和950 cm-1处红外吸收峰和标准SiO2图谱相吻合,说明SiO2成功与Fe3O4复合。
3.在最佳浓度配比的结合液(20%PEG和4mol/L NaCl混合液)中,1号和2号磁球对DNA结合能力存在差异。
分别使用100μg 1号和2号磁球,对500ng标准DNA样品进行回收,2号磁球的DNA回收率为78.2%,略高于1号的71.6%,因此后续实验全部采用2号磁球, 100μg 2号磁球对DNA的饱和吸附量为519ng/μg,吸附DNA后用TE溶液洗脱,其洗脱率高达95%-97%。
Fe3O4-PMMA复合纳米微球的制备与表征吴艳雪;徐敏;何雅琴;戴明欣;张幼维;赵炯心【期刊名称】《功能高分子学报》【年(卷),期】2012(025)003【摘要】Superparamagnetic Fe3O4 nanoparticles were first synthesized by chemical co precipitalion method. Then, the surfaces of Fe3O4 nanoparticles were successively modified with oleic acid and sodium oleate to obtain stable magnetic fluid in water. Finally, Fe3O4-poly(methyl methacrylate) (PMMA) com posite nanospheres bearing carboxylic functional group on the surface, were faciely prepared by one step emulsion polymerization in the presence of the magnetic fluid. Dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry and vibrating sample magnetometer measurements were used to characterize the size, morphology, structure, composition and magnetic property of the composite nanospheres, respectively. Results show that the obtained composite nanospheres were of an average diameter of about 122 nm and with carboxytic functional groups on their surfaces. Also, they were superparamagnetic and with a fairly high saturation magnetization at room temperature.%采用化学共沉淀法合成了超顺磁Fe3O4纳米粒子,并采用油酸和油酸钠对其表面进行修饰,制备了可稳定分散于水中的磁流体。
Fe3O4@SiO2/P(MA-AM)复合微球调剖剂的制备及性能研究李谦定 ,王甜甜*,孟祖超,马士越(西安石油大学化学化工学院,陕西西安710065)摘要:采用共沉淀法制得纳米Fe3O4粒子,SiO2包覆处理后用KH-570对其进行表面改性,后采用分散聚合法制得Fe3O4@SiO2/P(MA-AM)聚合物复合微球。
通过红外光谱、电镜扫描、激光粒度分析等手段对微球的Fe3O4@SiO2内核和P(MA-AM)聚合物外壳的复合结构进行了表征。
通过对聚合物复合微球溶胀性能、封堵性能的试验表明,该微球具有良好的吸水膨胀性、耐温抗盐性以及一定的封堵运移能力,可以用于注水井的深度调剖;同时,在用于注水井调剖驱油剂使用时,若被挤入油层随采出液携带出时,也可采用磁性分离处理,是具有应用潜力的磁性调剖堵水剂。
关键词:聚合物复合微球;分散聚合法;扫描电镜;调剖堵水;磁性分离中图分类号:TE357文献标志码:AStudies on synthesis and properties of Fe3O4@SiO2/P(MA-AM) polymer microspheres as profile-control agentLI Qian-Ding,WANG Tian-Tian*,MENG Zu-Chao,MA Shi-Yue (College of Chemistry and Chemical Engineering,Xi’an Shiyou University,Xi’an 710065,China) Abstract:Fe3O4 nanopaticles were synthesized using coprecipitation method, the surface modification of Fe3O4 particles had been done by KH-570 after coated SiO2 processing, Fe3O4@SiO2/P(MA-AM) polymer composite microsphere was synthesized using dispersion polymerization. the complex structures of Fe3O4@SiO2 (kernel) and P(MA-AM) (polymer shell) were characterized by infraced spectra, Scanning electron microscopy, laser size analysis. The research of swelling capacity and sealing ability Show that the title polymer composite microsphere with certain molecular references is well with water swelling、plugging ability、salt and temperature resistance. it can be used for depth profile control in water injector;收稿日期:2015-06-25基金项目:陕西省教育厅科学研究计划专项项目(14JK1569);陕西省科技厅基金项目(2013JQ2015)作者简介:李谦定(1959-),男,硕士,教授,研究生导师,主要从事油气田化学和精细化工方面的教学与科研工作,qdli@;王甜甜(1990-),女,硕士生,主要从事油气田化学和精细化工方面的研究,通讯联系人,547147759@。
开题报告应用化学氧化铁\二氧化硅磁性中空复合微球的制备一、选题的背景与意义介孔二氧化硅材料在多相催化、吸附及色谱分离、化学传感器、生物医学等研究领域具有巨大的应用前景。
磁性介孔二氧化硅材料解决了介孔材料在催化和分离吸附领域应用中分离困难的问题,同时,这种磁性介孔二氧化硅材料在生物医学领域作为药物载体,在磁场的诱导下能实现药物的靶向传输一、研究的基本内容与拟解决的主要问题:磁性高分子微球作为一种新的生物分离纯化技术的载体!正日益受到人们的关注和重视"磁性高分子微球具有高分子微球的特性!可通过共聚#表面改性!赋予其表面多种反应性功能基团(如COOH,OH,NH2,COH等),与生物活性物质的交联吸附能力大;同时,又因微球内部含有纳米磁性粒子!具有超顺磁性!可在外加磁场的作用下方便地分离,因此,在生物医学,细胞学和生物工程等领域有广泛的应用前景。
在对恶性肿瘤的治疗中 ,抗癌药物占有重要地位。
但全身化疗中 ,由于常规抗癌药选择性较差 ,在发挥抗癌作用的同时对正常组织细胞亦有明显毒副作用。
为提高肿瘤局部药物浓度 ,减少药物吸收所致的重要脏器损伤 ,可对局部注射磁性抗癌微球进行,体外及体内磁场导向。
磁性微球经血管注入人体后,可利用体外磁场引导药物微球滞留于某一组织或病灶部位,延长药物释放时间,以达到提高疗效,降低毒副反应的目的。
二、研究的方法与技术路线:磁性介孔二氧化硅材料的制备方法主要有两种,原位法和两步法。
通过两步法在制备好的磁性颗粒表面上,利用硅源反应得到的磁性介孔二氧化硅材料具有较多的优点,越来越多的应用于磁性介孔二氧化硅材料制备方面。
Deng等以15 nm颗粒组成的Fe3O4微球(平均粒径为300 nm) 为核心,表面包覆介孔二氧化硅,得到的复合材料具有十分强的饱和磁场强度(53.3 emu·g-1)利于复合材料的分离回收,同时呈现出利于微球再分散的超顺磁性能,但是存在由于磁性颗粒引入导致的磁性介孔复合材料比表面积和孔容减小的问题。
fe3o4纳米微球的溶剂热法控制合成fe3o4是一种重要的可溶性无机纳米材料,由于具有优异的磁性和光学性能,因此在生化探测、储能器件、仿生药物等方面受到极大关注。
然而,传统的热溶解法一般是以大量溶剂的形式进行合成,并存在反应不适宜。
同时,由于大量的溶剂的使用,研究者也面临着排放和处理溶剂的挑战。
为了克服上述问题,研究人员提出了一种基于溶剂热法控制反应(Solvent-thermal-controlled reaction,STCR)新方法来合成Fe3O4纳米微球。
该方法可降低储能耗费,减少溶剂使用量以及促进反应的速率。
的工作原理是,当溶剂热量达到反应的一定温度和压力时,就可以促进Fe3O4纳米微球的反应和形成。
STCR从原理上讲,它是一种单步溶剂热处理反应,无需加入额外的可混合液体的额外反应溶剂,以促进纳米物质的合成。
这种方法可以减少反应要素的使用,并且可以节省大量的储能资源。
另外,STCR 也可以改善反应环境,减少反应杂质,并有效抑制氧化反应。
STCR技术的应用可以有效地控制Fe3O4纳米微球的形成,使其具有优异的磁性和光学性能。
研究工作表明,用STCR生产的Fe3O4纳米微球具有良好的磁性和光学特性,同时也具有优异的稳定性和耐久性。
另外,STCR技术的应用还可以解决Fe3O4纳米微球的多晶结构问题。
在常规反应溶剂中,由于氧化物的形成不易被沉淀,因此Fe3O4纳米微球的多晶结构很难控制。
但是使用STCR技术,反应溶剂可以被控制住,因此有助于避免Fe3O4纳米微球的多晶结构问题。
通过以上简述,可以得出结论,STCR技术在Fe3O4纳米微球的合成中具有重要的意义。
它不仅能够有效地改善反应环境,减少消耗的储能资源,而且能够控制Fe3O4纳米微球的形成,使其具有优异的磁性和光学特性,同时也具有优异的稳定性和耐久性。
然而,STCR技术也存在一些局限性。
它的反应能量消耗较高,因此只能用于少量生产,同时由于它对反应温度和压力的要求较高,因此反应过程比较复杂。
Particuology10 (2012) 751–758Synthesis of mesoporous␥-AlOOH@Fe3O4magnetic nanomicrospheresYuanyuan Zheng,Shengfu Ji∗,Hongfei Liu,Ming Li,Hao YangState Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing100029,Chinaa r t i c l e i n f oArticle history:Received9November2011Received in revised form13April2012Accepted16April2012Keywords:Magnetic nanomicrospheresFe3O4␥-AlOOH shellMesoporousHydrolysisa b s t r a c tthe mesoporous␥-AlOOH@Fe3O4magnetic nanomicrospheres consisted of a mesoporous␥-AlOOH shelland a Fe3O4magnetic core.The diameter of␥-AlOOH@Fe3O4nanomicrospheres was about200nm,thethickness of mesoporous␥-AlOOH shell was about5nm and the average pore size was3.8nm.The thick-ness of the mesoporous␥-AlOOH shell could be controlled via layer-by-layer coating times.The formationmechanism of the mesoporous␥-AlOOH shell involved a“chemisorption–hydrolysis”process.© 2012 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy ofSciences. Published by Elsevier B.V. All rights reserved.1.IntroductionMagnetic nanosized materials with superior magnetic sepa-ration performance have found great potential for applicationin variousfields such as adsorption separation(Deng,Qi,Deng,Zhang,&Zhao,2008),drug delivery(Huang et al.,2008),mag-netic recycling nanocatalysts(Laurent et al.,2008)and moleculeimmobilization(Bromberg et al.,2011).Among them,Fe3O4nanospheres are a kind of for their uniquemagnetic response and(Mori,Kondo,Morimoto,&Yamashita,2008;Park et al.,2006;Zhu,Yuan,&Dai,2008).However,Fe3O4nanospheres still have some disad-vantages in thefields of magnetic recycling catalysis.For example,Fe3O4nanospheres serving as catalyst support can hardly adsorbactive components due to lack of functional groups on their surfaces(Kong,Lu,Bian,Zhang,&Wang,2011).To overcome the above dis-advantages,magnetic nanosized materials with Fe3O4as the coreand other materials such as carbon,silica,alumina,TiO2and var-ious polymers as the shell have been extensively proposed(Lang,Wang,Xing,Zhang,&Liu,2008;Li et al.,2008;Peng,Liang,&Qiu,2011;Wu,He,&Jiang,2008).Boehmite(␥-AlOOH)is an aluminum oxyhydroxide,which hasbeen considered as one of the best candidates owing to its low cost,excellent biocompatibility,good chemical stability,high surface∗Corresponding author.E-mail address:jisf@(S.Ji).area,relatively good conductivity,and controllable synthesis pro-tocols(Feng et al.,2008;Yuan et al.,2008).In consideration of theadvantages of the␥-AlOOH,magnetic␥-AlOOH nanoparticles pre-pared by coating Fe3O4nanospheres with␥-AlOOH,which not onlyovercome the disadvantages of Fe3O4nanospheres,but also pos-sess superior magnetic response,large surface area and modifiablechemical surfaces,have potential applications in catalysis,adsorp-tion and separation.At present,some researchers have reported thesynthesis of magnetic␥-AlOOH nanoparticles.Kwon,Park,Jang,Lee,and Park(2007)prepared magnetic␥-AlOOH catalyst by asol–gel method with aluminum tri-sec-butoxide as the aluminumsource and Fe3O4as the magnetic material.Xuan et al.(2011)reported the fabrication of hierarchical␥-AlOOH/SiO2/Fe3O4mag-netic microspheres by a hydrothermal method at190◦C usingSiO2-coated Fe3O4as magnetic core.However,these obtained mag-netic␥-AlOOH particles either show poor magnetic response orcall for complex preparation process.Therefore,it is necessary todevelop a simpler method to prepare magnetic␥-AlOOH particleswith high magnetic response.In this paper,the core–shell structural mesoporous␥-AlOOH@Fe3O4magnetic nanomicrospheres were prepared by thehydrolysis of aluminum isopropoxide with Fe3O4nanospheres syn-thesized by a solvothermal method as the magnetic core.Theeffects of the hydrolysis time of AIP,the concentration of AIPand the number of coating layer on the structure of magneticnanomicrospheres were investigated.The formation mechanismof mesoporous␥-AlOOH shell on the surfaces of magnetic nanomi-crospheres was also analyzed.1674-2001/$–see front matter© 2012 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved. /10.1016/j.partic.2012.04.003752Y.Zheng et al./Particuology10 (2012) 751–7582.Experimental2.1.MaterialsFerric chloride hexahydrate(FeCl3·6H2O),Polyvinylpyrrolidone (PVP),anhydrous sodium acetate(NaAc),ethylene glycol(EG),alu-minum isopropoxide(AIP),and absolute ethyl alcohol were of analytical grade and used without further purification.Deionized water was used throughout the experiments.2.2.Synthesis of Fe3O4nanospheresFe3O4nanospheres were prepared through a solvothermal method.Briefly,FeCl3·6H2O(2.7g),PVP(7.5g,surfactant)and NaAc (7.5g)were dissolved in ethylene glycol(100mL)under vigorous magnetic stirring.After stirring for30min at room temperature, the obtained homogeneous orange solution was transferred to a Teflon-lined stainless-steel autoclave(100mL capacity).The auto-clave was sealed,settled into a muffle furnace and heated at200◦C for12h under stirring at400rpm.After reaction for12h,the autoclave was cooled down to room temperature naturally.The obtained black product was separated with a permanent magnet, washed several times with deionized water and ethanol,and then dried in vacuum at50◦C for12h.2.3.Synthesis of -AlOOH@Fe3O4magnetic nanomicrospheresThe obtained Fe3O4particles(0.1g)were dispersed in an AIP ethanol solution(60mL,0.008–0.032mol/L)of certain concentra-tion under ultrasonication.After30min,the above solution was transferred to a three-neckflask(250mL)and kept at45◦C.Then the solution was stirred for12h to obtain saturated adsorption of AIP on the surface of Fe3O4particles.Subsequently,ethanol/water (5/1,v/v,50mL)was added into the solution,with continued stir-ring for a specific time to allow the hydrolysis of AIP.Then,the mixture solution was transferred to a Teflon-sealed autoclave and heated at80◦C for20h.The obtained particles were separated with a permanent magnet,washed several times with deionized water and ethanol,and then dried in vacuum at50◦C for12h(denoted as1-␥-AlOOH@Fe3O4).The obtained1-␥-AlOOH@Fe3O4magnetic particles dispersed in AIP ethanol solution,then the whole coatingwas repeated to coat another monolayer of␥-AlOOH on the sur-face of1-␥-AlOOH@Fe3O4.The coating was repeated up to three times,to obtain magnetic particles with three layers of ␥-AlOOH(denoted as3-␥-AlOOH@Fe3O4).2.4.CharacterizationThe X-ray diffraction(XRD)patterns were recorded using a D/Max2500VB2+/PC diffractometer with Cu K␣irradia-tion( =0.15418nm),to characterize the crystal structures of the as-prepared samples.HRTEM and SEM images that contain information about the surface morphology and particle size of the as-prepared samples were obtained using JEOL(JEM2100) transmission emission microscope and Zeiss SUPRA55scanning electron microscope.Magnetic properties of the samples were measured using a vibrating sample magnetometer(VSM;Lake Shore Model7400)under magneticfields up to20kOe.Nitro-gen adsorption–desorption analysis was tested on ASAP2020M automatic specific surface area and aperture analyzer.Before mea-surements,the samples were pretreated at300◦C for4h.The adsorption data were used to calculate the specific surface area (S BET)using Brunauer–Emmett–Teller(BET)method.The pore vol-ume and pore size distribution were derived from the desorption Fig. 1.XRD patterns of samples:(a)Fe3O4,(b)1-␥-AlOOH@Fe3O4,(c)3-␥-AlOOH@Fe3O4and(d)␥-AlOOH(concentration of AIP=0.016mol/L,hydrolysis time of AIP=1h).Insert corresponds to partially enlarged XRD patterns.Fig.2.Nitrogen adsorption–desorption isotherms of samples:(a)Fe3O4,(b)1-␥-AlOOH@Fe3O4and(c)3-␥-AlOOH@Fe3O4(concentration of AIP=0.016mol/L, hydrolysis time of AIP=1h).branches of isotherms using the Barrett–Joyner–Halanda(BJH) method.3.Results and discussion3.1.XRD and BET of the samplesFig.1shows the large-angle XRD patterns of the samples.In pattern(a),the typical peaks can be indentified clearly as cubic spinel structural Fe3O4(JCPDS No.88-0866).Pattern(b)is the Table1BET surface area,pore volume and average pore size of samples.Sample S BET(m2/g)Pore volume(cm3/g)Average poresize(nm)Fe3O4310.14 1.91-␥-AlOOH@Fe3O4620.16 3.83-␥-AlOOH@Fe3O41790.50 3.8Y.Zheng et al./Particuology 10 (2012) 751–758753Fig.3.SEM images of samples:(a)and (b)Fe 3O 4;(c)and (d)1-␥-AlOOH@Fe 3O 4(concentration of AIP =0.016mol/L,hydrolysis time of AIP =1h).XRD pattern of 1-␥-AlOOH@Fe 3O 4,showing the diffraction peaks of Fe 3O 4though the peaks of ␥-AlOOH are hardly observable,probably due to the thin-skinned ␥-AlOOH shell.Pattern (c)is the XRD pattern of 3-␥-AlOOH@Fe 3O 4,in which,besidestheFig.4.EDX spectrum of mesoporous ␥-AlOOH@Fe 3O 4magnetic microspheres (con-centration of AIP =0.016mol/L,hydrolysis time of AIP =1h).diffraction peaks of Fe 3O 4,three additional peaks at 12.4◦,27.6◦,and 49.4◦can be indexed to orthorhombic ␥-AlOOH (JCPDS No.21-1307).To better observe the diffraction peaks of ␥-AlOOH,a partially magnified XRD pattern is shown in Fig.1topright.Fig. 5.Room-temperature magnetization curves of samples:(a)Fe 3O 4,(b)1-␥-AlOOH@Fe 3O 4and (c)3-␥-AlOOH@Fe 3O 4(concentration of AIP =0.016mol/L,hydrolysis time of AIP =1h).754Y.Zheng et al./Particuology10 (2012) 751–758Fig.6.TEM images of1-␥-AlOOH@Fe3O4magnetic nanomicrospheres at different hydrolysis times:(a)and(b)uncoated Fe3O4nano-particles,(c)and(d)0.5h,(e)and(f) 1h,(g)and(h)2h,and(i)and(j)6h(concentration of AIP=0.016mol/L).Y.Zheng et al./Particuology10 (2012) 751–758755Nitrogen adsorption–desorption isotherms of all samples are shown in Fig.2.The isotherms b and c present type IV(definition by IUPAC)which is characteristic of mesoporous materials.And the appearance of type3-H hysteresis loops in isotherms b and c indicates the presence of“slit-like”type pores in␥-AlOOH@Fe3O4 magnetic particles(Gregg&Sing,1982).Table1lists the textu-ral parameters of all samples.It can be seen that the BET surface area,pore volume and average pore size of1-␥-AlOOH@Fe3O4are 62m2/g,0.16cm3/g and3.8nm,respectively.Obviously,the3-␥-AlOOH@Fe3O4particles have a larger BET value of179m2/g and a larger pore volume of0.5cm3/g than1-␥-AlOOH@Fe3O4,but retain the average pore size of3.8nm unchanged.3.2.SEM and VSM of the samplesFig.3(a)and(b)shows the SEM images of Fe3O4particles, showing in Fig.3(a)that Fe3O4particles are spherical with an aver-age diameter of200nm.Fig.3(b)shows that Fe3O4nanospheres were formed by self-assembly of many small Fe3O4nanoparticles (Zhu,Zhao,Chen,&Shi,2007).Fig.3(c)and(d)shows that1-␥-AlOOH@Fe3O4nanoparticles are also spherical with uniform size, with diameters slightly larger than those of Fe3O4nanospheres. The highly magnified SEM image(Fig.3(d)),shows the1-␥-AlOOH@Fe3O4nanospheres to have a coarser surface,because AIP does not dissolve in absolute ethanol(Kinoshita et al.,2011).In Fig.4,the energy-dispersive X-ray(EDX)spectrum(using Si-wafer)of mesoporous␥-AlOOH@Fe3O4magnetic nanomicro-spheres indicates the presence of O,Al and Fe,in agreement with the XRD results(Fig.1),thereby supporting the ele-mental composition of the magnetic nanomicrospheres.The elemental compositions of specimens of3-␥-AlOOH@Fe3O4and1-␥-AlOOH@Fe3O4are shown in Fig.4insert table.The atomic ratio of Al:Fe of3-␥-AlOOH@Fe3O4is found to be2.5:1,which is close to three times of that of1-␥-AlOOH@Fe3O4.The magnetization curves of the samples at room temperature are shown in Fig.5.The saturation magnetization(Ms)values of Fe3O4,1-␥-AlOOH@Fe3O4and3-␥-AlOOH@Fe3O4are77.1,71.2 and46.6emu/g,respectively,with relatively low remanence and coercivity values.The results reveal that the Ms values of sam-ples diminish with increasing thickness of the␥-AlOOH shell on the pared to literature(Kwon et al.,2007), the␥-AlOOH@Fe3O4magnetic nanomicrospheres prepared by the above experiment possess excellent magnetic response to external magneticfield.3.3.Effect of reaction parameters on the structure3.3.1.Hydrolysis time of AIPTo investigate the effects of hydrolysis time of AIP on samples, a set of experiments were performed by varying hydrolysis times from0.5h to6h.Fig.6(a)and(b)shows the TEM images ofuncoated Fig.7.TEM images of1-␥-AlOOH@Fe3O4magnetic nanomicrospheres for different AIP concentrations:(a)0.008mol/L,(b)0.016mol/L,(c)0.024mol/L and(d)0.032mol/L (hydrolysis time=1h,number of coating layer=1).756Y.Zheng et al./Particuology 10 (2012) 751–758Fig.8.TEM images of ␥-AlOOH coated magnetic nanomicrospheres for different coating layer numbers:(a)one,(b)two and (c)three (hydrolysis time =1h,concentration of AIP =0.016mol/L).Fe 3O 4nanospheres.It can be seen that Fe 3O 4nanospheres are spherical with coarse surfaces.Fig.6(c)–(j)shows the TEM images of 1-␥-AlOOH@Fe 3O 4at different hydrolysis times.For hydrolysis time of only 0.5h,Fe 3O 4nanospheres were partially coated by the ␥-AlOOH,forming a discontinuous ␥-AlOOH shell layer.When the hydrolysis time was prolonged to 1h,as shown in Fig.6(e)and (f),a continuous and dense ␥-AlOOH shell with an average thickness of 5nm was formed on the surfaces of Fe 3O 4nanospheres.Extend-ing the hydrolysis time to 2h and 6h,the ␥-AlOOH shell on the surfaces of Fe 3O 4nanospheres was still continuous,and its thick-ness remained constant.These results show that the formation of ␥-AlOOH shell is effected by the hydrolysis plete hydrol-ysis of AIP can be achieved within 1h,and further extending the hydrolysis time is unnecessary.3.3.2.Concentration of AIPFig.7shows the TEM images of 1-␥-AlOOH@Fe 3O 4prepared with different AIP concentrations from 0.008to 0.032mol/L.For AIP concentration of 0.008mol/L,as shown in Fig.7(a),only a thin ␥-AlOOH shell was formed on the surfaces of Fe 3O 4nanospheres.In Fig.7(b),when the concentration of AIP was increased to 0.016mol/L,a continuous and dense filmy ␥-AlOOH shell with an average thickness of 5nm was formed on the surface of Fe 3O 4nanospheres.While AIP concentration was raised to 0.024and0.032mol/L,as shown in Fig.7(c)and (d),floccular ␥-AlOOH appeared around the Fe 3O 4nanospheres.And the floccular ␥-AlOOH increased with increasing AIP concentration,while the morphology of the ␥-AlOOH shell changed from filmy to floccular.Meanwhile,the prepared 1-␥-AlOOH@Fe 3O 4nanomicrospheres aggregated severely.These results reveal that the thickness of the ␥-AlOOH shell can be increased by increasing the concentration of AIP.But beyond AIP concentration of 0.016mol/L,continued increase of AIP concentration caused the formation of floccular ␥-AlOOH shell,thereby leading to non-uniform shell thickness.3.3.3.Coating timesFig.8shows the TEM images of ␥-AlOOH@Fe 3O 4with different numbers of coating layer.The insets reveal that all samples present a core–shell structure.From the partially enlarged figures,all sam-ples show a filmy mesoporous ␥-AlOOH shell with thicknesses of 5,10and 15nm,respectively.The results show that the thickness of mesoporous ␥-AlOOH shell increases with the number of coat-ing layers,though the morphology remains the same.By adding a layer of ␥-AlOOH shell,the thickness of ␥-AlOOH shell is increased by about 5nm.These results also explain why the diffraction peaks of ␥-AlOOH are stronger in pattern (c)of Fig.1,and the S BET of 3-␥-AlOOH@Fe 3O 4is much larger in Table 1.Y.Zheng et al./Particuology10 (2012) 751–758757Fig.9.Schematic of the formation mechanism of␥-AlOOH shell coated Fe3O4core.3.4.Formation mechanismIn general,the formation of boehmite(␥-AlOOH)can be envis-aged by the following hydrolysis and alcohol condensation reaction (Brinker&Scherer,1990):((CH3)2CHO)3Al+2H2O=AlO(OH)+3(CH3)2CHOH.Izumi,Hiroyuki,and Toyoki(1997)reported the preparation offilms of metal oxides by the means of stepwise adsorption of alkoxides.The process was composed of four steps:chemisorp-tion of alkoxides,rinsing,hydrolysis of chemisorbed alkoxides and drying.From the above literature and our results,the forma-tion mechanism of␥-AlOOH shell coated Fe3O4core could be a “chemisorptions–hydrolysis”process,as shown schematically in Fig.9.Step one is the chemisorption process,initially resulting in many uncoordinated carbonyl groups on the surface of Fe3O4 nanospheres prepared by the solvothermal process using PVP as the surfactant(Lu,Niu,Qiao,&Gao,2008).After stirring for12h,these uncoordinated carbonyl groups were adsorbed by AIP in the solu-tion,leading to AIP adsorption on the surface of Fe3O4nanospheres (Hicks&Pinnavaia,2003;Pattanaik&Bhaumik,2000).When the concentration of AIP reached0.016mol/L,the adsorption of AIP on the surface of Fe3O4nanospheres became saturated.Following the above was the hydrolysis process.After adding the ethanol/water mixture,the AIP on the surface of Fe3O4nanospheres was hydrolyzed into␥-AlOOH,resulting in the formation offilmy mesoporous␥-AlOOH shell on the surface of Fe3O4nanospheres. Coating a monolayer of␥-AlOOH resulted in a large amount of hydroxyl groups on the surface of the mesoporous␥-AlOOH shell(Hicks&Pinnavaia,2003).Repetition of the coating pro-cess resulted in the adsorption of AIP from the solution(Izumi et al.,1997),thereby increasing the thickness of the mesoporous ␥-AlOOH shell.According to Kuiry,Megen,Patil,Deshpande,and Seal(2005), the water content in the present synthesis was less,and there-fore,the hydrolysis was incomplete and the parallel polymerization might possibly lead to the formation offloccular␥-AlOOH in the solution.In our work,when the concentration of AIP was more than0.016mol/L,there was a large number of dissociative AIP in the solution.During the hydrolysis,␥-AlOOH shell on the surface of Fe3O4nanospheres could react withfloccular␥-AlOOH(Kim,Lee, Jun,Park,&Potdar,2007)in the solution,to result in the morphol-ogy transition of␥-AlOOH shell fromfilmy tofloccular(Fig.7(d)).4.ConclusionsMesoporous␥-AlOOH@Fe3O4magnetic nanomicrospheres with a shell–core structure were successfully prepared with hydrolysis time of1h and AIP concentration of0.016mol/L.The magnetic nanomicrospheres are composed of Fe3O4nanospheres withfilmy mesoporous(3.8nm,average pore size)␥-AlOOH shell.The thickness of the mesoporous␥-AlOOH shell can be controlled by the layer-by-layer coating process.The formation mechanism of mesoporous␥-AlOOH shell can be interpreted as a “chemisorption–hydrolysis”process.Among prepared samples,3-␥-AlOOH@Fe3O4nanomicrospheres with three layers of␥-AlOOH shell show higher saturation magnetization(46.6emu/g)and larger S BET(178.9m2/g),promising a wide range of potential applications in catalysis and adsorption separation.AcknowledgmentsFinancial funds from the National Natural Science Founda-tion of China(Grant Nos.21173018and21136001)are gratefully acknowledged.ReferencesBrinker,C.J.,&Scherer,G.W.(1990).Sol–gel sciences:The physics and chemistry of sol–gel processing.San Diego:Academic Press.Bromberg,L.,Chang, E.P.,Hatton,T. A.,Conchiero, A.,Magarinos, B.,& Alvarez-Lorenzo,C.(2011).Bactericidal core–shell paramagnetic nanoparticles functionalized with poly(hexamethylene biguanide).Langmuir,27,420–429. Deng,Y.,Qi,D.,Deng,C.,Zhang,X.,&Zhao,D.(2008).Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2core and perpendicularly aligned mesoporous SiO2shell for removal of microcystins.Journal of the Amer-ican Chemical Society,130,28–29.Feng,Y.,Lu,W.,Zhang,L.,Bao,X.,Yue,B.,Lv,Y.,et al.(2008).One-step synthesis of hierarchical cantaloupe-like AlOOH superstructures via a hydrothermal route.Crystal Growth&Design,8,1426–1429.Gregg,S.J.,&Sing,K.S.W.(1982).Adsorption,surface area and porosity.London: Academic Press.Hicks,R.W.,&Pinnavaia,T.J.(2003).Nanaoparticle assembly of mesoporous AlOOH (boehmite).Chemistry of Materials,15,78–82.Huang,S.,Yang,P.,Cheng,Z.,Li,C.,Fan,Y.,Kong,D.,et al.(2008).Synthesis and characterization of magnetic FexOy@SBA-15composites with different mor-phologies for controlled drug release and targeting.The Journal of Physical Chemistry C,112,7130–7137.Izumi,I.,Hiroyuki,S.,&Toyoki,K.(1997).A surface sol–gel process of TiO2and other metal oxidefilms with molecular precision.Chemistry of Materials,9, 1296–1298.Kim,S.M.,Lee,Y.J.,Jun,K.W.,Park,J.Y.,&Potdar,H.S.(2007).Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite.Materials Chemistry and Physics,104,56–61.Kinoshita,K.,Minami,H.,Tarutani,Y.,Tajima,K.,Okubo,M.,&Yanagimoto,H.(2011).Preparations of polystyrene–aluminum hydroxide and polystyrene–alumina composite particles in an ionic ngmuir,27,4474–4480.Kong,L.,Lu,X.,Bian,X.,Zhang,W.,&Wang,C.(2011).Constructing carbon-coated Fe3O4microspheres as antiacid and magnetic support for palladium nanoparti-cles for catalytic applications.Applied Materials&Interfaces,3,35–42.Kuiry,S.C.,Megen,E.,Patil,S.D.,Deshpande,S.A.,&Seal,S.(2005).Solution-based chemical synthesis of boehmite nanofibers and alumina nanorods.The Journal of Physical Chemistry B,109,3868–3872.Kwon,M.S.,Park,I.S.,Jang,J.S.,Lee,J.S.,&Park,J.W.(2007).Magnetically separable Pd catalyst for highly selective epoxide hydrogenolysis under mild conditions.Organic Letters,9,3417–3419.Lang,Y.,Wang,Q.,Xing,J.,Zhang,B.,&Liu,H.(2008).Preparation of magnetic␥-Al2O3supported palladium catalyst for hydrogenation of nitrobenzene.AIChE Journal,54,2303–2309.758Y.Zheng et al./Particuology10 (2012) 751–758Laurent,S.,Forge,D.,Port,M.,Roch,A.,Robic,C.,Elst,L.V.,et al.(2008).Magnetic iron oxide nanoparticles:Synthesis,stabilization,vectorization,physicochemical characterizations,and biological applications.Chemical Review,108,2064–2110. Li,Y.,Wu,J.,Qi,D.,Xu,X.,Deng,C.,Yang,P.,et al.(2008).Novel approach for the synthesis of Fe3O4@TiO2core–shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis.Chemical Communication,564–566.Lu,X.,Niu,M.,Qiao,R.,&Gao,M.(2008).Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a“one-pot”reaction.The Journal of Physical Chemistry B,112,14390–14394.Mori,K.,Kondo,Y.,Morimoto,S.,&Yamashita,H.(2008).Synthesis and multifunc-tional properties of superparamagnetic iron oxide nanoparticles coated with mesoporous silica involving single-site Ti-oxide moiety.The Journal of Physical Chemistry C,112,397–404.Park,J.,An,K.,Hwang,Y.,Park,J.G.,Noh,H.J.,Kim,J.Y.,et al.(2004).Ultra-large-scale syntheses of monodisperse nanocrystals.Nature Materials,3,891–895. Pattanaik,M.,&Bhaumik,S.K.(2000).Adsorption behaviour of polyvinyl pyrroli-done on oxide surfaces.Materials Letters,44,352–360.Peng,H.P.,Liang,R.P.,&Qiu,J.D.(2011).Facile synthesis of Fe3O4@Al2O3core–shell nanoparticles and their application to the highly specific capture of heme pro-teins for direct electrochemistry.Biosensors and Bioelectronics,26,3005–3011.Wu,W.,He,Q.,&Jiang,C.(2008).Magnetic iron oxide nanoparticles—Synthesis and surface functionalization strategies.Nanoscale Research Letters,3, 397–415.Xu,X.,Deng,C.,Gao,M.,Yu,W.,Yang,P.,&Zhang,X.(2006).Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determi-nation of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry.Advance Materials,18,3289–3293.Xuan,S.,Wang,F.,Gong,X.,Kong,S.,Yua,J.C.,&Leung,K.C.F.(2011).Hierarchical core/shell Fe3O4@SiO2@c-AlOOH@Au micro/nanoflowers for protein immobi-lization.Chemical Communication,47,2514–2516.Yuan,Q.,Yin,A.X.,Luo,C.,Sun,L.D.,Zhang,Y.W.,Duan,W.T.,et al.(2008).Facile syn-thesis for ordered mesoporous␥-aluminas with high thermal stability.Journal of the American Chemical Society,130,3465–3472.Zhu, A.,Yuan,L.,&Dai,S.(2008).Preparation of well-dispersed superpara-magnetic iron oxide nanoparticles in aqueous solution with biocompatible N-succinyl-O-carboxymethylchitosan.The Journal of Physical Chemistry C,112, 5432–5438.Zhu,Y.,Zhao,W.,Chen,H.,&Shi,J.(2007).A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4particles with oriented attachment structure and magnetic property.The Journal of Physical Chemistry C,111, 5281–5285.。