8磁场对运动电荷的作用
- 格式:doc
- 大小:608.50 KB
- 文档页数:6
一、洛伦兹力1.定义:磁场对运动电荷的作用力叫洛伦兹力.2.大小:(1)在磁场中当运动电荷的速度方向与磁场垂直时,洛伦兹力的大小F=qvB.(2)当运动电荷的速度v的方向与磁感应强度B的方向平行时,洛伦兹力的大小F=0.(3)当电荷运动方向与磁场方向夹角为θ时,洛伦兹力的大小F=qvBsin θ.(4)推导:洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向移动的自由电荷受到的洛伦兹力的宏观表现.由安培力公式可以推导出洛伦兹力公式.3.洛伦兹力的方向(1)运动电荷在磁场中所受的洛伦兹力的方向可用左手定则来判定.伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内,让磁感线垂直穿入手心,四指指向正电荷的运动方向(或负电荷运动的反方向),拇指所指的方向就是运动电荷所受的洛伦兹力的方向.(2)洛伦兹力的方向总是垂直于速度和磁场所在的平面.但v和B不一定垂直二、带电粒子在匀强磁场中的运动(不计重力)1.若带电粒子运动方向与磁场方向平行,则粒子不受洛伦兹力作用,做匀速直线运动.2.若带电粒子运动方向与磁场方向互相垂直,则粒子将做匀速圆周运动,洛伦兹力提供向心力,其运动周期T=2πm/qB (与速度大小无关),轨道半径r=mv/qB.3.由于洛伦兹力始终和速度方向互相垂直,所以洛伦兹力对运动的带电粒子不做功.图831三、质谱仪与回旋加速器1.质谱仪构造和工作原理(1)结构:如图831所示,质谱仪由粒子源、加速电场、匀强磁场和照相底片组成.2.回旋加速器的构造和工作原理(1)构造:如图832所示,回旋加速器由两个半圆的D形盒组成,D形盒处于匀强磁场中,为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个交变电压.图8321.如何处理带电粒子在匀强磁场中的圆周运动?解答:带电粒子在匀强磁场中的圆周运动是高中物理的一个难点,也是高考的热点.解这类问题既要用到物理中的洛伦兹力、圆周运动的知识,又要用到数学平面几何中的圆及解析几何知识.带电粒子在匀强磁场中做圆周运动问题的分析思路归纳如下:(1)确定圆所在的平面.由左手定则和立体几何知识可知,粒子做匀速圆周运动的轨迹在洛伦兹力f与速度v的方向所确定的平面内.(2)确定圆心的位置.根据洛伦兹力f始终与速度v的方向垂直这一特点,画出粒子运动轨迹上任两点(一般是射入与射出有界磁场的两点)的洛伦兹力方向(即垂直于这两点速度的方向),其延长线的交点即为圆心.(5)注意圆周运动中有关对称规律.如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.(6)带电粒子在有界磁场中运动的极值问题.掌握下列结论,再借助数学方法分析.①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v一定时,弧长越长,则圆心角越大,带电粒子在有界磁场中运动的时间越长.③当速率v变化时,圆心角越大,运动时间越长.2.什么原因使洛伦兹力问题出现多解?解答:带电粒子在洛伦兹力作用下做匀速圆周运动,由于多种因素的影响,常使问题形成多解.多解形成原因一般包含下述几个方面.(1)带电粒子电性不确定而形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度下,正、负粒子在磁场中运动轨道不同,会形成双解.(2)磁场方向不确定而形成多解有些题目只告诉了磁感应强度大小,而未具体指出磁感应强度的方向,此时必须考虑磁感应强度的方向不确定而形成的多解.(3)临界状态不唯一而形成多解带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧,因此,它可能穿过去了,也可能转过一角度后从入射界面飞出.(4)运动的重复性而形成多解带电粒子在部分是电场、部分是磁场的空间中运动时,运动往往具有往复性,因而形成多解.3.为什么带电粒子经回旋加速器加速后的最终能量与加速电压无关?解答:加速电压越高,带电粒子每次加速的动能增量越大,回旋半径也增加越多,导致带电粒子在D形盒中的回旋次数越少。
磁场对运动电荷的作用一、洛伦兹力1.洛伦兹力是磁场对 电荷的作用力. 2.大小:(1)当v ⊥B 时,洛伦兹力最大,F= ;(2)当v ∥B 时,洛伦兹力最小,F= . 3.方向:(1)由 判定(注意正负电荷的不同). (2)特点:a .F ⊥B 且F ⊥v ,即F 总是垂直于B 和v 决定的平面,但v 与B 不一定垂直.b .不论带电粒子在匀强磁场中做何种运动,因为 ,故F 一定不做功.F 只改变速度的 而不改变速度的 .二、带电粒子在匀强磁场中运动(不计其他作用)1.若v ∥B ,带电粒子所受的洛伦兹力F=0,因此带电粒子以速度v 做 运动. 2.若v ⊥B ,带电粒子在垂直于磁感线的平面内以入射速度v 做 运动. (1)向心力由洛伦兹力提供,即 ;(2)轨道半径公式:R= ; (3)周期:T= ; (4)频率:f=注意:T 的大小与轨道半径R 和运动速率v 无关,只与磁感应强度B 和粒子的比荷q/m 有关.一、洛伦兹力的应用1、带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹,如图是在有匀强磁场的云室中观察到的粒子的运动轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少.下列说法正确的是( ). A .粒子先经过a 点,再经过b 点 B .粒子先经过b 点,再经过a 点 C .粒子带负电荷 D .粒子带正电荷2.初速度为v o 的电子,沿平行于通电长直导线的方向射出,直导线中的电流方向与电子的初始运动方向如图所示,则( ). A .电子将向右偏转,速率不变 B .电子将向左偏转,速率改变 C .电子将做匀速圆周运动D .电子将做半径逐渐增大的曲线运动3 、如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?解:由公式知,它们的半径和周期是相同的。
磁场对运动电荷的作用一、考纲要求1.会计算洛伦兹力的大小,并能判断其方向.2.掌握带电粒子在匀强磁场中的匀速圆周运动,并能解决确定圆心、半径、运动轨迹、周期、运动时间等相关问题.二、知识梳理1.洛伦兹力(1)定义:运动电荷在磁场中所受的力.(2)大小①v∥B时,F=0.②v⊥B时,F=qvB.③v与B夹角为θ时,F=qvBsinθ.⑶方向①判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向.②向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角).由于F始终垂直于v的方向,故洛伦兹力永不做功.2.带电粒子在磁场中的运动(1)若v∥B,带电粒子以入射速度v做匀速直线运动.(2)若v⊥B,带电粒子在垂直于磁感线的平面内,以入射速度v做匀速圆周运动.(3)基本规律3.带电粒子在有界磁场中运动的几种常见情形(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)⑶圆形边界(沿径向射入必沿径向射出,如图所示)三、要点精析1.洛伦兹力的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)运动电荷在磁场中不一定受洛伦兹力作用.(4)左手判断洛伦兹力方向,但一定分正、负电荷.(5)洛伦兹力一定不做功.2.洛伦兹力与安培力的联系及区别(1)安培力是洛伦兹力的宏观表现,二者是相同性质的力,都是磁场力.(2)安培力可以做功,而洛伦兹力对运动电荷不做功.3.带电粒子在匀强磁场中运动圆心、半径及时间的确定方法.(1)圆心的确定①已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P为入射点,M为出射点).②已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).(2)半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.(3)运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=T(或t =).4.带电粒子在磁场中运动的常见情形(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)5.“三步”巧解带电粒子在磁场中运动问题(1)画轨迹:即画出轨迹,确定圆心,用几何方法求半径.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即用牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.6.质谱仪的主要特征将质量数不等,电荷数相等的带电粒子经同一电场加速后进入偏转磁场.各粒子由于轨道半径不同而分离,其轨道半径r====.在上式中,B、U、q对同一元素均为常量,故r∝,根据不同的半径,就可计算出粒子的质量或比荷.7.回旋加速器的主要特征(1)带电粒子在两D形盒中回旋周期等于两盒狭缝之间高频电场的变化周期,与带电粒子的速度无关.(2)将带电粒子在两盒狭缝之间的运动首尾连起来是一个初速度为零的匀加速直线运动.(3)带电粒子每加速一次,回旋半径就增大一次,所以各半径之比为1∶∶…(4)粒子的最后速度v=,可见带电粒子加速后的能量取决于D形盒的最大半径和磁场的强弱.8.带电粒子在磁场中运动的“两个易错点”(1)由T=知,T与v无关,不能由T=得出T与v成反比,因v变时,r也在变.(2)由t=T=·α知,带电粒子在磁场中的运动时间与圆心角α有关,与弧长无关.9.带电粒子在有界磁场中的磁偏转模型[模型概述]带电粒子在有界磁场中的偏转问题一直是高考的热点,此类模型较为复杂,常见的磁场边界有单直线边界、双直线边界、矩形边界和圆形边界等.因为是有界磁场,则带电粒子运动的完整圆周往往会被破坏,可能存在最大、最小面积,最长、最短时间等问题.[模型分类](1)单直线边界型:当粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子时以图甲中带负电粒子的运动为例.规律要点①最值相切:当带电粒子的运动轨迹小于圆周且与边界相切时(如图甲中a点),切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点).②最值相交:当带电粒子的运动轨迹等于圆周时,直径与边界相交的点(如图甲中的b点)为带电粒子射出边界的最远点(距O最远).(2)双直线边界型:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,以图乙中带负电粒子的运动为例.规律要点①最值相切:粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切,如图乙所示.②对称性:过粒子源S的垂线为ab的中垂线.在图乙中,a、b之间有带电粒子射出,可求得ab=2最值相切规律可推广到矩形区域磁场中.(3)圆形边界类型①圆形磁场区域规律要点a.相交于圆心:带电粒子沿指向圆心的方向进入磁场,则出磁场时速度矢量的反向延长线一定过圆心,即两速度矢量相交于圆心,如图甲所示.b.直径最小:带电粒子从直径的一个端点射入磁场,则从该直径的另一端点射出时,圆形磁场区域面积最小,如图乙所示.②环状磁场区域规律要点a.径向出入:带电粒子沿(逆)半径方向射入磁场,若能返回同一边界,则一定逆(沿)半径方向射出磁场.b.最值相切:当带电粒子的运动轨迹与圆相切时,粒子有最大速度v m而磁场有最小磁感应强度B,如图丙所示.利用类似平抛运动的规律求解:v x=v0,x=v0tv y=·t,y=··t2偏转角φ:tan φ==偏移距离y和偏转角φ要结合圆的几何关系利用圆周运动规律讨论求解半径:r=周期:T=t=t=T=。
磁场对运动电荷的作用1.洛伦兹力:磁场对运动电荷的作用力叫洛伦兹力.2.洛伦兹力的方向(1)判定方法左手定则:掌心——磁感线垂直穿入掌心;(2)方向特点:F ⊥B ,F ⊥v ,即F 垂直于B 和v 决定的平面(注意:洛伦兹力不做功).3.洛伦兹力的大小(1)v ∥B 时,洛伦兹力F =0.(θ=0°或180°)(2)v ⊥B 时,洛伦兹力F =q v B .(θ=90°)(3)v =0时,洛伦兹力F =0.带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2.若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做匀速圆周运动.质谱仪和回旋加速器1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12m v 2. 粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =m v 2r.由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r =1B _m =qr 2B 22U ,q m =2U B 2r 2.2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆金属盒,D 形盒的缝隙处接交流电源.D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由q v B =m v 2R ,得E km =q 2B 2R 22m,可见粒子获得的最大动能由磁感应强度和D 形盒半径决定,与加速电压无关.1.关于电场力与洛伦兹力,以下说法正确的是( ).A.电荷只要处在电场中,就会受到电场力,而电荷静止在磁场中,也可能受到洛伦兹力B.电场力对在电场中的电荷一定会做功,而洛伦兹力对在磁场中的电荷却不会做功C.电场力与洛伦兹力一样,受力方向都在电场线和磁感线上D.只有运动的电荷在磁场中才可能会受到洛伦兹力的作用2.下列各图中,运动电荷的速度方向、磁感应强度方向和电荷的受力方向之间的关系正确的是( ).3.如图所示,半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并从B 点射出,若∠AOB =120°,则该带电粒子在磁场中运动的时间为( ).A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 04.1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖.若速度相同的同一束粒子由左端射入质谱仪后的运动轨迹如图824所示,则下列相关说法中正确的是( ).A.该束带电粒子带负电B.速度选择器的P 1极板带正电C.在B 2磁场中运动半径越大的粒子,质量越大D.在B 2磁场中运动半径越大的粒子,荷质比q m 越小5.劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图825所示.置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U 0.若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是( ).A.质子被加速后的最大速度不可能超过2πRfB.质子离开回旋加速器时的最大动能与加速电压U 成正比C.质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1D.不改变磁感应强度B 和交流电频率f ,该回旋加速器也能用于α粒子加速 对洛伦兹力的理解1.洛伦兹力和安培力的关系洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向移动的自由电荷受到的洛伦兹力的宏观表现.2.洛伦兹力方向的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)用左手定则判断负电荷在磁场中运动所受的洛伦兹力时,要注意将四指指向电荷运动的反方向.【典例1】用绝缘细线悬挂一个质量为m ,带电荷量为+q 的小球,让它处于图826所示的磁感应强度为B 的匀强磁场中.由于磁场的运动,小球静止在图中位置,这时悬线与竖直方向夹角为α,并被拉紧,则磁场的运动速度和方向是( ).A.v =mg Bq ,水平向左 B .v =mg tan αBq,竖直向下 C.v =mg tan αBq ,竖直向上 D .v =mg Bq,水平向右【变式1】 在如图所示的空间中,存在电场强度为E 的匀强电场,同时存在沿x 轴负方向、磁感应强度为B 的匀强磁场.一质子(电荷量为e )在该空间恰沿y 轴正方向以速度v 匀速运动.据此可以判断出( ).A.质子所受电场力大小等于eE ,运动中电势能减小;沿z 轴正方向电势升高B.质子所受电场力大小等于eE ,运动中电势能增大;沿z 轴正方向电势降低C.质子所受电场力大小等于e v B ,运动中电势能不变;沿z 轴正方向电势升高D.质子所受电场力大小等于e v B ,运动中电势能不变;沿z 轴正方向电势降低考点二 带电粒子在匀强磁场中的运动1.圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,图中P为入射点,M为出射点).甲乙(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).2.半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.3.运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ的,其运动时间表示为:t=θ2πT⎝⎛⎭⎫或t=θRv.【典例2】如图所示,长方形abcd长ad=0.6 m,宽ab=0.3 m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直于纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25 T.一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带电粒子.以速度v=5×102 m/s沿垂直ad方向且垂直于磁场射入磁场区域,不考虑粒子间的相互作用.(1)若从O点射入的带电粒子刚好沿Oe直线射出,求空间所加电场的大小和方向.(2)若只有磁场时,某带电粒子从O点射入,求该粒子从长方形abcd射出的位置.【变式2】如图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10 T,磁场区域半径r=23 3 m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外.两区域切点为C.今有质量m=3.2×10-26 kg.带电荷量q =1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直磁场射入,它将穿越C点后再从右侧区穿出.求:(1)该离子通过两磁场区域所用的时间.(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离为多大?(侧移距离指垂直初速度方向上移动的距离)1.如图8214所示空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力,下列说法正确的是().A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大2.利用如图所示装置可以选择一定速度范围内的带电粒子.图中板MN上方是磁感应强度大小为B、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d的缝,两缝近端相距为L.一群质量为m、电荷量为q,具有不同速度的粒子从宽度为2d 的缝垂直于板MN进入磁场,对于能够从宽度为d的缝射出的粒子,下列说法正确的是().A .粒子带正电B .射出粒子的最大速度为qB (3d +L )2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大一、选择题:1、关于带电粒子所受洛仑兹力f 、磁感应强度B 和粒子速度v 三者之间的关系,下列说法中正确的是( )A 、f 、B 、v 三者必定均相互垂直B 、f 必定垂直于B 、v ,但B 不一定垂直vC 、B 必定垂直于f ,但f 不一定垂直于vD 、v 必定垂直于f ,但f 不一定垂直于B2、有关电荷受电场力和洛仑兹力的说法中,正确的是( )A 、电荷在磁场中一定受磁场力的作用B 、电荷在电场中一定受电场力的作用C 、电荷受电场力的方向与该处电场方向垂直D 、电荷若受磁场力,则受力方向与该处磁场方向垂直3、两个带电粒子以相同的速度垂直磁感线方向进入同一匀强磁场,两粒子质量之比为1:4,电量之比为1:2,则两带电粒子受洛仑兹力之比为( )A 、2:1B 、1:1C 、1:2D 、1:44、如图所示,在电子射线管上方平行放置一通电长直导线,则电子射线将( )A 、向上偏B 、向下偏C 、向纸内偏D 、向纸外偏。