数字信号处理部分复习要点
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
考研数字信号处理复习要点数字信号处理复习要点数字信号处理主要包括如下⼏个部分1、离散时间信号与系统的基本理论、信号的频谱分析2、离散傅⽴叶变换、快速傅⽴叶变换3、数字滤波器的设计⼀、离散时间信号与系统的基本理论、信号的频谱分析 1、离散时间信号:1)离散时间信号。
时间是离散变量的信号,即独⽴变量时间被量化了。
信号的幅值可以是连续数值,也可以是离散数值。
2)数字信号。
时间和幅值都离散化的信号。
(本课程主要讲解的实际上是离散时间信号的处理) 3)离散时间信号可⽤序列来描述 4)序列的卷积和(线性卷积)∑∞-∞==-=m n h n x m n h m x n y )(*)()()()(5)⼏种常⽤序列a)单位抽样序列(也称单位冲激序列))(n δ,?≠==0,00,1)(n n n δb)单位阶跃序列)(n u ,??<≥=0,00,1)(n n n uc)矩形序列,?=-≤≤=其它n N n n R N ,010,1)(d)实指数序列,)()(n u a n x n= 6)序列的周期性所有n 存在⼀个最⼩的正整数N ,满⾜:)()(N n x n x +=,则称序列)(n x 是周期序列,周期为N 。
(注意:按此定义,模拟信号是周期信号,采⽤后的离散信号未必是周期的)7)时域抽样定理:⼀个限带模拟信号()a x t ,若其频谱的最⾼频率为0F ,对它进⾏等间隔抽样⽽得()x n ,抽样周期为T ,或抽样频率为1/s F T =;只有在抽样频率02s F F ≥时,才可由()a x t 准确恢复()x n 。
2、离散时间信号的频域表⽰(信号的傅⽴叶变换)∑∞-∞=-=n nj e n x j X ωω)()(,((2))()X j X j ωπω+=ωωπωππd e j X n x n j ?-=)(21)(3、序列的Z 变换∑∞-∞=-==n nzn x n x z X )()]([)(Z1) Z 变换与傅⽴叶变换的关系,ωωj e z z X j X ==)()(2) Z 变换的收敛域收敛区域要依据序列的性质⽽定。
数字信号处理知识点汇总数字信号处理是一门涉及多个领域的重要学科,在通信、音频处理、图像处理、控制系统等众多领域都有着广泛的应用。
接下来,让我们一同深入了解数字信号处理的主要知识点。
一、数字信号的基本概念数字信号是在时间和幅度上都离散的信号。
与模拟信号相比,数字信号具有更强的抗干扰能力和便于处理、存储等优点。
在数字信号中,我们需要了解采样定理。
采样定理指出,为了能够从采样后的信号中完全恢复原始的连续信号,采样频率必须至少是原始信号最高频率的两倍。
这是保证数字信号处理准确性的关键原则。
二、离散时间信号与系统离散时间信号可以通过序列来表示,常见的有单位脉冲序列、单位阶跃序列等。
离散时间系统则是对输入的离散时间信号进行运算和处理,产生输出信号。
系统的特性可以通过线性、时不变性、因果性和稳定性等方面来描述。
线性系统满足叠加原理,即多个输入的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合。
时不变系统的特性不随时间变化,输入的时移会导致输出的相同时移。
因果系统的输出只取决于当前和过去的输入,而稳定系统对于有界的输入会产生有界的输出。
三、Z 变换Z 变换是分析离散时间系统的重要工具。
它将离散时间信号从时域转换到复频域。
通过 Z 变换,可以方便地求解系统的差分方程,分析系统的频率特性和稳定性。
Z 变换的收敛域决定了其特性和应用范围。
逆 Z 变换则可以将复频域的函数转换回时域信号。
四、离散傅里叶变换(DFT)DFT 是数字信号处理中的核心算法之一。
它将有限长的离散时间信号转换到频域。
DFT 的快速算法——快速傅里叶变换(FFT)大大提高了计算效率,使得在实际应用中能够快速处理大量的数据。
通过 DFT,可以对信号进行频谱分析,了解信号的频率成分和能量分布。
五、数字滤波器数字滤波器用于对数字信号进行滤波处理,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,稳定性好,但设计相对复杂。
数字信号处理知识点总结《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n =当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+-1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式:1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑(6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
数字信号处理复习要点数字信号处理主要包括如下几个部分1、 离散时间信号与系统的基本理论、信号的频谱分析2、 离散傅立叶变换、快速傅立叶变换3、 数字滤波器的设计一、离散时间信号与系统的基本理论、信号的频谱分析 1、离散时间信号:1)离散时间信号。
时间是离散变量的信号,即独立变量时间被量化了。
信号的幅值可以是连续数值,也可以是离散数值。
2) 数字信号。
时间和幅值都离散化的信号。
(本课程主要讲解的实际上是离散时间信号的处理) 3) 离散时间信号可用序列来描述 4) 序列的卷积和(线性卷积)∑∞-∞==-=m n h n x m n h m x n y )(*)()()()(5)几种常用序列a)单位抽样序列(也称单位冲激序列))(n δ,⎩⎨⎧≠==0,00,1)(n n n δb)单位阶跃序列)(n u ,⎩⎨⎧<≥=0,00,1)(n n n uc)矩形序列,⎩⎨⎧=-≤≤=其它n N n n R N ,010,1)(d)实指数序列,)()(n u a n x n= 6) 序列的周期性所有n 存在一个最小的正整数N ,满足:)()(N n x n x +=,则称序列)(n x 是周期序列,周期为N 。
(注意:按此定义,模拟信号是周期信号,采用后的离散信号未必是周期的)7)时域抽样定理:一个限带模拟信号()a x t ,若其频谱的最高频率为0F ,对它进行等间隔抽样而得()x n ,抽样周期为T ,或抽样频率为1/s F T =;只有在抽样频率02s F F ≥时,才可由()a x t 准确恢复()x n 。
2、离散时间信号的频域表示(信号的傅立叶变换)∑∞-∞=-=n nj en x j X ωω)()(,((2))()X j X j ωπω+=ωωπωππd e j X n x n j ⎰-=)(21)(3、序列的Z 变换∑∞-∞=-==n nzn x n x z X )()]([)(Z1) Z 变换与傅立叶变换的关系,ωωj e z z X j X ==)()(2) Z 变换的收敛域收敛区域要依据序列的性质而定。
一、典型序列1. 单位取样序列δ(n),任何序列可表示成∑∞-∞=-=k k n k x n x )()()(δ,常常反用该公式2. 阶跃序列u(n)3. 矩形序列R N (n )=u(n)-u(n-N)4. 指数序列a n5. 正弦序列sin(ωn) 二、周期序列周期序列必须满足x(n+N)=x(n),对任意n ,周期为N 对正弦序列sin(ωn),2π/ω为有理数时,是周期序列 三、对称序列1. 偶对称序列 )()(n x n x -=;奇对称序列)()(n x n x --= (实序列) 2. 共轭对称序列 )(*)(n x n x e e -=; 共轭反对称序列)(*)(n x n x o o --=任意序列可以分解成共轭对称序列分量和共轭反对称分量之和。
即:)()()(n x n x n x o e +=, 可分别从原序列中得出2)](*)([)(n x n x n x e -+=,2)](*)([)(n x n x n x o --=3. 有限长共轭对称序列 )(*)(n N x n x ep ep -=;有限长共轭反对称序列)(*)(n N x n x op op --= 长度为N 的任意序列也可以分解成其共轭对称分量和共轭反对称分量之和,即)()()(n x n x n x op ep += 可分别从原序列中得出2)(*)()(n N x n x n x ep -+=,2)(*)()(n N x n x n x op --=; )(n x 、)(n x ep 、)(n x op 三序列长度相同四、序列的线性卷积和循环卷积 线性卷积:)()()(n h n x n y *==∑∞∞=--k )()(k n h k x = ∑∞-∞=-k k n x k h )()(如果x(n)的非0区间是N 0≤n ≤N 1 ,长度Lx=N 1-N 0+1 h(n)的非0区间是N 2≤n ≤N 3 ,长度Lh=N 3-N 2+1则y(n)的非0区间是N 0+N 2≤n ≤N 1+N 3 ,长度Ly=Lx+Lh-1 x (n)*h(n)= h(n)*x(n)(x(n)*h1(n))*h2(n)= x(n)*(h1(n)*h2(n))x(n)*(h1(n)+h2(n))= x(n)* h1(n)+x(n)*h2(n) 循环卷积:y(n)=x(n)○h(n)==)(m))-x(m)h((n 1N n R N N m ∑-= 长度为N, 三序列长度相同线性卷积求法: 1. 图解法2. Z 变换法 FT 法3. 循环卷积法:均补0到Ly=Lx+Lh-1点(循环卷积和线性卷积相等的条件)DFT 法:x (n ),h (n )分别作Ly=Lx+Lh-1点DFT ,频域相乘,再IDFT 。
数字信号处理总复习要点考试题型第一题填空题(28/30分)第二题判断题(选择题)(10/15分)第三题简答题、证明题(10分)第四题计算题(40-50分)总复习要点绪论1、数字信号处理的基本概念2、数字信号处理实现的方法:硬件实现、软件实现、软硬件结合实现3、数字信号处理系统的方框图,前后两个低通的作用4、数字信号处理的优缺点第一章离散时间信号与系统1、正弦序列的周期性2、折叠频率3、抗混叠滤波器4、原连续信号的谱,对应的采样信号的谱第二章离散时间傅立叶变换(DTFT )1、 z 变换的定义,2、 DTFT 、IDTFT 的定义(作业)3、序列的频谱(幅度谱、相位谱)4、序列谱的特点:时域离散、频谱连续,以2π为周期。
5、 DTFT 的性质,见P78表2-3时移性质、频移性质、指数加权、线性加权、卷积定理对称性1、对称性2 (共轭对称、共轭反对称)()[()]()j j nn X e DTFT x n x n eωω∞==∑1()[()]()2j j j nx n IDTFT X e X e e d πωωωπωπ-==6、序列的傅立叶变换和模拟信号傅立叶变换之间的关系(指Xa(j Ω)、Xa(j Ω)、和X(e j ω)三者之间的关系)模拟频率fs 对应数字频率2π,折叠频率fs/2对应数字频率π。
7、周期序列的离散傅立叶级数(DFS )8、周期序列的傅立叶变换9、离散时间系统的差分方程、H(z),H(e jw),h(n)。
第三章离散傅立叶变换(DFT )1、周期序列离散傅立叶级数(DFS)的性质2、离散傅立叶变换的定义(N ≥M )1?()()a a s k Xj X j jk T∞=-∞Ω=Ω-Ω∑()()|j TX eXaωΩ==Ω12()()j a k X eX jjk TTTωωπ∞=-∞=-∑211()[()]()N jknNk x n ID FS X k X k e Nπ-===∑21[()]()N j knNn D FS x n xn e π--===∑ ()X k 22()()k X k k Nππδω∞=-∞=-∑[()]DTFT xn 11()[()]()N knNk x n ID FT X k X k W N--===∑1()[()]()N knNn X k DFT x n x n W -===∑3、DFT 的特点:时域离散、频域离散。
数字信号处理第0章绪论1.数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
2.DSP系统构成输入抗混叠滤波A/DDSP芯片D/A平滑滤波输出输入信号首先进行带限滤波和抽样,然后进行A/D(Analog to Digital)变换将信号变换成数字比特流。
根据奈奎斯特抽样定理,为保证信息不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。
DSP芯片的输入是A/D变换后得到的以抽样形式表示的数字信号。
3.信号的形式(1)连续信号在连续的时间范围内有定义的信号。
连续--时间连续。
(2)离散信号在一些离散的瞬间才有定义的信号。
离散--时间离散。
4.数字信号处理主要包括如下几个部分(1)离散时间信号与系统的基本理论、信号的频谱分析(2)离散傅立叶变换、快速傅立叶变换(3)数字滤波器的设计第一章离散时间信号一、典型离散信号定义1.离散时间信号与数字信号时间为离散变量的信号称作离散时间信号;而时间和幅值都离散化的信号称作为数字信号。
2.序列离散时间信号-时间上不连续上的一个序列。
通常定义为一个序列值的集合{x(n)},n 为整型数,x(n)表示序列中第n 个样值,{·}表示全部样本值的集合。
离散时间信号可以是通过采样得到的采样序列x(n)=x a (nT),也可以不是采样信号得到。
二.常用离散信号1.单位抽样序列(也称单位冲激序列))(n δ⎩⎨⎧≠==0,00,1)(n n n δδ(n):在n=0时取值为12.单位阶跃序列)(n u ,⎩⎨⎧<≥=0,00,1)(n n n u 3.矩形序列,⎩⎨⎧=-≤≤=其它n N n n R N ,010,1)(4.实指数序列,)()(n u a n x n =,a 为实数5.正弦型序列)sin()(φω+=n A n x 式中,ω为数字域频率,单位为弧度。
15On 1-10()0sin nω()t 0sin Ω16.复指数序列nj e n x )(0)(ωσ+=7.周期序列如果对所有n 存在一个最小的正整数N ,使下面等式成立:)()(N n x n x +=,则称x(n)为周期序列,最小周期为N 。
数字信号处理部分复习要点
一、数字信号处理概述
1、信号的分类(PPT 22-25页)
2、数字信号处理系统的结构组成(PPT 28页)
3、奈奎斯特采样定理(PPT 45页)
二、离散时间信号与系统
1、离散序列的移位和加权求和表示法(PPT 19页)(必考)
2.1、求解序列的卷积,重点掌握解析法(PPT 42-43页)
2.2、(PPT 40页)(必考)
3、综合判别系统的线性性、时不变性、因果性和稳定性(PPT 53-68页)(必考)
4、差分方程的递推法求解(PPT 73-78页)
三、离散时间信号的变换_1
(PPT 50页之前的不太清楚,感觉挺重要的)
1、证明Z变换的一两个性质或定理(PPT 51-62页)(必考)
2、Z变换求解差分方程(书 60页, PPT 69页)
3、利用系统函数的收敛域分析系统的因果性和稳定性(PPT 79-82)(重点)
四、离散时间信号的变换_2
(待定)
五、快速傅里叶变换
1、8点基-2 DIT的FFT运算流图(PPT 26页)(必考)
六、时域离散系统的网络结构
1、依据系统函数画出IIR系统的网络结构图(PPT 21页)
2、依据系统函数画出FIR系统的网络结构图(PPT 27页)
七、无限脉冲响应数字滤波器的设计(开卷考试部分)
1、巴特沃斯低通滤波器的设计(书 159页)
2、切比雪夫滤波器的设计(书 165页)
说明:上面只是老师上课有强调过的知识点,考点的话不止这些,这仅供参考。