【小学奥数教程】三年级和差倍问题总结复习
- 格式:pdf
- 大小:277.14 KB
- 文档页数:3
小学三年级奥数知识点1.和差倍问题和差问题和倍问题差倍问题几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数公式②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型基本公式在直线或者不封闭的曲线上植树,两端都植树棵数=段数+1在直线或者不封闭的曲线上植树,两端都不植树棵距×段数=总长棵数=段数-1在直线或者不封闭的曲线上植树,只有一端植树棵距×段数=总长棵数=段数封闭曲线上植树棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
和、差、倍问题一、和差问题【含义】已知两个数量的和与它们的差,求两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2;小数=(和-差)÷2【解题思路】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
【例1】甲乙两班共学生98 人,甲班比乙班多6 人,求两班各有多少人?【练一练】长方形的长和宽之和为18 厘米,长比宽多2 厘米,求长方形的面积?【练一练】小明2天读完一本75页的故事书,第一天比第二天少读5页,小明这两天各读书多少页?【练一练】甲乙两车原来共装苹果97 筐,从甲车取下14 筐放到乙车上,结果甲车比乙车还多 3 筐,两车原来各装苹果多少筐?【练一练】小米期末考试中语文、数学和英语的平均成绩是95分,数学比语文多得了6分,英语比语文多得了9分。
小明这三门功课各得了多少分?二、和倍问题【含义】已知两个数的与这两个数的倍数关系,要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(倍数+1)=较小的数;总和-较小的数=较大的数;较小的数×倍数=较大的数【解题思路】简单的题目直接利用公式,复杂的题目变通后利用公式。
【例2】果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?【练一练】东西两个仓库共存粮480 吨,东库存粮数是西库存粮数的2 倍,求两库各存粮多少吨?【练一练】甲站原有车52 辆,乙站原有车32 辆,若每天从甲站开往乙站28 辆,从乙站开往甲站24 辆,几天后乙站车辆数是甲站的2 倍?【练一练】甲、乙、丙三数之和是360,又知甲为乙的3倍,丙为乙的2倍。
甲、乙、丙各是多少?【练一练】被除数和除数的和为120,商是7.被除数和除数各是多少?三、差倍问题【含义】已知两个数的差及两个数的倍数关系,要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(倍数-1)=较小的数;较小的数×倍数=较大的数【解题思路】要找出差所对应的倍数,先求出1倍数,再求出几倍数。
【秒懂奥数】3年级和倍,差倍,和差问题详解挑战级数:★★1.小明和小亮玩“石头、剪刀、布”的游戏.两人用同样多的石子做记录,输一次,就给对方一颗石子.他们做了许多次游戏,每次都决出胜负,其中小明胜了3次,小亮增加了9颗石子.那么他们共做了多少次游戏?[分析与解]小亮增加了9颗石子,则小亮比小明多胜9次,小明胜了3次,那么小亮胜了3+9=12次,又因为每次都决出胜负,所以共做了3+12=15次游戏.挑战级数:★★2.用杯子往一个空瓶里倒水,如果倒进6杯水,连瓶共重680克,如果倒进9杯水,连瓶共重920克,求空瓶的重量?[分析与解]第二次多倒入3杯水,瓶子连同水的重量增加了920-680=240克,那么1杯水重240÷3=80克,则6杯水重80×6=480克,所以瓶子重680-480=200克.挑战级数:★★3.某学生到工厂搞勤工俭学,按合同规定,干满30天,工厂将付给他一套工作服和70元钱.但他工作了20天,由于学校另有安排,他便中止了合同,工厂只付给他一套工作服和20元钱.那么,这套工作服值多少元?[分析与解]这名学生少工作10天,工资少了70-20=50元,那么30天的工资应为50×(30÷10)=150元,而实际只是给他一套工作服和70元钱,所以工作服值150-70=80元.挑战级数:★★★4.甲、乙、丙3人同乘长途汽车,3人所带行李都超过免费重量,要另付行李费.甲付2角,乙付4角,丙付6角.3人行李共重150千克,如果一个人带这些行李超过的重量就要付行李费2元4角,问每人可免费带行李多少千克?[分析与解]3人分开携带自己的行李,共花了2+4+6=12角钱,如果一个人携带这些行李则多花24-12=12角钱,这是因为一人携带比三人携带少了2倍的免费行李重量,所以免费的行李重量相当与12÷2=6角钱.把甲超出的行李重量看成1份,那么免费重量为3份,乙超出的行李重量为2份,丙超出的行李重量为3份.有三人行李共1+2+3+3×3=15份,为150千克,所以1份为150÷15=10千克,那么每人可带的免费行李重10×3=30千克.挑战级数:★★5.两组学生参加义务劳动,甲组学生人数是乙组的3倍,而乙组的学生人数比甲组的3倍少40人,求参加义务劳动的学生共有多少人?[分析与解]甲组人数是3倍乙组人数,即3倍乙组人数9倍甲组的人数少40×3=120人,那么8倍甲组的人数等于120人,所以甲组有120÷8=15人,则乙组有15÷3=5人,那么参加义务劳动的学生共有15+5=20人.挑战级数:★★6.某工厂接到制造6000个A种零件和2000个B种零件的订货单.该厂共有210名工人,每人制造5个A种零件和制造3个B种零件所用时间相等.现把全厂工人分成甲、乙两组分别制造A,B两种零件,并同时投入生产,那么当甲、乙两组各分配多少人时,完成订货单所用时间最少?[分析与解]如果生产同样多的A、B两种零件,生产A种零件的人数为3份,生产B 种零件的人数为5份.现在A种零件是B种零件的3倍,所以生产A种零件的人数为9份,生产B 种零件的人数为5份.共有210名工人,那么生产A组零件的甲组应为210÷(9+5)×9=135人,则生产B组零件的乙组应为210-135=75人.此时A、B零件按订单同时完成,所用时间最少.挑战级数:★★7.仓库存有一批钢材,由两个汽车队负责运往工地.已知甲队单独运要20天,乙队每天可运20吨.现在由甲、乙两队同时运输,干了6天之后,甲队汽车坏了一辆,每天少运4吨,结果又运6天才全部运完.那么这批钢材共有多少吨?[分析与解]我们可以把甲队坏的车换到乙队,让甲队的效率不变,则乙队每天少运4吨,即16吨.甲队工作了6+6=12天,剩下的工作都是由乙队来完成的,那么乙队完成的工作相当与甲队20-12=8天完成的工作.乙队完成了6×20+6×16=216吨,则甲队正常的一天运216÷8=27吨,于是这批钢材共有27×20=540吨.挑战级数:★★8.李师傅某天生产了一批零件,他把它们分成了甲、乙两堆.如果从甲堆零件中拿15个放到乙堆中,则两堆零件的个数相等;如果从乙堆零件中拿15个放到甲堆中,则甲堆零件的个数是乙堆的3倍.那么,甲堆原来有零件多少个?李师傅这天共生产零件多少个?[分析与解]显然,甲堆原有的零件比乙堆多30个,而甲队原有的零件又是乙队零件的3倍少15×(3+1)=60个,所以2倍乙堆零件减去60为30.即乙堆原有零件为(60+30)÷2=45个,那么甲堆原有零件45+30=75个,李师傅这天共生产零件45+75=120个.挑战级数:★★★9.箱子里有红、白两种玻璃球,红球数是白球数的3倍多2只.每次从箱里取出7只白球、15只红球,如果经过若干次以后,箱子里剩下3只白球、53只红球,那么,箱子里原有红球数比白球数多多少只?[分析与解]设共取球x次,则取走红球15x,白球5x只.有(15x+53)=3(7x+3)+2,解得x=7.所以原有红球15x+53=158,白球7x+3=52.所以红球比白球多106只.解法二:①剩下的红球数53只减去2只是51只,它恰好是3的倍数,并且有:51-3×3=42只,这说明剩下的红球数减2后是剩下的白球数的3倍多42只;②如果每次取出的红球数都是白球数的3倍,那么每次应该取出3×7=21只;③实际每次取出的红球数比假设的少:21-15=6只;④每次少取6只,总共比假设少取42只,那么取了42÷6=7次;⑤箱子里原有红球比白球多:7×(15-7)+(53-3)=106只.挑战级数:★★★10.有红、白球若干个.若每次拿出1个红球和1个白球,则拿到没有红球时,还剩下50个白球;若每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个.那么这堆红球、白球共有多少个?[分析与解]若每次拿出1个红球和1个白球,则没有红球时,还剩下50个白球即说明白球比红球多50个;若每次拿出1个红球和3个白球,则没有白球时,还剩下50个红球,那么红球还可以拿50次,则白球比红球的3倍少3×50=150个.则红球=(150+50)÷(3-1)=100个,白球=100+50=100×3-150=150个.这堆红球、白球共有100+150=250个.挑战级数:★★★11.某人以分期付款的方式买一台电视机.买时第一个月付款750元,以后每月付150元;或前一半时间付300元,后一半时间付100元.两种付款方式的付款总数及时间都相同.这台电视机的价格是多少元?[分析与解]显然有第二种付款方式相当于每月付(300+100)÷2=200元,则等同变化后第一种付款方式较第二种付款方式的第一个月多支出了750-200=550元.但以后,每月少支出200-150=50元,所以第一种付款方式中付了550÷50=11个月的150元.那么付款的总时间为11+1=12个月,所以这台电视机的价格为200×12=2400元.解法二:设有x个月,那么第一种付钱方式所付的总钱数:750+150×(x-1)元;第二种付钱方式所付的总钱数:(300+100)×x÷2.由于电视机价格不变.所以有:750+150×(x-1)=(300+100)×x÷2解得:600+150x=200x,x=12,电视机的价格为:600+150×12=2400元.挑战级数:★★12.甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人.问甲班和丁班共多少人?[分析与解]有甲、乙、丙、丁4个班的人数之和为83+88=171人,除去乙、丙两班,剩下的即为甲、丁两班,所以甲、丁两班有171-86=85人.挑战级数:★★★13.小木、小林、小森3人去看电影.如果用小木带的钱去买3张电影票,还差5角5分;如果用小林带的钱去买3张电影票,还差6角9分;如果用3个人带去的钱去买3张电影票,就多3角.已知小森带了3角7分,那么买一张电影票要用多少钱?[分析与解]如果用小木的钱买3张票,那么差55分;如果用小林带的钱买3张票,那么差69分;如果用三个人带的钱买3张票,那么多30;小森带了37分,所以小木和小林带的钱买6张票差为55+69=114分,而买3张还差37-30=7分.所以一张电影票的价钱为(114-7)÷(6-3)=117÷3=39分.挑战级数:★★14.有3个箱子,如果两箱两箱地称它们的重量,分别是83千克、85千克和86千克.问:其中最轻的箱子重多少千克?[分析与解]这3个箱子的总重量的2倍为83+85+86=254千克,则3个箱子共重254÷2=127千克.当其中的两个箱子的重量和最大时,剩下的第三个箱子最轻,所以最轻的箱子重127-86=41千克.挑战级数:★★★15.三个连续的自然数,后面两个数的积与前面两个数的积之差是114,那么这三个数中最小的数是多少?[分析与解]如果设中间的那个数为1份,有后面两个数的积与前面两个数的积相差2份,为114.所以,中间那个数,即1份为114÷2=57,所以最小的那个数为57-1=56。
三碗不过岗(和倍和差问题)知识图谱三碗不过岗知识精讲一.和倍问题1.概念:条件中给出了和的关系和倍数关系,求具体每个数量大小的问题.2.解决方法(1)有时要将条件巧妙的转化成和倍问题.(2)根据题目意思,想好最基本的“1”份取多少.一般选取较少的数量画成一段,再按照题目条件中所给的数量关系画出其他量的长度.(比如:甲是乙的3倍,就应该把乙取为“1”份).(3)画线段图,找“总量”与“1”段之间的关系,设法求出“1”段代表的数量.严格按照题目的意思来画图,多思考如何把题目的条件在图中表现出来.(4)当一个量不是另一个量的整数倍,而是“几倍多几”或“几倍少几”时,可以把多的去掉,或者把少的补上,把问题变成整数倍来解决.二.和差问题:1.概念:条件中给出了和的关系和差的关系,求具体每个数量大小的问题.2.解决方法:()2=+÷较大数和差.较小数和-差;()2=÷三点剖析本讲主要培养学生的实践应用能力,其次学生的运算能力.本讲内容是在基本应用题的基础上,继续学习和差与和倍问题.从实际生活出发,让学生了解和差与和倍的基本题型,掌握和差与和倍的解题思路等内容.后续课程还会继续学习和差倍问题.课堂引入例题1、江湖人称“行者武松”的武二郎回家探望哥哥经过景阳冈,在山头前发现有家小酒家,挂了面旗子,上面写着“三碗不过岗”.武松觉得奇怪,就叫来了店小二,店小二说:“咱家的酒那可是出了名的烈,喝下三碗酒的,就没人能清醒的走过山头!”武松并不相信,他觉得自己酒量甚好,怎会被这三碗酒喝趴下.这时,一位自称好汉的“大侠”也来喝酒,言语中颇有些不服气武松.两人很快就拼上酒了,直到武松摇摇晃晃的走出酒家,“大侠”早已经趴在桌上了.店小二数了数,两人一共喝了26碗酒,武松比“大侠”要多10碗.武松的酒量真厉害!武松和这个“大侠”到底各喝了多少碗酒呀?你能算一算武松到底喝了几碗酒吗?例题2、高斯小学共有学生1500人,其中男生人数是女生的2倍.请问:男、女生各有多少人?和倍问题例题1、如图,长绳的长度是短绳的________倍,如果长绳长27米,那么短绳的长度是________米.如果两根绳子共长48米,那么短绳的长度为________米.注意审题哦~例题2、(1)高斯先生请柯小南和唐小虎去搬书,柯小南和唐小虎一共搬了100本书,其中唐小虎搬的是柯小南的3倍,那么唐小虎搬了多少本书?(2)妈妈买了一件上衣和一条裤子共用去240元,上衣的价钱是裤子的3倍,上衣和裤子各要多少元钱?(3)两数的和是432,商是7,这两个数各是多少?我们可以画线段图来表示哦~例题3、(1)有一些羊和狼,羊的只数比狼的4倍多2只,羊和狼共42只.那么狼有多少只?(2)两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是多少?“几倍多几”的问题可以先去掉多几,再计算.例题4、(1)水果店运来梨80吨,比西瓜的2倍少14吨.运来西瓜多少吨?(2)果园里梨树和苹果树共有67棵,梨树比苹果树的2倍少2棵,苹果树有多少棵?(3)甲乙两个冷藏库原来共存肉92吨.从甲库运出28吨后,乙库存肉比甲库的4倍少6吨.甲库原来存肉多少吨?乙库原来存肉多少吨?“几倍多几”是先去掉多几,那“几倍少几”是不是应该加上少几呢?例题5、(1)甲乙两个仓库原来共存粮200吨.后来从甲仓库运出30吨,给乙仓库运进10吨.这时甲仓库是乙仓库存粮的2倍,则甲仓库原来存粮________吨.(2)两数相除,商是5,余数是7,被除数、除数、商、余数的和是187,则被除数为________.随练1、猪八戒和孙悟空去摘蟠桃,孙悟空摘了12个,猪八戒摘的数量是孙悟空的3倍,回去后他们将桃子交给唐僧,唐僧将桃子平均分给孙悟空、猪八戒和沙僧三人,那么沙僧分得了多少个?随练2、两个数的和是363,用较大的数除以较小的数,得商16余6,则这两个数中较大的是多少?随练3、公园里有松树和柏树共98棵,其中松树比柏树的3倍少2棵,柏树有________棵.和差问题例题1、(1)体育室里篮球和足球共46个,并且篮球比足球多6个,那么足球有几个?(2)唐小虎和柯小南共有140个金币,唐小虎比柯小南多20个金币,那么唐小虎有多少个金币?这个,是不是也可以画线段图呢?例题2、(1)哥哥和弟弟平均年龄是12岁,其中哥哥比弟弟大2岁,那么哥哥和弟弟现在各________岁.(2)唐小虎和唐小果共有30颗巧克力.如果唐小果给唐小虎5颗,那么唐小果比唐小虎多2颗,那么原来唐小虎有________颗巧克力.没有和差关系,也没有和倍关系,怎么办呐?例题3、 (1)李老师桌子上有一大叠作业本,其中有162本不是一班的,143本不是二班的,一班和二班的共有87本,那么二班的作业本共有多少本?(2)甲乙两人共有46元钱,甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等.甲乙两人原来各有多少钱?(3)哥弟俩共有邮票39枚,如果哥哥给弟弟7枚后,就比弟弟少3枚,那么哥弟俩原来各有多少枚邮票?随练1、 体育室里篮球和足球共46个,并且篮球比足球多6个,那么足球有________个.随练2、 哥哥和弟弟现在共19岁,其中哥哥比弟弟大3岁,哥哥和弟弟现在各多少岁?随练3、 艾小莎家和柯小南家共有52个包子.如果艾小莎给柯小南5个,则艾小莎还比柯小南多2个.请问原来艾小莎有多少个包子?易错纠改例题1、 一个书架分上下两层,共放有图书34本.如果从上层取出8本图书放入下层,那么下层就比上层多2本.原来上下两层各有图书多少本?这个是和差问题,但是我们要先找到差是多少.上层给下层给了8本,下层比上册多2本,差是不是应该是?小莎,我们之前学过的移多补少,应该是“给一差二”的.那列式就应该是,这是差.剩下的用和差问题的基本方法解决就好了.拓展1、图书馆买回来60本文艺书和科普书,其中文艺书的本数是科普书的3倍,文艺书有_______本.2、文雯有铅笔和钢笔共18支,其中铅笔比钢笔多12支,那么文雯有__________支铅笔.3、某市去年一年365天内不下雨的天数比下雨的天数的3倍多5天,那么去年一年中该市有_______天下雨.4、果园里苹果树和梨树共55棵,其中梨树的棵数比苹果树的2倍少5棵,那么梨树有__________棵.5、两数之和是792,某个数的个位为0,若去掉0,与另一个数相同,两数分别为________、________.6、饲养场养鸡、鸭共250只,鸡的只数比鸭多3倍.饲养场养鸡、鸭各多少只?7、哥弟俩共有邮票39枚,如果哥哥给弟弟7枚后,就比弟弟少3枚,那么哥弟俩原来各有多少枚邮票?8、甲、乙两个冷库共存鸡蛋6250箱,先从甲库运走1100箱后,这时乙库存的鸡蛋比甲库剩下的2倍还多350箱,求甲、乙两库原来各存鸡蛋多少箱?9、分析并口述题目的做题思路及方法.师徒两人共加工105个零件,师傅加工的个数比徒弟的3倍还多5个,师傅和徒弟各加工零件多少个?。
三年级奥数,什么是和差、差倍、和倍,具体到应用题该如何做?近年来虽然国家一直在禁止奥数培训,但各种奥数班仍层出不穷,其主要原因还是在于奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥些。
而奥数中的思想也是多种多样,这里我们看一下奥数中常见的和差、差倍、和倍概念。
和差:已知两数的和及它们的差(一般指:大数-小数),求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
和差问题的解题规律为:小数加上两数差就是大数,两数和加上两数差便是大数的2倍;大数减去两数差就是小数,两数和减去两数差是小数的2倍。
因此,用两数和加上两数差,再除以2,就可求出其中的大数;用两数和减去两数差,再除以2,就可求出小数。
写成公式为:(和+差)÷2=大数(和-差)÷2=小数如何理解呢?我们通过例题来看:已知三年级一班女生比男生少5人,男生和女生共31人,问三年级一班有多少男生多少女生。
解:如果列方程则假设三年级一班男生数量为x,女生数量为y则 x+y=31;x-y=5;合并化简有x=(31+5)÷2=18;y=(31-5)/2=13;即三年级一班有18位男生,13位女生。
这里,男生数量相当于大数,女生数量相当于小数,5为两数的差,31为两数的和。
同类问题还有哪些呢?1、小山羊有青草丸子和地瓜丸子共30颗,其中青草丸子要比地瓜丸子多8颗,那么小山羊有__________颗地瓜丸子。
2、有两筐水果共重150千克,第一框比第二框多8千克,问第一框个共有__________水果。
稍微变形;两筐苹果共有120个,如果从第一个筐中拿10个放入第二个筐中,那么两个筐中的苹果个数相等,问两筐原来各有多少苹果?分析:还是不是和差问题呢?是!两数之和不变为120;初始时两数之差为20,大数是第一个筐内苹果数量,小数是第二个筐内苹果数量。
注意类似这种整体内移动时经常会涉及一加一减的两倍问题。
奥数--教学教案授课时间:年月日备课时间年月日年级五课程类别一对多课时学生姓名授课主题和倍、差倍、和差问题授课教师教学目标理解和掌握和倍、差倍、和差问题的解题思路,提高解决问题的能力教学重难点解题方法和解题思路教学方法讲练结合,引导学生主动思考,启发学生思维。
教学过程1、课程导入/错题讲解:回顾前面所学内容。
习题引入:工地上有沙子和水泥共360吨,沙子比水泥的4倍还多100吨,沙子和水泥各有多少吨?点拨教学过程2、知识点讲解和、差、倍组合的应用题(一)和、差、倍的结构(1)已知两个数的和与两个数的倍数关系,求这两个数各是多少的应用题,我们把它叫着和倍问题。
(2)已知两个数的差与两个数的倍数关系,求这两个数各是多少的应用题。
叫差倍问题解答和倍、差倍问题时,一般把最小的数看作“一倍”,先求出最小量,然后再分别求出其他各数。
(3)和差问题的结构特征已知大小两个数的和及这两个数的差,求这两个数各是多少的应用题。
解答和差问题的关键是:设法使两个(或若干个)大小不等的数变成两个(或若干个)相等的数。
(二)计算公式(1)和倍问题关系式小数 = 两数和÷(倍数 + 1)大数 = 两数和–小数小数 = 两数和–大数大数 = 小数×倍数小数 = 大数÷倍数(2) 差倍问题关系式小数 = 两数差÷(倍数-1)大数 =小数 + 相差数小数 = 大数–相差数大数 =小数×倍数小数 = 大数÷倍数(3)和差问题计算的数量关系式(和+差)÷2=大数(和-差)÷2=小数学习札记教学过程3、例题分析:学校有科技书和故事书共480本,科技书的本数是故事书的3倍。
两种书各有多少本?果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵数是苹果树的3倍,桃树的棵数是苹果树的4倍。
求梨树、桃树和苹果树各有多少棵?有三个书橱共放了330本书,第二个书橱里的书是第一个的2倍,第三个书橱里的书是第二个的4倍。
应用题板块-和差倍问题(小学奥数三年级)和差倍问题是小学奥数应用题的基础类型,只要读懂题意,正确画出两个数的关系即可解答出来。
今天分享的和差倍问题,推导了基本的计算公式,帮助同学加深记忆。
【一、题型要领】1. 和差问题【基本概念】已知两个数的和与这两个数的差,求这两个数分别是多少如下图,两个数甲和乙,有以下关系(1)甲 + 乙 = 两数和(2)甲 - 乙 = 两数差【基本公式】根据(1)(2)可推导甲乙的值(1)+(2)得,2 * 甲 = 两数和 + 两数差,甲 = (两数和 + 两数差)÷ 2(1)-(2)得,2 * 乙 = 两数和 - 两数差,乙 = (两数和 - 两数差)÷ 22. 和倍问题【基本概念】已知两个数的和,和他们的倍数关系,求这两个数分别是多少如下图,两个数甲和乙,有以下关系(1)甲 + 乙 = 两数和(2)甲 = 乙 * 倍数【基本公式】根据(1)(2)可推导甲乙的值(1)- (2)得,两数和 - 乙 = 乙 * 倍数,乙 = 两数和÷ (倍数 + 1)甲 = 乙 * 倍数 = A ÷(倍数 + 1)* 倍数3. 差倍问题【基本概念】已知两个数的差,和他们的倍数关系,求这两个数分别是多少如下图,两个数甲和乙,有以下关系(1)甲 - 乙 = 两数差(2)甲 = 乙 * 倍数【基本公式】根据(1)(2)可推导甲乙的值(1)- (2)得,两数差 + 乙 = 乙 * 倍数,乙 = 两数差÷ (倍数 - 1)甲 = 乙 * 倍数 = 两数差÷ (倍数 - 1)* 倍数【二、重点例题】例题1【题目】甲、乙两筐共装苹果75千克,从甲筐取出5千克苹果放入乙筐里,甲筐苹果还比乙筐多7千克。
甲、乙两筐原各有苹果多少千克?【分析】分析甲乙两筐苹果的重量关系,可知甲 + 乙 = 75,甲 - 乙 = 5 * 2 + 7 = 17,由此可以通过和差公式计算出甲、乙原有苹果的重量【解】甲 + 乙 = 75(千克),甲 - 乙 = 5 * 2 + 7 = 17(千克)甲:(75 + 17)÷ 2 = 46(千克)乙:75 - 46 = 29(千克)【答】甲筐苹果原有46千克,乙筐苹果原有29千克。
第12讲和倍、差倍、和差问题复习应用知识网络已知几个数的和,以及几个数之间的倍数关系,求这几个数各是多少的应用题,我们称之为和倍问题;已知几个数的差以及它们之间的倍数关系,求这几个数的应用题叫差倍问题;已知两个数的和与它们之间的差,求这两个数的问题叫做和差问题。
基本公式和方法:(1)解答和倍问题,一般先确定一个数为标准数(即一倍数),再根据其他各数是标准数的几倍,确定总和相当于标准数的几倍,可用除法先求出标准数,进而再算出其他各数分别是多少。
基本公式:和÷(倍数+1)=小数小数×倍数=大数或者和-小数=大数(2)解答差倍问题,一般以小数作为标准数即一倍数,再根据大小两数间的倍数关系,确定差是标准数的多少倍,可先用除法求出小数,进而再求出大数。
基本公式:差÷(倍数的差)=标准数(一倍数)小数×倍数=大数或者小数+差=大数(3)解答和差问题,可以选择大数或小数作为标准数,然后进行思考。
以小数为标准,从和里减去两数差,恰好是小数的2倍,除以2可以求出小数;以大数为标准,把小数加上两数差,就与大数相等了,也就是用和加上两数差,正好是大数的2倍,除以2可以求出大数。
解答和差问题的基本公式是:(和-差)÷2=小数和-小数=大数(和+差)÷2=大数和-大数=小数重要提示:确定题目中数量间的倍数关系,关键是正确确定标准数,常常采用画线段图的方法,来帮助理解和解题。
经典例题[例1]某畜牧场有牛、羊共1502只,如果牛减少50只,羊增加350只,那么羊的只数比牛的只数的3倍多2,求原来牛、羊各有多少只?思路剖析此题中给出的数量关系“羊的只数比牛的只数的3倍多2”是牛、羊数量减、增完后的关系。
牛减少50只,羊增加350只后,牛、羊总量发生变化:1502-50+350=1802(只)。
这时的总量是此时牛的数量的4倍多2只,那么变化后的牛、羊数可求,原来牛、羊的数量易知。
第10讲和差倍问题二典型问题◇◇兴趣篇◇◇1. 甲班和乙班一共有60人,如果从甲班调6个人到乙班,那么甲班的人数就是乙班人数的2倍。
求甲、乙两班原来的人数。
2. 甲、乙两位学生原计划每周做同样数量的练习题,实际上甲每周多做了18道题,而乙偷懒每周少做了14道题,结果乙三周的做题量只相当于甲一周的做题量。
请问:他们原计划每周做几道题?3. 一辆公共汽车出发时有48人,到达第一站时有若干人下车,而且下车的比留下的多8人。
到达第二站时,又有人下车,这次下车的比留下的少8人。
请问:最后有几人留在了车上?(注:每个车站都无人上车)4. 刘老师给大家布置了若干道数学题作为寒假作业。
寒假快结束的时候,冬冬已经做完48道,阿奇则做完40道。
如果阿奇未做的题数是冬冬的3倍,那么老师一共布置了多少道题?5. 甲房地产公司有资金100亿元,乙房地产公司有资金40亿元,两公司联合投资一块地皮,用去同样多的资金后,甲公司剩下的资金是乙公司的5倍。
请问:两公司投资这块地皮共用去多少亿元?6. 甲、乙两人一起参加吃汉堡包大赛。
在30分钟的限时内,甲吃的汉堡包个数是乙的一半,而乙吃的汉堡包比甲的5倍少12个。
请问:甲、乙两人一共吃了几个汉堡包?7. 在一个减法算式里,被减数、减数与差的和是240,减数是差的5倍,则减数是多少?8. 费叔叔买来三箱水果,总重100千克。
其中前两箱重量相差11千克,且前两箱的总重量是第三箱的3倍。
请问:这三箱水果中最重的那箱重多少千克?9. 甲、乙、丙三个物体的总重量是93千克,甲物体比乙、丙两个物体的重量之和轻1千克,乙物体比丙物体重量的2倍还重2千克。
那么甲、乙、丙各重多少千克?10. 某驻军有三个坦克连,共有115辆坦克,一连坦克数量比二连的2倍多2辆,而二连的坦克数列比三连的3倍多1辆。
请问:一连比三连多几辆坦克?◇◇拓展篇◇◇1. 小悦和冬冬一起去书店买书,一共买了15本数学书和22本语文书,其中小悦买的数学书是冬冬的4倍,冬冬买的语文书比小悦的3倍多2本。
可编辑修改精选全文完整版三年级和差倍问题第一篇:三年级和差倍问题优学教育——为学生创造奇绩!三年级整合训练优学教育——为学生创造奇绩!三年级整合训练优学教育三年级和差倍问题专题讲解和、差、倍是两个数之间最基本的数量关系,这三个关系中只要知道任意两个,我们都可以求出相应的两个数。
知道“和”与“差”是和差问题,知道“和”与“倍”是和倍问题,知道“和”与“差”是和差问题,都有相应的公式。
和差倍问题是三年级的难点和重点。
注:在很多题目中,往往不直接告诉我们和、差,这就需要我们自己观察。
而在和差倍问题中,往往需要我们找到“一倍数”(或一倍量)。
那如何找到一倍数呢?我们的方法是:“是”、“比”、“等于”后面的我们看作一倍数,如果在题目中我们通过这种方法找到两个一倍数,那么一般把较小的看作一倍数。
一、和差问题和差问题是指知道两个数的“和”与“差”,要求这两个数。
和差问题基本公式如下:大数=(和+差)÷2 小数=(和-差)÷2(或者:小数=大数-差,小数=和-大数)【例】:张明在期末考试时,语文、数学两门课的平均得分是95分,数学比语文多得8分,张明这两门功课的成绩各是多少分?【分析】:通过第一条条件“平均分是95分”可以算出“和”是95×2=190分,第二个条件又告诉了我们“差”是8,解答过程如下:和:95×2=190(分)数学(大数):(190+8)÷2=99(分)语文(小数):(190-8)÷2=91(分)或者:99-8=91(分)190-99=91(分)【例】:甲、乙两筐苹果共重75千克,从甲筐取出5千克苹果放入乙筐里,甲筐苹果还比乙筐多7千克。
甲、乙两筐原来各有苹果多少千克?【分析】:通过第一个条件可知“和”是75,那差是多少呢,题目中并没直接告诉我们,通过画图,示意图如下:从图上可以看出,甲、乙两筐原来的差为5+7+5=17千克,差:5+7+5=17(千克)甲(大数):(75+17)÷2=46(千克)乙(小数):(75-17)÷2=29(千克)或者:46-17=29(千克)75-46=29(千克)二、和倍问题和倍问题是指知道两个数的“和”与“倍”,要求这两个数,是常见的典型应用题。