2018年青岛版数学八年级上册专题突破讲练:巧用分式方程的增根解决问题-文档资料
- 格式:doc
- 大小:177.50 KB
- 文档页数:6
八年级数学上册第十五章第3节分式方程解答题专题训练(33)一、解答题x-6 x(2)已知关于x的一元二次方程-x2+-x-m^2无实数根,求m的取值范围.2 32.某书店老板去图书批发市场购买某种图书.第一次用12000元购书若干本,并按该书定价70元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用15000元所购该书数量比第一次多10本.(1)求两次购书的价格分别是多少?(2)若第二次购书按定价售出200本时,出现滞销,于是决定打折出售剩下这批书,那么该商家最低打几折才能保证剩下书的利润率不低于5% ?、 4 1 23.解方程:——-—I—= ;-2x x x-24.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天。
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?5.足球是世界第一运动,参与足球运动可以锻炼身体,陶冶情操.“高新美少年,阳春蹴鞠忙”,让学生走出教室,走进阳光,让每一位学生健康、快乐成长,是高新一中初中校区一直秉承的理念.本月,我校第四届校园足球联赛落下了帷幕,并取得了四满成功.为了举办本次活动,我校在商场购买甲、乙两种不同的足球,购买甲种足球共花费2600元,购买乙种足球共花费1328元,购买甲种足球的数量是购买乙种足球数量的2.5倍,且购买一个乙种足球比购买一个甲种足球多花18元.求购买一个甲种足球、一个乙种足球各需多少元?6.为推进垃圾分类,推动绿色发展,某工厂购进甲乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分10kg,甲型机器人分类800千克垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等.(1)两种机器人每小时分别分类多少垃圾?(2)现在两种机器人共同分类500kg垃圾,工作2小时后,甲型机器人因机器维修退出,求甲型机器人退出后,乙型机器人还需工作多长时间才能完成?7.解下列分式方程,、x + 1 4 1(2)------------ — = 1X-1 X' -1&某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:王老师说:"篮球的单价比排煤的单价多30元李老师说:“用1000元购买的排球个数和用】600元氏买 J的至■直个豪相等同学们,请求出篮球和排球的单价各是多少元.9.解方程(组):2x+7y=53x+y = -210.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1. 2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?11.为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表甲乙进价(元/双)m m-20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值(2)由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且总利润应不超过22300元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?(3)在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50〈a〈70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货. 12.端午节期间,某校"慈善小组"筹集善款600元全部用于购买粽子到福利院送给老人.购买大枣粽子和豆沙粽子各花300元,已知大枣粽子比豆沙粽子每盒贵5元,结果购买的 大枣粽子比豆沙粽子少2盒.请求出两种口味的粽子每盒各多少元?13. 解方程:(每小题3分,共6分)16. 根据《佛山-环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线 将串联起狮山、乐平、三水新城、水都基地、白堀等城镇节点,在这项工程中,有一段 4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队 每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少 用20天.求甲、乙两个工程队平均每天各完成多少米?17. 桐梓县"四抓四到位"确保教育均衡发展,加速城区新、扩建项目工程・,加快建设某间 小学,公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建 校工程的时间是乙工程队的2倍,甲、乙两队合作完成建校工程需要60•天.(1) 甲、乙两队单独完成建校工程各需多少天?(2) 若甲、乙两队共同工作了 10天后,乙队因其他工作停止施工,由甲队单独继续施 工,要使甲队总的工作量不少于乙队已做工作量的2倍,那么甲队至少再单独施工多少 天? 18. 解分式方程:(2) ---------- = ------- . 2x-l x+219. 台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按 原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍 匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度.20. 解分式方程:,、x , 3 , 、 x+1 4 , (1) ---------- 1 — ----------- . (2) --------------- z ---- — 1. x — 1 2x — 2 x — 1 x — 121. 某校为了开展“阳光体育〃活动,购进一批体育用品.经了解,长绳的单价比短绳的单 价多5元,用12000元购进的长绳与用8000元购进的短绳的数量相等.问购进的长绳和14.按要求计算:(2)解分式方程:Y1 5+23 15.解下列方程:(1) ----------- 1 = ------ (2)— ------- =— x+2 x-2 x 2 + x x + 1小淇: 105 140------ 1 ------x 0.8%= 40;小尧:亜x0.8 14040 — y短绳的单价分别是多少元.22.甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打________ 个字.23.关于x的方程:竺学一X-1 1-X(1)当a = 3时,求这个方程的解;(2)若这个方程有增根,求a的值.24.计算或解方程:(1)[―右]十[—六) (2)甘一士[ = 125.现用A、B两种机器人来搬运化工原料.A型机器人比B型机器人每小时少搬运3kg, A 型机器人搬运40kg与B型机器人搬运60kg所用时间相等,两种机器人每小时分别搬运多少化工原料?26.某服装店用960元购进一批服装,并以每件46元的价格全部售完•由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.(1)该服装店第一次购买了此种服装多少件?⑵两次出售服装共盈利多少元?27.2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.28.某县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1. 5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?29.下面是小淇、小尧对一道中考题目的部分解答.题目:刘阿姨到超市购买大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?根据以上信息,解答下列问题.⑴小淇同学所列方程中的X表示 _____ ,小尧同学所列方程中的y表示_______ ;(2)在上述两个方程中任选一个求解,并回答题目中的问题.30.长春外国语学校为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【答案与解析】一、解答题1. (1) x=-12 ; (2) m< -----18分析:(1)去分母后解整式方程即可,注意要检验;(2)根据方程无实数根,结合根的判别式即可得出关于m 的一元一次不等式,解之即可 得出结论.详解:(1)方程两边乘以x (x-6)得:90x=60(x-6),解得:x=—12.经检验:x=-12是原方程的根.分式方程的根为x=—12.(2) •••关于x 的一元二次方程丄_? +丄兀—加=2没有实数根,2 3点睛:本题考查了解分式方程以及根的判别式,熟练掌握"当厶<0时,方程没有实数根" 是解题的关键.2. (1)第一次购书的进价是50元,第二次购书的进价是60元;(2)该商家最低打九折才能保证剩下书的利润率不低于5%(1) 设第一次购书的单价为x 元,根据第一次用12000元购书若干本,第二次购书时,每 本书的批发价已比第一次提高了 20%,他用15000元所购该书的数量比第一次多10本,列 出方程,求出x 的值即可得出答案;(2) 设该商家打y 折,依题意列出不等式,解不等式即可(1)设第一次购书的单价为x 元,则第二次购书单价是(1+20%) x 元,12000 15000x +1°=(l + 20%)x解得:x = 50,经检验,x = 50是原方程的解, /.(1+20%) x=60答:第一次购书的进价是50元,第二次购书的进价是60元;(2) 150004-60=250 (本) 解:设该商家打y 折,依题意得:® 話 60)x (詈°-200),(罟200)x60x5%解得:y>9答:该商家最低打九折才能保证剩下书的利润率不低于5%.•.△=(*)2_4X *X (—加―2)<0,解得: 37 m < ------- , 18 37 的值取值范围为m<- —18根据题意得:【点睛】此题考查了分式方程的应用、不等式的应用,分析题意,找到关键描述语,找到合适的等 量关系是解决问题的关键.3. 原分式方程无解.按照去分母、移项、合并同类项的步骤求解即可.方程两边同时乘以x(x-2),得:4+(兀—2)= 2%x = 2检验:当x = 2时,x(x-2)= 0•••原分式方程无解.【点睛】此题主要考查分式方程的求解,熟练掌握,即可解题.4. (1)甲、乙两工程队每天能完成绿化的面积分别是50m\ 25m 2; (2)至少安排甲队 工作20天.(1) 设乙工程队每天能完成绿化的面积是xrr?,则甲工程队每天能完成绿化的面积是 2xm 2,根据"独立完成面积为200加$区域的绿化时,甲队比乙队少用4天"列出方程,再解 即可;(2) 根据题意可得等量关系:绿化总费用=甲队的绿化总费用+乙队的绿化总费用,根据 "使这次的绿化总费用不超过8万元"列出不等式求解即可.解:(1)设乙工程队每天能完成绿化的面积是xrrA解得:x=25, 经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25x2=50 (m?),答:甲、乙两工程队每天能完成绿化的面积分别是50n?、25m 2;(2)设至少应安排甲队工作y 天.根据题意得:解得y>20,所以至少安排甲队工作20天.【点睛】本题考查分式方程的应用,一元一次不等式的应用.解决此题的关键是正确理解题意,找 出题目中的等量关系和不等量关系,据此列出方程或不等式.5.购买一个甲种足球、一个乙种足球各需65和83元 设一个甲种足球需要x 元,根据题意列出方程即可求出答案.解:设一个甲种足球需要x 元,根据题意得:型一型=4 x 2x0.35y + 1100 —50y25 x 0.25 <8•I 一个乙种足球需要(x+18)元,解得:x = 65, 经检验,x = 65是原方程的解, /.x+18 = 83,答:购买一个甲种足球、一个乙种足球各需65和83元【点睛】本题考查分式方程的实际应用,解题的关键是正确找出题中的等量关系,本题属于基础题 型.6. (1)甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾;(2)甲型 机器人退出后乙型机器人还需要工作12小时.(1) 设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃圾,根 据工作时间=工作总量十工作效率结合甲型机器人分类800千克垃圾所用的时间与乙型机 器人分类600kg 垃圾所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得 出结论;(2) 根据乙型机器人还需工作时间=剩余的工作总量宁乙型机器人的工作效率,即可求出 结论.解:(1)设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃 圾, , 800 600依逆思,得: ---- =X x-10解得:x=40,经检验,x=40是原方程的根,且符合题意,.•.X - 10=40 - 10 = 30. 答:甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾.(2) [500 - (40+30) X214-30 = 12 (小时).答:甲型机器人退出后乙型机器人还需要工作12小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.2 7. (1) x=—; (2)无解 3(1) 先去分母化为整式方程,再解方程求出解后检验即可;(2) 先去分母化为整式方程,再解方程求出解后检验即可.3- x _ 14+7_2 2 (3-x) =4+x6-2x=4+x-3x=-2由题意可知:型竺 x % + 182x=—,3经检验,x= |•是原分式方程的解, •••原分式方程的解是x=|;(X +1)2-4= X2-1%2 + 2尢 +1 — 4 = — 12x=2x=l,检验:当x=l时,x2-l=0, /.x=l不是原分式方程的解,•••分式方程无解.【点睛】此题考查解分式方程,首先将分式方程去分母化为整式方程,求出整式方程的解后需检验是否符合分式方程,再确定分式方程的解.8.排球的单价为50元,则篮球的单价为80元.设排球的单价为x元,则篮球的单价为(x+30)元,根据总价宁单价=数量的关系建立方程求出其解即可.设排球的单价为x元,则篮球的单价为(x+30)元,根据题意,列方程得:1000 1600x x + 30解得:x=50.经检验,x=50是原方程的根,当x=50 时,x+30=80.答:排球的单价为50元,则篮球的单价为80元.【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,总价夕单价=数量的数量关系的运用,解答时根据排球和篮球的数量相等建立方程是关键.(1)利用加减消元法解方程组即可;(2)去分母、移项、解出X的值,最后验根即可.2x + 7y = 5 ①(1)\ …3x + y = -2(2)②x7-①得:19x=-19,解得x=-l把x=-l代入②解得:y=lx = -l ・・・原方程组的解为{ °卜=12x + 5 1 (2) ----- = _ x-3 2去分母得:2(2x+5)=x-3,去括号得:4x+10=x-3,移项得:3x=-13,13系数化为1得:X=-y.经检验,x=——是原方程的解.【点睛】本题考查解二元一次方程组及分式方程,解二元一次方程组的主要思想是消元,其解法有 加减消元法和代入消元法等,解分式方程主要是转化思想,把分式方程转化为整式方程求 解,注意,解分式方程时,最后要检验是否为增根.10. (1)购入B 种原料每千克的价格最高不超过10元;(2)这种产品的批发价为50 元.(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x + 10)元 根据使 每件产品的成本价不超过34元列出不等式求解即可;(2)设这种产品的批发价为a 元, 则零售价为(a + 30)元,根据“用10000元通过批发价购买该产品的件数与用16000元 通过零售价购买该产品的件数相同,”正确列出分式方程即可.(1)设B 种原料每千克的价格为X 元,则A 种原料每千克的价格为(X + 10)元, 根据题意得:1.2(兀+10)+兀34, 解得:兀,10.答:购入B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a 元,则零售价为(a+30)元,解得:a = 50, 经检验,a = 50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量 间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.11. (1) m=100; (2)共有11种方案;(3)①当50<a<60时,应购进甲种运动鞋 105双,购进乙种运动鞋95双;②当a=60时,所有方案获利都一样;③当60<a<70 时,应购进甲种运动鞋95双,购进乙种运动鞋105双.(1)根据用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同,构根据题意得: 10000 a 16000a + 30建方程即可解决问题;(2) 根据题意,列出不等式组即可解决问题;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105), 分三种情况:①当50<a<60时,②当a=60时,③当60<a<70时,进行讨论.解:(1)依题意得,2400 ,整理得,3000 (m-20) -2400m,解得 m=100, m m-20 经检验,m=100是原分式方程的解,所以,m=100; (2) 设购进甲种运动鞋x 双,则乙种运动鞋(200-x)双,(240 —100)x + (160 — 80)(200-%)> 21700①根据题思得,[go_go)* + (160-80)(200-x)< 22300②解不等式①得,x>95,解不等式②得,x<105,所以,不等式组的解集是95<x<105,Tx 是正整数,105-95+1=11, /.共有11种方案;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105),① 当50<a<60时,60-a>0, W 随x 的增大而增大,所以,当x=105时,W 有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95 双; ② 当a=60时,60-a=0, W=16000, (2)中所有方案获利都一样;③ 当60<a<70时,60-a<0, W 随x 的增大而减小,所以,当x=95时,W 有最大值, 即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点睛】本题考查一元一次不等式组的应用和分式方程的应用,解题的关键是读懂题意,掌握一元 一次不等式组的应用和分式方程的应用.12. 30; 25.试题分析:方程的应用解题关键是找出等量关系,列出方程求解.本题根据购买大枣粽子和 豆沙粽子各花300元,结果购买的大枣粽子比豆沙粽子少2盒,得到等量关系:购买豆沙 粽子的盒数-2=大枣粽子的盒数,由此列出方程,解方程即可.试题解析:设豆沙粽子每盒x 元,则大枣粽子每盒(x+5)元.解得 Xi=-30, X2=25.经检验血=-30, X2=25是原方程的解,但Xi=-30不符合题意,舍去.当 x=25 时,x+5=30.答:大枣粽子每盒30兀,51沙粽子每盒25兀.考点:分式方程的应用.13. {解析}试题分析:根据题意可知分式方程的解法步骤:去分母(同乘以最简公分母), 化为整式方程,解方程,检验,得到原方程的解.试题解析:(1)去分母,得2xx2 + 2 (x+3) =7,解得,x=-, 6经检验,x=Z 是原方程的解. 6依题意得^X300尤+5’(2)方程两边同乘(x-2)得,l-x=-l-2 (x-2), 解得,x=2.检验,当x=2时,X —2=0,所以x=2不是原方程的根,所以原分式方程无解.考点:解分式方程2a14. (1) ----------- ; (2)无解;(3) 1 a-b(1) 先把括号内的分式通分化简,再把除法运算转化为乘法运算,然后约分即可;(2) 先把分式方程化为整式方程求出x 的值,再代入最简公分母进行检验即可;(3) 根据绝对值、二次根式以及平方差公式计算,再合并即可.,2a —b b 、 2b —a (1)( ------------------ )- --------------- a + b a — b a + b_ (2a - b\a -b)- b(a + b)a +b (Q + b)(a - b) -(a - 2b)2a(a - 2b) a + b(Q + b)(o-b) a-2b laa-b (2)方程两边同乘(x-3),得 x-2 = 2(x-3)+ l,x-2 = 2x-6 +1解得:x = 3 ,检验:当x = 3时,最简公分母x-3 = 0,所以x = 3不是原方程的解,所以原方程无解;=5-2^6+276-4 =1【点睛】本题考查了分式的化简,实数的混合运算,解分式方程,解分式方程要注意:(1)解分式方 程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意-(3+同(3-同⑶ |2^6-5| + 12要验根.15. (1) x=— : (2)分式方程无解. 3根据解一元一次方程的方法去分母、去括号、移项、合并同类项、化系数为1的步骤求出 x 的值即可.解:(1)去分母得:x 2 - 2x - X 2+4=X +2,经检验% = |是分式方程的解;(2)去分母得:5x+2=3x,解得:x= - 1,经检验x= - 1是增根,分式方程无解.【点睛】考查分式方程的解法,熟练掌握解分式方程的步骤是解题的关键.注意检验.16.甲工程队平均每天完成200米,乙工程队平均每天完成100米.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,根据工作时间=总工作量* 工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,即可得 出关于x 的分式方程,解之经检验后即可得出结论.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,解得:x=100, 经检验,x=100是原分式方程的解,且符合题意,.•.2x=200. 答:甲工程队平均每天完成200米,乙工程队平均每天完成100米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17. (1)甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天(2)甲队至少再单独施工30天(1)根据题意可设乙工程队单独完成建校工程需要x 天,则甲工程队单独完成建校工程需 要2x 天,利用甲乙合作工作量之和等于1,可列方程:60解得:x=90,所以 2x=180. (2)根据题意可设甲队再单独施工y 天,然后根据题意得:需兰 > 咯^,解得:y230. 180 90(1)设乙工程队单独完成建校工程需要X 天,则甲工程队单独完成建校工程需要2x 天, 根据题意得:60 (4占),=1,x 2x解得:x=90,经检验,x=90是原方程的解,且符合题意,2x=180.根据题意得: 4000 x 4000 2x'=1,答:甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天.(2)设甲队再单独施工y天,根据题意得:孕艮啓x2,180 90解得:y>30,答:甲队至少再单独施工30天.【点睛】本题主要考查分式方程的应用,不等式的应用,解决本题的关键是要熟练确定题目中的等量关系,正确列出方程和不等式.18.(1)方程无解;(2) x=13.(1)两边都乘以最简公分母(x+2) (x-2),把分式方程化为整式方程求解,求出x的值后要代入原方程验根;(2)两边都乘以最简公分母(x+2) (2x-l),把分式方程化为整式方程求解,求出x的值后要代入原方程验根(1)两边同乘以(x+2) (x-2)得:x (x+2) - (x+2) (x-2) =8,去括号,得:x2+2X-X1 +4=8,移项、合并同类项得:2x=4,解得:x=2.经检验,x=2是方程的增根,方程无解.(2)由题意可得:5 (x+2) =3 (2x-l),解得:x=13,经检验,当x=13 时,(x+2) 乂0, 2X-1H0,故x=13是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.19.原计划的行驶速度为100千米/时.解题时利用“计划用时-实际用时小时”这一等量关系列出分式方程求解即可.60解:设原计划的行驶速度为x千米/时,, 180-60 180-60 12n则: ----------------- =一,x 1.2% 60解得x=100,经检验:x=100是原方程的解,且符合题意,所以x=100.答:原计划的行驶速度为100千米/时.【点睛】本题主要考查分式方程的应用,根据已知条件列出分式方程式解题的关键.20. (1) -; (2) x=l (是增根)4试题分析:(1)方程左右两边同时乘以2x —2,解出x 以后验证是否为增根即可;(2) 方程左右两边同时同时乘以x 2-l,解出x 以后验证是否为增根即可.试题解析:2x+2x —2=3, 4x=5,5 x 二一, 4 经检验X=』是分式方程的解;4(2)(x+1) 2-4=X 2-1, X 2+2X +1—4=x 2 —1, x=l,经检验,x=l 是分式方程的增根,所以方程无解.点睛:解分式方程先将分式方程化为整式方程,解出X 以后一定要验证X 是否为方程的增 根.21. 短绳的单价是10元,则长绳的单价是15元.设短绳的单价是x 元,用相等关系"用12000元购进的长绳与用8000元购进的短绳的数量 相等",列分式方程求解,注意检验.解:设短绳的单价是x 元,则长绳的单价是(x+5)元,由题意,得 12000x + 58000= ------- , 5 解得:x=10,经检验,x=10是原方程的根x+5=15 元,答:短绳的单价是10元,则长绳的单价是15元.22. 45设乙每分钟打字X 个,甲每分钟打(X + 5)个,根据题意可得:饕=弓,去分母可得:(1) X x-l 2x-21000x = 900(x+5),解得% = 45,经检验可得:x = 45,故答案为:45.23. (1) x=—2;(2) a=—3. Q . -1 ry (1)将沪3代入,求解丄〒一一=1的根,验根即可, x-1 1-x (2) 先求出增根是x=l,将分式化简为ax+l+2=x —1,代入x=l 即可求出a 的值.Q . 1 r\解:⑴当a=3时,原方程为上〒一一=1, x-1 1-x方程两边同乘x —1,得3x+l+2=x —1,解这个整式方程得x=—2,检验:将 x=—2 代入 x —1 = —2—1 = —3/0,•••x=—2是原分式方程的解.(2)方程两边同乘x ―1,得ax+l+2=x —1,若原方程有增根,则x —1=0,解得x=l,将x = l 代入整式方程得a+1+2=0,解得a= —3.【点睛】本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.8尢424. (1) ----------- ; (2) x=l9y分析:(1)先算乘方,然后把除法转化为乘法约分化简;(2)两边都乘以最简公分母(x+l)(x-l),把分式方程转化为整式方程求解,解分式方程要验根;y 2 8x 6 8x 4二・——x --- = ------- -----9x 2 y 3 9y '(2)两边都乘以最简公分母(x+l)(x-l),得 (x + 1)2 - 4 = x 2 -1 .*.X 2+2X +1-4=X 2-1Z2x=2,x = 1.点睛:本题考查了分式的混合运算和分式方程的解法,熟练掌握分式运算的相关法则和解 分式方程的步骤是解答本题的关键.25. A 型机器人每小时搬运6千克化工原料分析:首先设A 型机器人每小时搬运x 千克化工原料,则B 型机器人每小时搬运(x+3)千克 化工原料,根据题意列出分式方程,从而得出答案.详解: (1)原式=詁。
分式方程的实际应用一、分式方程的应用 分式方程的应用主要是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的。
提示: (1)在实际问题中,有时题目中包含多个相等的数量关系;在列方程时一定要选择一个能够体现全部(或大部分)题意的相等关系列方程. (2)在一些实际问题中,有时直接设出题中所求的未知数可能比较麻烦,需要间接地设未知数,或设一个未知数不好表示相等关系,还可设多个未知数,即设辅助未知数. 在上述过程中,关键步骤是根据题意寻找“等量关系”,同时,解出分式方程后注意必须检验求出的值是不是所列分式方程的解,且是否符合实际意义。
二、列分式方程解应用题的步骤审三、常 找及相等 设1.列题解基 验间的关路程 答审清题意,弄清已知量和未知量找出等量关系见题型设未知数关系列出分式方程行程问解这个分式方程 检验,既要检验根是否为所列分式方程的根,又要检验根是否符合实际问题的 要求 写出答案本量之 系:= 速度×时间,即 s=vt 常见的相等关系: (1)相遇问题:甲行程+乙行程=全路程 (2)追及问题:(设甲的速度快) ①同时不同地:甲用的时间=乙用的时间 甲的行程-乙的行程=甲乙原来相距的路程②同地不同时:甲用的时间=乙用的时间-时间差 甲走的路程=乙走的路程 ③水(空)航行问题:顺流速度=静水中航速+水速 逆流航速=静水中速度-水速 2. 工程问题 基本量之间的关系:工作量=工作效率 工作时间 常见等量关系:甲的工作量+乙的工作量=合作工作量 注意: 工作问题常把总工程看作是单位 1,水池注水问题也属于工程问题.例题 1 经过建设者三年多艰苦努力地施工,贯通我市的又一条高速公路“遂内高速公路”于 2012 年 5 月 9 日全线通车。
已知原来从遂宁到内江公路长 150km,高速公路路程缩短了 30km,如果一辆小车从遂宁到 内江走高速公路的平均速度可以提高到原来的 1.5 倍,需要的时间可以比原来少用 1 小时 10 分钟。
年级八年级学科数学版本通用版课程标题分式中的特殊运算编稿老师李朝华一校黄楠二校林卉审核郭莹一、分式的混合运算分式的混合运算关键是弄清运算顺序,与分数的加、减、乘、除混合运算一样,先算乘方,再算乘除,最后算加减,有括号先算括号里面的,计算结果要化为整式或最简分式。
归纳:①运算过程中,要注意运算顺序,在没括号的情况下,按从左向右的方向,先算乘方,再算乘除,最后算加减。
有括号的要先算小括号,再算中括号,最后算大括号的顺序运算;②分子或分母的系数是负数时,要把“-”转化为分式本身的符号;③在解题过程中,要掌握“1”的使用技巧,“1”可以化成任意一个分子、分母相同的分式。
二、分式运算中常用的方法分式运算是以分式的性质为基础,根据分式的结构特征,通过适当的变形、转化、运用适当方法就会使运算过程变得容易,起到事半功倍的效果。
1. 改变“运算符号”对于两个分母互为相反数的分式相加减,只须把其中一个分式分母的运算符号提出来,变成同分母分式进行相加减即可。
如:1111 11111x x xx x x x x-+=-== -----2. 拆分法有些分式的分母具有一定的规律,我们可以把它拆分成两个分式相减的形式,用来简化运算。
如:111(1)1a a a a=-++3. 换元法对于有些分式的分子和分母都含有多项式,并且这些多项式大多相同,这时我们可以把每一个多项式看成一个整体,用一个简单的字母来代替它进行运算,起到简化运算的效果,最后不要忘记再替换过来。
4. 因式分解法对有些分式的分母是多项式时,直接运算会很繁琐,通常为了简化运算,我们可以把这些多项式进行因式分解,找出规律约分,起到简化运算的效果。
如:2211()()a b a b -+-=1111()()a b a b a b a b+-+-+- 总之,分式运算方法有多种,在分式的实际运算中,我们要认真观察,反复思考,不断地归纳,寻找规律,以便能准确迅速计算出结果。
3.7 分式方程 (第1课时) 一、教与学目标:1.程;2.了解分式方程的意义,体会分式方程的模型思想。
二、教与学重点难点:寻求实际问题中的等量关系,列出分式方程三、教与学方法:自主探究、合作交流。
四、教与学过程:(一)情境导入:王师傅承担了310个工件的焊接任务,加工了100效提高到原来的1.5倍,共用8天完成了任务。
如果不采用新工艺,能完成任务?(二)探究新知:1.问题导读:(1)完成课本第76页的填空。
(2)你列出的是一个怎样的方程?是一元一次方程吗?(3)阅读课本77页第2题。
①回答(1)—(5)问的问题。
2.合作交流:什么是分式方程?总结:分母中含有未知数的方程叫做分式方程。
3.精讲点拨:分式方程的判断:(1)首先是方程;(2)分母中必须含有未知数。
(三)、学以致用:1、巩固新知:(1)下列方程中,那些是分式方程?①x 1=-2 ②2-x x =2 ③11-x -14+x =122-x ④ 32x --54-x =0 (2)下列方程中,不是分式方程的是 ( )A. y 1+y=1B. 32x -=4-21+x C.+3x 23x =x x 61- D. 123-x x =122+x x2、能力提升:(4)老李师傅做m 个零件用1h ,则他做30个零件需要( ). A. 30m h B. m30h C. m m 3030-h D. m m 3030+h (5)一个正多边形的每个内角都是135°,求它的边数。
如果设这个正多边形的边数为x ,则得到方程 .(四)、达标测评 :1、填空题:李明计划在一定日期内读完200页的一本书,读了5结果提前一天读完。
设李明原计划平均每天读书x 页,用含x 的代数式表示:(1)李明原计划读完这本书需用_______天;(2)改变计划时,已读了_______ 页,还剩______页;(3)读了5天后,每天多读5页,读完剩余部分还需 ______天;(4)写出所x 适合的方程 __________ 。
初中数学分式方程增根与无解问题专题突破一(附答案详解)1.方程2223671x x x x x +=--+的根的情况,说法正确的是(的根的情况,说法正确的是( ) A .0是它的增根 B .-1是它的增根C .原分式方程无解D .1是它的根2.下列结论正确的是(.下列结论正确的是( )A .4131-=+y y 是分式方程是分式方程B .方程1416222=--+-x x x 无解无解C .方程x x xx x x +=+222的根为x=0D .只要是分式方程,解时一定会出现增根.只要是分式方程,解时一定会出现增根3.分式方程 有增根,则增根可能是(有增根,则增根可能是( )。
A .0B .2C .0或2D .14.若分式方程有增根,则增根可能是(有增根,则增根可能是( )A .1B .﹣1C .1或﹣1D .05.若分式方程21111x kx x +-=--有增根,则增根可能是(有增根,则增根可能是( )A .1B .﹣1C .1或﹣1D .06.若分式方程33x x -++1=m 有增根,则这个增根的值为(有增根,则这个增根的值为( )A .1B .3C .-3D .3或-37.如果解分式方程出现了增根,那么增根是(出现了增根,那么增根是( )A .0B .-1C .3D .18.关于的分式方程有增根,则的值为(的值为( )A. B. C. D.9.关于x的分式方程+3=有增根,则增根为(有增根,则增根为( )A.x=1 B.x=﹣1 C.x=3 D.x=﹣310.若关于的分式方程有增根,则的值是(的值是( )A.或 B. C. D.或11.若分式方程有增根,则k的值是_________.12.若分式方程有增根,则的值为_______.13.若分式方程有增根,则=_________14.分式方程有增根,则m=_____________.15.若分式方程=2有增根,则m的值为的值为 。
16.若分式方程有增根,则的值是_____17.若关于x的分式方程有增根,则m的值为_____.18.若关于x的分式方程有增根,则= .19.用去分母的方法,解关于x 的分式方程的分式方程 8x x-=2+8m x -有增根,则m = .20.若关于x 的分式方程有增根,则m=________答案: 1.C解:方程两边同乘x(x+1)(x-1),得3(x+1)-6x=7(x-1), 解得:x=1, 检验:当x=1时,x(x+1)(x-1)=0,所以x=1不是原方程的解,原方程无解,故选C. 2.B解:A 、利用分式方程的定义判断即可得到结果;、利用分式方程的定义判断即可得到结果;B 、分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验得到分式方程的解,即可做出判断;的解,即可做出判断;C 、分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验得到分式方程的解,即可做出判断;D 、分式方程不一定出现增根.、分式方程不一定出现增根.解:A 、4131-=+y y 是一元一次方程,错误;是一元一次方程,错误;B 、方程1416222=--+-x x x , 去分母得:(x ﹣2)22﹣16=x 22﹣4,整理得:x 2﹣4x+4﹣16=x 2﹣4, 移项合并得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解,正确;是增根,分式方程无解,正确;C 、方程x x xx x x+=+222,去分母得:2x=x ,解得:x=0,经检验x=0是增根,分式方程无解,错误;是增根,分式方程无解,错误;D 、分式方程解时不一定会出现增根,错误,故选B3.C解:方程两边通乘以x (x-2)得x=2(x-2)+m ,解得x=4-m ,由于有增根,所以4-m=0或4-m=2.故选C4.A 解:∵原方程有增根,解:∵原方程有增根,∴最简公分母(x+1)(x ﹣1)=0,解得x=﹣1或1, 当x=﹣1,k=﹣2+2=0.而当k=0时,原方程为﹣1=0,此时方程无解.故x=1,故选:A .5.C 解:∵原方程有增根,∴最简公分母(x+1)(x−1)=0,解得x=−1或1,∴增根可能是:±1.故选:C.6.C解:∵分式方程33x x -++1=m 有增根,∴x+3=0,∴x=-3,即-3是分式方程的增根,故选C 7.C解:∵原方程有增根,∴最简公分母(x −3)=0,解得x =3,故选:C.8.C解:∵关于的分式方程有增根∴x-1=0解得x=1 原方程两边同乘以x-1可得m-3=x-1把x=1代入可得m=3.故选:C.9.A解:方程两边都乘(x ﹣1),得7+3(x ﹣1)=m ,∵原方程有增根,∴最简公分母x ﹣1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.故选:A .10.A解:解:∵∵关于x 的分式方程有增根,有增根, ∴是方程 的根,的根, 当11.-1解:方程两边都乘(x-3),得,得1-2(x-3)=-k,∵方程有增根,∴最简公分母x-3=0,即增根是x=3,把x=3代入整式方程,得k=-1.故答案为:-1.12.1解:方程的两边都乘以(x-3),得x-2-2(x-3)=m,化简,得m=-x+4,原方程的增根为x=3,把x=3代入m=-x+4,得m=1,故答案为:1.13.1解:∵分式方程有增根,∴x=2,把x=2代入x-m=1中得:m=1.故答案是:1.14.3解:分式方程去分母得:x+x﹣3=m, 根据分式方程有增根得到x﹣3=0,即x=3, 将x=3代入整式方程得:3+3﹣3=m,则m=3,故答案为:3.15.-1解:先对原方程去分母,再由方程无解可得,再代入去分母后的方程求解即可. 方程=2去分母得因为分式方程=2有增根,所以所以,解得.16.0解:∵分式方程有增根,∴∴x=2是方程1+3(x-2)=a+1的根,∴a=0.故答案是:0.17.±解:方程两边都乘x-3,得x-2(x-3)=m 2,∵原方程增根为x=3,∴把x=3代入整式方程,得m=±.18.1解:方程两边同乘以x (x-1)得,x (x-a )-3(x-1)= x (x-1), 整理得,(-a-2)x+3=0, ∵关于x 的分式方程存在增根,∴x (x-1)=0,∴x=0或x=1,把x=0代入(-a-2)x+3=0得,a 无解;把x=1代入(-a-2)x+3=0,解得a=1;∴a 的值为1.19.8解:方程两边都乘(x-8),得,得X=2(x-8)+m ,∵原方程有增根,∵原方程有增根,∴最简公分母x-8=0,解得x=8.当x=8时,m=820.-1解:方程两边都乘(x −2),得1=−m +x −2,∵原方程有增根,∴最简公分母(x −2)=0,解得x =2,当x =2时,m =−1,故答案为−1.i时,解得:当时,解得:故选:A.。
分式方程解题技巧一、分式方程的重要特征(1)从分式方程的定义中可以看出分式方程的重要特征:一是方程;二是方程里含分母;三是分母中含有未知数。
(2)整式方程和分式方程的根本区别就在于分母中是否含有未知数。
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程。
二、分式方程的解法解分式方程的基本思想:把分式方程转化为整式方程,然后通过解整式方程,求得分式方程的解,这是解分式方程的关键。
解分式方程的一般方法和步骤:注意:(1)用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母同乘方程两边各项时,不要漏乘常数项;(2)解分式方程可能产生不适合原方程的根,所以检验是解分式方程的必要步骤。
【拓展】(1)方程变形时,可能产生不适合原方程的根,叫做原方程的增根。
(2)产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根。
三、含有字母的分式方程的解法在数学式子中的字母不仅可以表示未知数,也可以表示已知数.含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示已知数,还要注意题目的限制条件。
例题1 解关于x 的方程2a b ax b bx a x+=-+ 解析:字母未给出条件,首先挖掘隐含的条件,分情况讨论。
答案:若a 、b 全不为0,去分母整理得:22()2ba x ab -=-,对22b a -是否为0分类讨论: ①当220ba -=,即ab =±时,有02x ab ⋅=-,方程无解; ②当220b a -≠,即a b ≠±时,解之,得222ab x a b =-, 若a 、b 有一个为0,方程为x x 21=,无解; 若a 、b 全为0,分母为0,方程无意义; 检验:当222ab x a b =-时,公分母()()0ax b bx a -+≠,所以当0,ab a b ≠≠±时,222ab x a b =-是原方程的解。
2018中考数学知识点:分式方程的增根问题新一轮中考复习备考周期正式开始,为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!
分式方程的增根问题
(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知
数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现
不适合原方程的根---增根;。
基础义务教育资料分式方程的增根与无解分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 解方程2344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).② 解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【说明】显然,方程①中未知数x 的取值范围是x ≠2且x ≠-2.而在去分母化为方程②后,此时未知数x 的取值范围扩大为全体实数.所以当求得的x 值恰好使最简公分母为零时,x 的值就是增根.本题中方程②的解是x =2,恰好使公分母为零,所以x =2是原方程的增根,原方程无解.例2 解方程22321++-=+-xx x x . 解:去分母后化为x -1=3-x +2(2+x ).整理得0x =8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.例3若方程32x x --=2m x-无解,则m=——————. 解:原方程可化为32x x --=-2m x -. 方程两边都乘以x -2,得x -3=-m .解这个方程,得x=3-m .因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m ,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根.把x =2或-2代入方程②中,解得,a =-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原方程无解,则有两种情形:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。
初中数学巧用分式方程的增根解决问题 编稿老师 张之艳 一校 程文军 二校 杨雪 审核 杨国勇一、解分式方程的步骤:二、分式方程增根的概念:在分式方程化为整式方程的过程中,若整式方程的根使最简公分母为0,那么这个根叫做原分式方程的增根。
三、产生增根的原因:增根是在分式方程转化为整式方程去分母的过程中产生的。
因为等号两边同乘以的最简公分母有可能是0,因此就有可能产生满足整式方程,但是不满足分式方程的根。
注意:1. 解分式方程必须要验根;2. 验根时只需要把求出的x 的值代入最简公分母中,看是否为0。
四、常见的题型:1. 求增根问题:方法是把分式方程去分母后求得的根代入原方程的最简公分母,若为零是增根,若不为零是原方程的根。
2. 根据增根求待定系数问题:步骤:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值。
例题1 若关于x 的方程ax x +--=1110有增根,则a 的值为__________。
解析:首先去分母化整式方程,然后把增根代入求出a ,答案:原方程可化为:()021=+-x a ①又原方程的增根是x =1,把x =1代入①,得:a =-1故应填“-1”。
点拨:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程,即可求得相关字母的值。
例题2 当a 取何值时,解关于x 的方程:()()x x x x x ax x x ---++=+-+12212212无增根? 解析:首先去分母化整式方程,然后把增根代入求出a ,最后从保证整式方程有实根的a 的取值范围中把产生增根的a 的值去掉。
答案:原方程可化为:又原方程的增根为x =2或x =-1,把x =2或x =-1分别代入①得:a =-52或a =-1 又由∆=+>a 2240知,a 可以取任何实数。
所以,当a ≠-52且a ≠-1时,解所给方程无增根。
点拨:解答此类问题的基本思路是:(1)将已知方程化为整式方程;(2)由所得整式方程,求出有增根的字母系数的值和使整式方程有实数根的字母系数的取值范围;(3)从有实数根的范围里排除有增根的值,即得无增根的取值范围。
例题3 当k 的值为_________(填出一个值即可)时,方程x x k x x x-=--122只有一个实数根。
解析:先化成整式方程(即一元二次方程)分两种情况:(1)一元二次方程有两个相等实根。
(2)有两个不等实根,且有一个是增根。
答案:原方程可化为:022=-+k x x ①要原方程只有一个实数根,有下面两种情况:(1)当方程①有两个相等的实数根,且不为原方程的增根,所以由∆=+=440k 得k =-1。
当k =-1时,方程①的根为x x 121==-,符合题意。
(2)方程①有两个不相等的实数根且其中有一个是原方程的增根,所以由∆=+>440k ,得k >-1。
又原方程的增根为x =0或x =1,把x =0或x =1分别代入①得k =0,或k =3,均符合题意。
综上所述:可填“-1、0、3”中的任何一个即可。
点拨:本题要分清方程的增根和方程无根的区别。
分式方程无解是指不论未知数取何值,都不能使方程两边的值相等。
它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解。
例题 (1)当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? (2)当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 解析:(1)首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值。
(2)除了考虑第(1)种情况外,此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况。
答案:(1)方程两边都乘以(x +2)(x -2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根,把x =2或-2代入方程②中,解得,a =-4或6。
(2)方程两边都乘以(x +2)(x -2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原方程无解,则有两种情形:①当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。
②如果方程②的解恰好是原分式方程的增根,那么原分式方程无解。
此时由(1)可知,a =-4或6。
综上所述,a =1或a =一4或a =6时,原分式方程无解。
点拨:弄清分式方程的增根与无解的区别和联系,能帮助我们提高解分式方程的正确性,对判断方程解的情况有一定的指导意义。
(答题时间:45分钟)一、选择题1. (岳阳)关于x 的分式方程7311m x x +=--有增根,则增根为( ) A . x =1 B . x =-1 C . x =3 D . x =-32. 若分式方程23142x m x x -+=-+有增根,则它的增根是( ) A . 1 B . 2或-2 C . -2 D . 23. 若方程24022x x x x -=--有增根,则增根可能是( ) A . 0或2 B . 0C . 2D . 1 4. 若解关于x 的方程3321ax x x -+=+有增根x =-1,则a 的值为( ) A . 3 B . -3 C . 3或1D . -3或-1 5. 下列关于分式方程增根的说法,正确的是( )A . 使所有的分母的值都为零的解是增根B . 分式方程的解为零就是增根C . 使分子的值为零的解就是增根D . 使最简公分母的值为零的解是增根6. 关于x 的方程233x m x x +=++产生增根,则m 的值及增根x 的值分别为( ) A . m =-1,x =-3 B . m =1,x =-3C . m =-1,x =3D . m =1,x =3 二、填空题7. (天水)若关于x 的方程1101ax x +-=-有增根,则a 的值为____________。
8. (巴中)若分式方程211x m x x-=--有增根,则这个增根是____________。
9. 若方程2242x m m x x-+=--有增根x =2,则m =____________。
三、解答题 10. 若关于x 的方程4233k x x x-+=--有增根,试解关于y 的不等式5(y -2)≤28+k +2y 。
11. 增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值。
阅读以上材料后,完成下列探究:探究1:m 为何值时,方程3533x m x x+=--有增根。
探究2:m 为何值时,方程3533x m x x+=--的根是-1。
探究3:任意写出三个m 的值,使对应的方程3533x m x x +=--的三个根中两个根之和等于第三个根。
探究4:你发现满足“探究3”条件的m 1、m 2、m 3的关系是 _________ 。
12. 李明在解关于x 的方程22242x x m x x x x +-=--+时,把m 的值看错了。
解方程产生了增根,请你指出李明把m 看成了几?为什么?一、选择题1. A 解:方程两边都乘(x -1),得7+3(x -1)=m ,∵原方程有增根,∴最简公分母x -1=0,解得x =1,当x =1时,m =7,这是可能的,符合题意。
2. C 解:由题意得x 2-4=0时,原方程有增根。
解得x =2或-2,原方程化为整式方程为:3=(x -1+m )(x -2)当x =2时,右边为0,所以不能是2,当x =-2时,左边可能等于右边。
3. C 解:分式方程24022x x x x -=--, 最简公分母x (x -2),去分母得:4-x 2=0,整理得:x 2=4,解得:x =±2,把x =2代入x (x -2)=0,则x =2是原分式方程的增根,原分式方程的解为-2。
4. B 解:方程两边都乘以x (x +1)得:3(x +1)+(ax -3)x =2x (x +1),① 把x =-1代入①得:3(-1+1)+(-a -3)=2×(-1)(-1+1), 解得:a =-3。
5. D 解:分式方程的增根是使最简公分母的值为零的解。
6. A 解:方程两边都乘(x +3),得x +2=m∵方程有增根,∴最简公分母x +3=0,即增根是x =-3,把x =-3代入整式方程,得m =-1。
二、填空题7. -1 解:方程两边都乘(x -1),得ax +1-(x -1)=0,∵原方程有增根,∴最简公分母x -1=0,即增根为x =1,把x =1代入整式方程,得a =-1。
8. x =1 解:根据分式方程有增根,得到x -1=0,即x =1,则方程的增根为x =1。
9. -6 解:方程两边都乘(x +2)(x -2),得x -m -x (x +2)=2(x +2)(x -2)∵原方程增根为x =2,∴把x =2代入整式方程,得m =-6。
三、解答题10. 解:方程两边都乘(x -3),得k +2x -6=4-x ,∵方程有增根,∴最简公分母x -3=0,即增根是x =3,把x =3代入整式方程,得k =1。
把k =1代入不等式5(y -2)≤28+k +2y 得, 5(y -2)≤28+1+2y ,解得y ≤13。
11. 解:探究1:方程两边都乘以(x -3), 得3x +5(x -3)=-m∵原方程有增根,∴最简公分母x -3=0,解得x =3,当x =3时,m =-9,故m 的值是-9。
探究2:方程两边都乘以(x -3), 得3x +5(x -3)=-m∵原方程的根为x =-1,∴m =23,探究3:由(1)(2)得x =815m -, 方程的三个对应根为a ,b ,c 且a +b =c , 即可得出对应的m ,m 1=15-8a ,m 2=15-8b ,m 3=15-8c , 探究4:∵a +b =c ,整理得m 3=m 1+m 2-15。
12. 解:把m 看成了-6或-14, 理由是:22422+=-+--x x x m x x x 去分母得:x (x +2)-(x +m )=2x (x -2), x 2-5x +m =0①, ∵22422+=-+--x x x m x x x 有增根, ∴x +2=0,x -2=0,∴x =2或-2,当x =2时,代入①得:4-10+m =0, 解得:m =6;当x =-2时,代入①得:4+10+m =0, 解得:m =-14;即m =6或-14。