高考数学填空题
- 格式:doc
- 大小:204.00 KB
- 文档页数:4
2023年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)不等式|x﹣2|<1的解集为.2.(4分)已知向量=(﹣2,3),=(1,2),则•= .3.(4分)已知首项为3,公比为2的等比数列,设等比数列的前n项和为S n,则S6= .4.(4分)已知tanα=3,则tan2α= .5.(4分)已知函数f(x)=,则函数f(x)的值域为.6.(4分)已知复数z=1﹣i(i为虚数单位),则|1+iz|= .7.(5分)已知圆x2+y2﹣4x﹣m=0的面积为π,则m= .8.(5分)已知△ABC中,角A,B,C所对的边a=4,b=5,c=6,则sin A = .9.(5分)现有某地一年四个季度的GDP(亿元),第一季度GDP为232(亿元),第四季度GDP为241(亿元),四个季度的GDP逐季度增长,且中位数与平均数相同,则该地一年的GDP为.10.(5分)已知(1+2023x)100+(2023﹣x)100=a0+a1x+a2x2+⋯+a99x99+a100x100,若存在k∈{0,1,2,⋯,100}使得a k<0,则k的最大值为.11.(5分)某公园欲建设一段斜坡,坡顶是一条直线,斜坡顶点距水平地面的高度为4米,坡面与水平面所成夹角为θ.行人每沿着斜坡向上走1m消耗的体力为(1.025﹣cosθ),欲使行人走上斜坡所消耗的总体力最小,则θ= .12.(5分)空间中有三个点A、B、C,且AB=BC=CA=1,在空间中任取2个不同的点D,E(不考虑这两个点的顺序),使得它们与A、B、C恰好成为一个正四棱锥的五个顶点,则不同的取法有种.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(4分)已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=( )A.{1}B.{2}C.{3}D.{1,2,3} 14.(4分)根据所示的散点图,下列说法正确的是( )A.身高越大,体重越大B.身高越大,体重越小C.身高和体重成正相关D.身高和体重成负相关15.(5分)已知a∈R,记y=sin x在[a,2a]的最小值为s a,在[2a,3a]的最小值为t a,则下列情况不可能的是( )A.s a>0,t a>0B.s a<0,t a<0C.s a>0,t a<0D.s a<0,t a>0 16.(5分)已知P,Q是曲线Γ上两点,若存在M点,使得曲线Γ上任意一点P都存在Q 使得|MP|•|MQ|=1,则称曲线Γ是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则( )A.①成立,②成立B.①成立,②不成立C.①不成立,②成立D.①不成立,②不成立三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知直四棱柱ABCD﹣A1B1C1D1,AB⊥AD,AB∥CD,AB=2,AD=3,CD=4.(1)证明:直线A1B∥平面DCC1D1;(2)若该四棱柱的体积为36,求二面角A1﹣BD﹣A的大小.18.(14分)已知a,c∈R,函数f(x)=.(1)若a=0,求函数的定义域,并判断是否存在c使得f(x)是奇函数,说明理由;(2)若函数过点(1,3),且函数f(x)与x轴负半轴有两个不同交点,求此时c的值和a的取值范围.19.(14分)2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:红色外观蓝色外观棕色内饰128米色内饰23(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到红色外观的模型,事件B为小明取到棕色内饰的模型,求P(B)和P(B|A),并判断事件A和事件B是否独立;(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望.20.(18分)已知抛物线Γ:y2=4x,在Γ上有一点A位于第一象限,设A的纵坐标为a(a >0).(1)若A到抛物线Γ准线的距离为3,求a的值;(2)当a=4时,若x轴上存在一点B,使AB的中点在抛物线Γ上,求O到直线AB的距离;(3)直线l:x=﹣3,抛物线上有一异于点A的动点P,P在直线l上的投影为点H,直线AP与直线l的交点为Q.若在P的位置变化过程中,|HQ|>4恒成立,求a的取值范围.21.(18分)已知f(x)=lnx,在该函数图像Γ上取一点a1,过点(a1,f(a1))做函数f (x)的切线,该切线与y轴的交点记作(0,a2),若a2>0,则过点(a2,f(a2))做函数f(x)的切线,该切线与y轴的交点记作(0,a3),以此类推a3,a4,⋯,直至a m≤0停止,由这些项构成数列{a n}.(1)设a m(m≥2)属于数列{a n},证明:a m=lna m﹣1﹣1;(2)试比较a m与a m﹣1﹣2的大小关系;(3)若正整数k≥3,是否存在k使得a1、a2、a3、⋯、a k依次成等差数列?若存在,求出k的所有取值;若不存在,请说明理由.2023年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)不等式|x﹣2|<1的解集为(1,3) .【分析】原不等式可化为﹣1<x﹣2<1,从而求出x的范围.【解答】解:由|x﹣2|<1可得,﹣1<x﹣2<1,解得1<x<3,即不等式的解集为(1,3).故答案为:(1,3).【点评】本题主要考查了绝对值不等式的解法,属于基础题.2.(4分)已知向量=(﹣2,3),=(1,2),则•= 4.【分析】直接利用平面向量的坐标运算法则求解.【解答】解:∵向量=(﹣2,3),=(1,2),∴•=﹣2×1+3×2=4.故答案为:4.【点评】本题主要考查了平面向量的坐标运算,属于基础题.3.(4分)已知首项为3,公比为2的等比数列,设等比数列的前n项和为S n,则S6= 189.【分析】直接利用等比数列的前n项和公式求解.【解答】解:∵等比数列的首项为3,公比为2,∴S6==189.故答案为:189.【点评】本题主要考查了等比数列的前n项和公式,属于基础题.4.(4分)已知tanα=3,则tan2α= ﹣.【分析】直接利用正弦函数的二倍角公式求解.【解答】解:∵tanα=3,∴tan2α===﹣.故答案为:﹣.【点评】本题主要考查了二倍角公式的应用,属于基础题.5.(4分)已知函数f(x)=,则函数f(x)的值域为[1,+∞) .【分析】分段求出f(x)的值域,再取并集即可.【解答】解:当x≤0时,f(x)=1,当x>0时,f(x)=2x>1,所以函数f(x)的值域为[1,+∞).故答案为:[1,+∞).【点评】本题主要考查了求函数的值域,属于基础题.6.(4分)已知复数z=1﹣i(i为虚数单位),则|1+iz|= .【分析】根据复数的基本运算,即可求解.【解答】解:∵z=1﹣i,∴|1+iz|=|1+i(1﹣i)|=|2+i|=.故答案为:.【点评】本题考查复数的基本运算,属基础题.7.(5分)已知圆x2+y2﹣4x﹣m=0的面积为π,则m= ﹣3.【分析】先把圆的一般方程化为标准方程,再结合圆的半径为1求解即可.【解答】解:圆x2+y2﹣4x﹣m=0化为标准方程为:(x﹣2)2+y2=4+m,∵圆的面积为π,∴圆的半径为1,∴4+m=1,∴m=﹣3.故答案为:﹣3.【点评】本题主要考查了圆的标准方程,属于基础题.8.(5分)已知△ABC中,角A,B,C所对的边a=4,b=5,c=6,则sin A= .【分析】先利用余弦定理求出cos A,再利用同角三角函数间的基本关系求解.【解答】解:a=4,b=5,c=6,由余弦定理得,cos A===,又∵A∈(0,π),∴sin A>0,∴sin A===.故答案为:.【点评】本题主要考查了余弦定理的应用,考查了同角三角函数间的基本关系,属于基础题.9.(5分)现有某地一年四个季度的GDP(亿元),第一季度GDP为232(亿元),第四季度GDP为241(亿元),四个季度的GDP逐季度增长,且中位数与平均数相同,则该地一年的GDP为946(亿元) .【分析】设第二季度GDP为x亿元,第三季度GDP为y亿元,则232<x<y<241,由题意可得,可求出x+y的值,从而求出该地一年的GDP.【解答】解:设第二季度GDP为x亿元,第三季度GDP为y亿元,则232<x<y<241,∵中位数与平均数相同,∴,∴x+y=473,∴该地一年的GDP为232+x+y+241=946(亿元).故答案为:946(亿元).【点评】本题主要考查了中位数和平均数的定义,属于基础题.10.(5分)已知(1+2023x)100+(2023﹣x)100=a0+a1x+a2x2+⋯+a99x99+a100x100,若存在k∈{0,1,2,⋯,100}使得a k<0,则k的最大值为49.【分析】由二项展开式的通项可得a k=[2023k+2023100﹣k•(﹣1)k],若a k<0,则k 为奇数,所以a k=(2023k﹣2023100﹣k),即2023k﹣2023100﹣k<0,从而求出k的取值范围,得到k的最大值.【解答】解:二项式(1+2023x)100的通项为=•2023r•x r,r∈{0,1,2,…,100},二项式(2023﹣x)100的通项为=•2023100﹣r•(﹣1)r•x r,r∈{0,1,2,…,100},∴a k=+=[2023k+2023100﹣k•(﹣1)k],k∈{0,1,2,⋯,100},若a k<0,则k为奇数,此时a k=(2023k﹣2023100﹣k),∴2023k﹣2023100﹣k<0,∴k<100﹣k,∴k<50,又∵k为奇数,∴k的最大值为49.故答案为:49.【点评】本题主要考查了二项式定理的应用,属于中档题.11.(5分)某公园欲建设一段斜坡,坡顶是一条直线,斜坡顶点距水平地面的高度为4米,坡面与水平面所成夹角为θ.行人每沿着斜坡向上走1m消耗的体力为(1.025﹣cosθ),欲使行人走上斜坡所消耗的总体力最小,则θ= arccos.【分析】先求出斜坡的长度,求出上坡所消耗的总体力的函数关系,求出函数的导数,利用导数研究函数的最值即可.【解答】解:斜坡的长度为l=,上坡所消耗的总体力y=×(1.025﹣cosθ)=,函数的导数y′==,由y′=0,得4﹣4.1cosθ=0,得cosθ=,θ=arccos,由f′(x)>0时cosθ<,即arccos<θ<时,函数单调递增,由f′(x)<0时cosθ>,即0<θ<arccos时,函数单调递减,即θ=arccos,函数取得最小值,即此时所消耗的总体力最小.故答案为:θ=arccos.【点评】本题主要考查生活的应用问题,求函数的导数,利用导数研究函数的最值是解决本题的关键,是中档题.12.(5分)空间中有三个点A、B、C,且AB=BC=CA=1,在空间中任取2个不同的点D,E(不考虑这两个点的顺序),使得它们与A、B、C恰好成为一个正四棱锥的五个顶点,则不同的取法有9种.【分析】根据正四棱锥的性质,分类讨论,即可求解.【解答】解:如图所示,设任取2个不同的点为D、E,当△ABC为正四棱锥的侧面时,如图,平面ABC的两侧分别可以做ABDE作为圆锥的底面,有2种情况,同理以BCED、ACED为底面各有2种情况,所以共有6种情况;当△ABC为正四棱锥的截面时,如图,D、E位于AB两侧,ADBE为圆锥的底面,只有一种情况,同理以BDCE、ADCE为底面各有1种情况,所以共有3种情况;综上,共有6+3=9种情况.故答案为:9.【点评】本题考查正四棱锥的性质,分类讨论思想,属中档题.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(4分)已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=( )A.{1}B.{2}C.{3}D.{1,2,3}【分析】根据题意及集合的概念,即可得解.【解答】解:∵P={1,2},Q={2,3},M={x|x∈P,x∉Q},∴M={1}.故选:A.【点评】本题考查集合的基本概念,属基础题.14.(4分)根据所示的散点图,下列说法正确的是( )A.身高越大,体重越大B.身高越大,体重越小C.身高和体重成正相关D.身高和体重成负相关【分析】根据散点图的分布情况,即可得解.【解答】解:根据散点图的分布可得:身高和体重成正相关.故选:C.【点评】本题考查线性相关的概念,属基础题.15.(5分)已知a∈R,记y=sin x在[a,2a]的最小值为s a,在[2a,3a]的最小值为t a,则下列情况不可能的是( )A.s a>0,t a>0B.s a<0,t a<0C.s a>0,t a<0D.s a<0,t a>0【分析】由题意可知a>0,对a分别求值,排除ABC,即可得答案.【解答】解:由给定区间可知,a>0.区间[a,2a]与区间[2a,3a]相邻,且区间长度相同.取a=,则[a,2a]=[],区间[2a,3a]=[],可知s a>0,t a>0,故A可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a>0,t a <0,故C可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a<0,t a <0,故B可能.结合选项可得,不可能的是s a<0,t a>0.故选:D.【点评】本题考查正弦函数的图象与三角函数的最值,训练了排除法的应用,取特值是关键,是中档题.16.(5分)已知P,Q是曲线Γ上两点,若存在M点,使得曲线Γ上任意一点P都存在Q 使得|MP|•|MQ|=1,则称曲线Γ是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则( )A.①成立,②成立B.①成立,②不成立C.①不成立,②成立D.①不成立,②不成立【分析】根据定义结合图象,验证|MP|•|MQ|=1是否恒成立即可.【解答】解:∵椭圆是封闭的,总可以找到满足题意的M点,使得|MP|•|MQ|=1成立,故①正确,在双曲线中,|PM|max→+∞,而|QM|min是个固定值,则无法对任意的P∈C,都存在Q∈C,使得|PM||QM|=1,故②错误.故选:B.【点评】本题主要考查与曲线方程有关的新定义,根据条件结合图象验证|MP|•|MQ|=1是否成立是解决本题的关键,是中档题.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知直四棱柱ABCD﹣A1B1C1D1,AB⊥AD,AB∥CD,AB=2,AD=3,CD=4.(1)证明:直线A1B∥平面DCC1D1;(2)若该四棱柱的体积为36,求二面角A1﹣BD﹣A的大小.【分析】(1)先证明平面A1ABB1∥平面DCC1D1,再根据面面平行的性质,即可证明;(2)先根据体积建立方程求出A1A=4,再利用三垂线定理作出所求二面角的平面角,最后再解三角形,即可求解.【解答】解:(1)证明:根据题意可知AB∥DC,AA1∥DD1,且AB∩AA1=A,∴可得平面A1ABB1∥平面DCC1D1,又直线A1B⊂平面A1ABB1,∴直线A1B∥平面DCC1D1;(2)设AA1=h,则根据题意可得该四棱柱的体积为=36,∴h=4,∵A1A⊥底面ABCD,在底面ABCD内过A作AE⊥BD,垂足点为E,则A1E在底面ABCD内的射影为AE,∴根据三垂线定理可得BD⊥A1E,故∠A1EA即为所求,在Rt△ABD中,AB=2,AD=3,∴BD==,∴AE===,又A1A=h=4,∴tan∠A1EA===,∴二面角A1﹣BD﹣A的大小为arctan.【点评】本题考查线面平行的证明,面面平行的判定定理与性质,二面角的求解,三垂线定理作二面角,化归转化思想,属中档题.18.(14分)已知a,c∈R,函数f(x)=.(1)若a=0,求函数的定义域,并判断是否存在c使得f(x)是奇函数,说明理由;(2)若函数过点(1,3),且函数f(x)与x轴负半轴有两个不同交点,求此时c的值和a的取值范围.【分析】(1)a=0时,求出函数f(x)的解析式,根据函数的定义域和奇偶性进行求解判断即可.(2)根据函数过点(1,3),求出c的值,然后根据f(x)与x轴负半轴有两个不同交点,转化为一元二次方程根的分布进行求解即可.【解答】解:(1)若a=0,则f(x)==x++1,要使函数有意义,则x≠0,即f(x)的定义域为{x|x≠0},∵y=x+是奇函数,y=1是偶函数,∴函数f(x)=x++1为非奇非偶函数,不可能是奇函数,故不存在实数c,使得f(x)是奇函数.(2)若函数过点(1,3),则f(1)===3,得3a+2+c=3+3a,得c=3﹣2=1,此时f(x)=,若数f(x)与x轴负半轴有两个不同交点,即f(x)==0,得x2+(3a+1)x+1=0,当x<0时,有两个不同的交点,设g(x)=x2+(3a+1)x+1,则,得,得,即a>,若x+a=0即x=﹣a是方程x2+(3a+1)x+1=0的根,则a2﹣(3a+1)a+1=0,即2a2+a﹣1=0,得a=或a=﹣1,则实数a的取值范围是a>且a≠且a≠﹣1,即(,)∪(,+∞).【点评】本题主要考查函数奇偶性的判断,以及函数与方程的应用,根据条件建立方程,转化为一元二次方程根的分布是解决本题的关键,是中档题.19.(14分)2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:红色外观蓝色外观棕色内饰128米色内饰23(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到红色外观的模型,事件B为小明取到棕色内饰的模型,求P(B)和P(B|A),并判断事件A和事件B是否独立;(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望.【分析】(1)根据概率公式分别进行计算即可.(2)分别求出三种结果对应的概率,比较大小,确定X对应的概率,求出分布列,利用期望公式进行计算即可.【解答】解:(1)若红色外观的模型,则分棕色内饰12个,米色内饰2个,则对应的概率P(A)==,若小明取到棕色内饰,分红色外观12,蓝色外观8,则对应的概率P(B)===.取到红色外观的模型同时是棕色内饰的有12个,即P(AB)=,则P(B|A)====.∵P(A)P(B)==≠,∴P(A)P(B)≠P(AB),即事件A和事件B不独立.(2)由题意知X=600,300,150,则外观和内饰均为同色的概率P===,外观和内饰都异色的概率P==,仅外观或仅内饰同色的概率P=1﹣﹣=,∵>>,∴P(X=150)=,P(X=300)==,P(X=600)=,则X的分布列为:X150300600P则EX=150×+300×+600×=277(元).【点评】本题主要考查离散型随机变量的分布列和期望的计算,根据概率公式求出对应的概率是解决本题的关键,是中档题.20.(18分)已知抛物线Γ:y2=4x,在Γ上有一点A位于第一象限,设A的纵坐标为a(a>0).(1)若A到抛物线Γ准线的距离为3,求a的值;(2)当a=4时,若x轴上存在一点B,使AB的中点在抛物线Γ上,求O到直线AB的距离;(3)直线l:x=﹣3,抛物线上有一异于点A的动点P,P在直线l上的投影为点H,直线AP与直线l的交点为Q.若在P的位置变化过程中,|HQ|>4恒成立,求a的取值范围.【分析】(1)根据题意可得点A的横坐标为2,将其代入抛物线的方程,即可求得a的值;(2)易知A(4,4),设B(b,0),由AB的中点在抛物线上,可得b的值,进而得到直线AB的方程,再由点到直线的距离公式得解;(3)设,表示出直线AP的方程,进一步表示出点Q的坐标,再根据|HQ|>4恒成立,结合基本不等式即可得到a的范围.【解答】解:(1)抛物线Γ:y2=4x的准线为x=﹣1,由于A到抛物线Γ准线的距离为3,则点A的横坐标为2,则a2=4×2=8(a>0),解得;(2)当a=4时,点A的横坐标为,则A(4,4),设B(b,0),则AB的中点为,由题意可得,解得b=﹣2,所以B(﹣2,0),则,由点斜式可得,直线AB的方程为,即2x﹣3y+4=0,所以原点O到直线AB的距离为;(3)如图,设,则,故直线AP的方程为,令x=﹣3,可得,即,则,依题意,恒成立,又,则最小值为,即,即,则a2+12>a2+4a+4,解得0<a<2,又当a=2时,,当且仅当t=2时等号成立,而a≠t,即当a=2时,也符合题意.故实数a的取值范围为(0,2].【点评】本题考查抛物线的定义及其性质,考查直线与抛物线的综合运用,考查运算求解能力,属于中档题.21.(18分)已知f(x)=lnx,在该函数图像Γ上取一点a1,过点(a1,f(a1))做函数f (x)的切线,该切线与y轴的交点记作(0,a2),若a2>0,则过点(a2,f(a2))做函数f(x)的切线,该切线与y轴的交点记作(0,a3),以此类推a3,a4,⋯,直至a m≤0停止,由这些项构成数列{a n}.(1)设a m(m≥2)属于数列{a n},证明:a m=lna m﹣1﹣1;(2)试比较a m与a m﹣1﹣2的大小关系;(3)若正整数k≥3,是否存在k使得a1、a2、a3、⋯、a k依次成等差数列?若存在,求出k的所有取值;若不存在,请说明理由.【分析】(1)对函数f(x)求导,利用导数的几何意义,可得过点(a m﹣1,f(a m﹣1))的切线方程,再结合题意即可得证;(2)由不等式lnx≤x﹣1(x>0),结合(1)即可得出结论;(3)易知公差d=a n﹣a n﹣1=lna n﹣1﹣a n﹣1﹣1,2≤n≤k,考察函数g(x)=lnx﹣x﹣1,利用导数可知g(x)的单调性情况,进而得到至多存在两个a n﹣1,使得g(a n﹣1)=d,由此可知k=3,再验证即可.【解答】解:(1)证明:,则过点(a m﹣1,f(a m﹣1))的切线的斜率为,由点斜式可得,此时切线方程为,即,令x=0,可得y=lna m﹣1﹣1,根据题意可知,a m=lna m﹣1﹣1,即得证;(2)先证明不等式lnx≤x﹣1(x>0),设F(x)=lnx﹣x+1(x>0),则,易知当0<x<1时,F′(x)>0,F(x)单调递增,当x>1时,F′(x)<0,F(x)单调递减,则F(x)≤F(1)=0,即lnx≤x﹣1(x>0),结合(1)可知,a m=lna m﹣1﹣1≤a m﹣1﹣1﹣1=a m﹣1﹣2;(3)假设存在这样的k符合要求,由(2)可知,数列{a n}为严格的递减数列,n=1,2,3,…,k,由(1)可知,公差d=a n﹣a n﹣1=lna n﹣1﹣a n﹣1﹣1,2≤n≤k,先考察函数g(x)=lnx﹣x﹣1,则,易知当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,则g(x)=d至多只有两个解,即至多存在两个a n﹣1,使得g(a n﹣1)=d,若k≥4,则g(a1)=g(a2)=g(a3)=d,矛盾,则k=3,当k=3时,设函数h(x)=ln(lnx﹣1)﹣2lnx+x+1,由于h(e1.1)=ln0.1﹣2.2+e1.1+1=e1.1﹣ln10﹣1.2<0,h(e2)=﹣3+e2>0,则存在,使得h(x0)=0,于是取a1=x0,a2=lna1﹣1,a3=lna2﹣1,它们构成等差数列.综上,k=3.【点评】本题考查数列与函数的综合运用,考查逻辑推理能力和运算求解能力,属于中档题.。
普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =, 其中S 为底面积, h 为高. 一、填空题:本大题共14小题, 每小题5分, 共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{124}A =,,, {246}B =,,, 则A B = ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本, 则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,, 117ii 12ia b -+=-(i 为虚数单位), 则a b +的值 为 ▲ .4.右图是一个算法流程图, 则输出的k 的值是 ▲ . 5.函数6()12log f x x =-的定义域为 ▲ .6.现有10个数, 它们能构成一个以1为首项, 3-为公比的 等比数列, 若从这10个数中随机抽取一个数, 则它小于8 的概率是 ▲ .7.如图, 在长方体1111ABCD A B C D -中, 3cm AB AD ==, 12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中, 若双曲线22214x y m m -=+的离心率5 则m 的值为 ▲ .9.如图, 在矩形ABCD 中, 22AB BC ==,点E 为BC 的中点, 点F 在边CD 上, 若2AB AF =, 则AE BF 的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数, 在区间[11]-,上,开始 结束k ←1k 2-5k +4>0输出k k ←k +1NY (第4题)FD DABC 1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角, 若4cos 65απ⎛⎫+= ⎪⎝⎭, 则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中, 圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点, 使得以该点为圆心,1为半径的圆与圆C 有公共点, 则k 的最大值是 ▲ . 13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,, 则实数c 的值为 ▲ . 14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题, 共计90分.请在答题卡指定区域.......内作答, 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中, 已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若5cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中, 1111A B AC =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ), 且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C FDCAE1B17.(本小题满分14分) 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小), 其飞行高度为3.2千米,试问它的横坐标a 不超过多少时, 炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a , b 是实数, 1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+, 求()g x 的极值点;(3)设()(())h x f f x c =-, 其中[22]c ∈-,, 求函数()y h x =的零点个数.19.(本小题满分16分)如图, 在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和3e ⎛ ⎝⎭,都在椭圆上, 其中e(第16题)x (千米y (千米)O(第17题)(1)求椭圆的离心率;(2)设A , B 是椭圆上位于x 轴上方的两点, 且直线1AF与直线2BF 平行, 2AF 与1BF 交于点P .(i )若126AF BF -=, 求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a n a b *+=∈+N .(1)设11n n nb b n a *+=+∈N ,, 求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设12nn nb b n a *+=∈N ,, 且{}n a 是等比数列, 求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题, 请选定其中两题.......,. 并在相应的答题区域内作...........答...若多做, 则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图, AB 是圆O 的直径, D , E 为圆上位于AB 异侧的两点, 连结BD 并延长至点C , 使BD= DC , 连结AC , AE , DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A , 求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分)(第21-A 题)AED CO在极坐标中,已知圆C 经过点()24Pπ,,圆心为直线()3sin 32ρθπ-=-与极轴的交点, 求圆C 的极坐标方程. D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x , y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题, 每题10分, 共计20分.请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量, 从棱长为1的正方体的12条棱中任取两条, 当两条棱相交时, 0ξ=;当两条棱平行时, ξ的值为两条棱之间的距离;当两条棱异面时, 1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列, 并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…, n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈, 则2x A ∉;③若nP x A ∈, 则2nP x A ∉.(1)求(4)f ;(2)求()f n 的解析式(用n 表示).江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则 A∪B= {1,2,4,6} .考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中,令y=0,得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.:(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx,得 f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根 x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:( i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5个零点.( i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.点评本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.数列递推式;等差关系的确定;等比数列的性质.考点:等差数列与等比数列.专题:分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4)(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求解答:解(1)当n=4时,P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4}故f(4)=4(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中m为奇数,k∈N*由条件可知,若m∈A,则x∈A,⇔k为偶数若m∉A,则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定,设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数,当n为偶数时(或奇数时),P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,。
最新高考数学填空题精选及答案填空题精选(1)1. 已知圆()()2223x y b r x y r -+-=的图像与轴,轴都相切,则半径=2.定义运算c a bc ad d b -=,若复数i i x +-=32,i i y +=14ix xi +-3,则=y . 3.函数[]()sin (π0)f x x x x =∈-,的单调递增区间是 .4.已知椭圆19822=++y a x 的离心率21=e ,则a 的值等于 . 5.函数⎩⎨⎧≥<-+-=0,0,33)(x a x a x x f x(10≠>a a 且)是),(+∞-∞上的减函数,则a 的取值范围是6.已知直线0ax by c ++=与圆O:221x y +=相交于A,B 两 点,且|AB|=,则OA OB ⋅=.7.数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.则实数c 的值为 .8.如果执行下面的程序框图,那么输出的S =.9.若关于x 的方程:0212=--+x x kx 有两个不相等的 实数解,则实数k 的取值范围 .10.已知n m ,是两条不重合的直线,γβα,,的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ; ②若βαγβγα//,,则⊥⊥;③若,,βα⊂⊂n m n m //,则βα//;④若n m ,是异面直线,ββα//,,//,n n m m ⊂⊂____ 11.设m 为实数,若22250(,)30{(,)|25}0x y x y x x y x y mx y ⎧⎫-+≥⎧⎪⎪⎪-≥⊆+≤⎨⎨⎬⎪⎪⎪+≥⎩⎩⎭,则m 的取值范围是12.如图摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上点P 的起始位置在最低处。
在摩天轮转动一圈内,有_____________min 点P 距离地面超过70m 。
2023高考乙卷数学12题2023高考乙卷数学12题一、填空题(共4小题,每小题5分,共20分)1. 已知a+b=10,a-b=4,则a的值为______,b的值为______。
解析:解方程组a+b=10,a-b=4得a=7,b=3。
2. 某班级有男生x人,女生y人,男女生总数与班级总人数之比为3:7。
已知总人数为35人,则男生人数x为______,女生人数y为______。
解析:设男生人数为3a,女生人数为7a,由条件得到3a+7a=35,解得a=5,因此男生人数为3a=15人,女生人数为7a=35人。
3. 一辆汽车开了120km,其速度恒定为30km/h,行驶的时间是______小时。
解析:速度等于路程除以时间,即30=120/t,解得t=4。
4. 在一个等差数列中,第6项是10,第12项是22,第18项是34,求首项a和公差d。
解析:设等差数列的首项为a,公差为d,则第6项为a+5d=10,第12项为a+11d=22,第18项为a+17d=34。
解方程组可得a=2,d=2。
二、选择题(共6小题,每小题10分,共60分)5. 若已知三角形的两条边长分别为5cm和7cm,第三边与较短边之差为2cm,则这个三角形的周长是:A. 13cmB. 14cmC. 15cmD. 16cm解析:根据题意可得第三边长为7-2=5cm,则周长为5+5+7=17cm,故选D。
6. 设负整数x满足|x+2|=5,下列哪个不是x的取值?A. -7B. -5C. -3D. -1解析:由给定的条件可得x+2=5或x+2=-5,解得x=3或x=-7,因此-7是x的取值之一,所以选B。
7. 若 a=2,b=-3,则方程3ax-2bx-5a+4b的值是:A. -23B. -5C. 1D. 5解析:代入a=2,b=-3可得3ax-2bx-5a+4b=3(2)x-2(-3)x-5(2)+4(-3)=6x+6x-10-12=-16,故选A。
三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
高考数学复习题型及答案一、选择题1. 函数f(x)=x^2+2x+1的图像是:A. 一条直线B. 一个开口向上的抛物线C. 一个开口向下的抛物线D. 一个圆答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,则其第10项a10的值为:A. 29B. 32C. 35D. 41答案:A二、填空题3. 若复数z=1+i,则|z|=________。
答案:√24. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。
答案:3x^2-6x三、解答题5. 求证:对于任意实数x,不等式x^2+x+1>0恒成立。
证明:要证明x^2+x+1>0恒成立,只需证明其判别式Δ<0。
计算判别式Δ=1^2-4×1×1=-3<0,因此原不等式恒成立。
6. 已知数列{an}满足a1=1,an+1=2an+1,求数列{an}的通项公式。
解:由递推关系an+1=2an+1,可得an+1+1=2(an+1),即数列{an+1}是首项为2,公比为2的等比数列。
因此,an+1=2^n,进而得到an=2^(n-1)-1。
四、计算题7. 计算定积分∫₀^₁x^2dx。
解:∫₀^₁x^2dx=(1/3)x^3|₀^₁=1/3。
8. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2≤1所围成的圆盘。
解:∬D(x^2+y^2)dσ=∫₀^π∫₀^1(r^2cos^2θ+r^2sin^2θ)rdrdθ=∫₀^π∫₀^1r^3 dθ dr=(π/2)∫₀^1r^3dr=(π/2)(1/4)=π/8。
以上题型涵盖了高考数学中常见的选择题、填空题、解答题和计算题,通过这些题型的练习,可以有效地复习和巩固数学知识,为高考做好充分的准备。
江苏高考数学填空中高档题专练2018.5.221. 等比数列{a n }的公比大于1, a 5-a 1=15, a 4-a 2=6, 则a 3=____________.2. 将函数y =sin ⎝⎛⎭⎫2x +π6的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后, 得到函数f(x)的图象, 若函数f(x)是偶函数, 则φ的值等于________.3.已知函数f(x)=ax +bx(a ,b∈R ,b >0)的图象在点P(1,f(1))处的切线与直线x +2y -1=0垂直, 且函数f(x)在区间⎣⎡⎭⎫12,+∞上单调递增,则b 的最大值等于__________.4.已知f(m)=(3m -1)a +b -2m ,当m ∈[0, 1]时,f(m)≤1恒成立,则a +b 的最大值是__________.5. △ABC 中, 角A , B , C 的对边分别是a , b , c , 若tanA =2tanB , a 2-b 2=13c ,则c =____________.6. 已知x +y =1, y >0, x >0, 则12x +xy +1的最小值为____________.7. 设f′(x)和g′(x)分别是函数f(x)和g(x)的导函数, 若f′(x)·g′(x)≤0在区间I 上恒成立, 则称函数f(x)和g(x)在区间I 上单调性相反.若函数f(x)=13x 3-2ax 与函数g(x)=x 2+2bx在开区间(a , b)(a >0)上单调性相反, 则b -a 的最大值等于____________. 8. 在等比数列{a n }中, 若a 1=1, a 3a 5=4(a 4-1), 则a 7=__________.9. 已知|a|=1, |b|=2, a +b =(1, 2), 则向量a , b 的夹角为____________. 10.直线ax +y +1=0被圆x 2+y 2-2ax +a =0截得的弦长为2,则实数a 的值是____________.11. 已知函数f(x)=-x 2+2x , 则不等式f(log 2x)<f(2)的解集为__________.12. 将函数y =sin2x 的图象向左平移φ(φ>0)个单位, 若所得的图象过点⎝⎛⎭⎫π6,32,则φ的最小值为____________.13. 在△ABC 中, AB =2, AC =3, 角A 的平分线与AB 边上的中线交于点O , 若AO →=xAB →+yAC →(x , y ∈R ), 则x +y 的值为____________.14. 已知函数f(x)=e x -1+x -2(e 为自然对数的底数), g(x)=x 2-ax -a +3, 若存在实数x 1, x 2, 使得f(x 1)=g(x 2)=0, 且|x 1-x 2|≤1, 则实数a 的取值范围是____________. 15. 连续2次抛掷一枚骰子(六个面上分别标有数字1, 2, 3, 4, 5, 6), 则事件“两次向上的数字之和等于7”发生的概率为__________.16.将半径为5的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r 1, r 2, r 3, 则r 1+r 2+r 3=____________.17. 已知θ是第三象限角, 且sin θ-2cosθ=-25, 则sinθ+cosθ=____________.18. 已知{a n }是等差数列,a 5=15,a 10=-10,记数列{a n }的第n 项到第n +5项的和为T n , 则|T n |取得最小值时的n 的值为____________.19.若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧, 则a 2+b 2=____________.20.已知函数f(x)=|sinx|-kx(x ≥0,k∈R )有且只有三个零点,设此三个零点中的最大值为x 0, 则=____________.21. 已知ab =14, a , b ∈(0, 1), 则11-a +21-b 的最小值为____________.22.在圆锥VO 中,O 为底面圆心,半径OA ⊥OB ,且OA =VO =1,则O 到平面VAB 的距离为__________.23.设△ABC 是等腰三角形,∠ABC =120°,则以A ,B 为焦点且过点C 的双曲线的离心率为____________.24. 对于数列{a n }, 定义数列{b n }满足:b n =a n +1-a n (n ∈N *), 且b n +1-b n =1(n ∈N *), a 3=1, a 4=-1, 则a 1=__________.25.已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为__________.26. 过曲线y =x -1x (x >0)上一点P(x 0, y 0)处的切线分别与x 轴, y 轴交于点A , B ,O 是坐标原点, 若△OAB 的面积为13, 则x 0=____________.27.已知圆C :(x -2)2+y 2=4,线段EF 在直线l :y =x +1上运动, 点P 为线段EF 上任意一点,若圆C 上存在两点A ,B ,使得PA→·PB→≤0,则线段EF 长度的最大值是____________.28. 已知函数f(x)=⎩⎨⎧-|x3-2x2+x|,x <1,lnx ,x ≥1,若对于t ∈R , f(t)≤kt 恒成立,则实数k 的取值范围是____________.29.已知四棱锥PABCD 的底面ABCD 是边长为2,锐角为60°的菱形,侧棱PA ⊥底面ABCD ,PA =3.若点M 是BC 的中点,则三棱锥MPAD 的体积为__________.30. 已知实数x , y 满足⎩⎪⎨⎪⎧4x +y≤10,4x +3y≤20,x≥0,y≥0,则2x +y 的最大值为____________.31.已知平面向量a =(4x ,2x ),b =⎝⎛⎭⎫1,2x -22x ,x∈R .若a ⊥b,则|a -b|=__________.32. 已知等比数列{a n }的各项均为正数, 且a 1+a 2=49, a 3+a 4+a 5+a 6=40, 则a7+a8+a99的值为__________.(第12题)33. 如图, 直角梯形ABCD 中, AB ∥CD , ∠DAB =90°, AD =AB =4, CD =1, 动点P 在边BC 上, 且满足AP →=m AB →+n AD →(m , n 均为正实数), 则1m +1n 的最小值为____________.34.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:(x -4)2+y 2=4,动点P 在直线x +3y -b =0上, 过P 分别作圆O , O 1的切线, 切点分别为A , B ,若满足PB =2PA 的点P 有且只有两个, 则实数b 的取值范围是____________.35. 已知函数f(x)=⎩⎪⎨⎪⎧2x2-3x ,x≤0,ex +e2,x >0.若不等式f(x)≥kx 对x ∈R 恒成立, 则实数k 的取值范围是____________.答案1. 4 解析:由a 5-a 1=15, a 4-a 2=6(q>1), 得q =2, a 1=1, 则a 3=4. 本题主要考查等比数列通项公式.本题属于容易题.2. π3解析:由函数y =sin ⎝⎛⎭⎫2x +π6的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后, 得到函数f(x)=sin(2x +π6-2φ)的图象, 函数f(x)是偶函数, π6-2φ=π2+k π, 而φ为锐角,则k =-1时φ=π3.本题主要考查三角函数的图象变换,以及三角函数的奇偶性.本题属于容易题.3. 23 解析:函数f(x)=ax +bx(a , b ∈R , b >0)的图象在点P(1, f(1))处的切线斜率为2, f′(1)=2, 得a -b =2, 由函数f(x)在区间⎣⎡⎭⎫12,+∞上单调递增, f′(x)≥0在区间⎣⎡⎭⎫12,+∞上恒成立, 得a 4≥b , 又a =2+b , 则b ≤23.本题主要考查导数的几何意义,导数在单调性中的运用以及恒成立问题.本题属于中等题.4. 73 解析:将已知条件变形f(m)=m(3a -2)+b -a , 当3a -2=0时, 即a =23, 则有b -a ≤1, 即b ≤a +1, 所以a +b ≤2a +1=2×23+1=73;当3a -2>0, 即a >23时,函数f(m)在[0, 1]上单调递增, f(m)max =f(1)=3a -2+b -a =2a +b -2≤1, 则b ≤3-2a ,所以a +b ≤a +3-2a =3-a <73;当3a -2<0, 即a <23时, 函数f(m)在[0, 1]上单调递减,f(m)max =f(0)=b -a ≤1, 则b ≤a +1, 所以a +b ≤2a +1<73.综上所述,a +b 的最大值为73.本题主要考查在多元变量中如何变换主元以及借助单调性求最值来解决不等式的恒成立问题.本题属于中等题.5. 1 解析:由tanA =2tanB sinA cosA =2sinBcosB, 结合正、余弦定理转化为边的关系,有2abc b2+c2-a2=2×2abc a2+c2-b2, 化简有a 2-b 2=13c 2,结合已知条件有c =1.本题主要考查利用正、余弦定理解三角形以及三角函数中遇切化弦.本题属于中等题.6. 54 解析:将x +y =1代入12x +x y +1中, 得x +y 2x +x x +2y =12+y 2x +11+2y x, 设y x=t >0, 则原式=1+t 2+11+2t =2t2+3t +32(1+2t )=14·(1+2t )2+2t +1+41+2t =14[(1+2t)+41+2t +1]≥14×2(1+2t )·41+2t +14=54, 当且仅当t =12时, 即x =23, y =13时,取“=”.本题主要考查利用代数式变形, 以及利用基本不等式求最值.本题属于难题.7. 12 解析:因为g(x)=x 2+2bx 在区间(a , b)上为单调增函数, 所以f(x)=13x 3-2ax 在区间(a , b)上单调减, 故x ∈(a , b), f ′(x)=x 2-2a ≤0, 即a ≥b22, 而b >a ,所以b ∈(0, 2), b -a ≤b -b22=-12(b -1)2+12, 当b =1时, b -a 的最大值为12.本题主要考查二次函数的单调性、最值问题和导数在单调性中的运用以及恒成立问题.本题属于难题. 8. 4 解析:由a 1=1, a 3a 5=4(a 4-1), 得q 3=2, 则a 7 =a 1(q 3)2=4.本题考查了等比数列通项公式, 以及项与项之间的关系.本题属于容易题.9. 23π 解析:由a +b =(1, 2), 得(a +b )2=3, 则1+4+2a·b =3,a ·b =-1=|a||b|cosθ, cosθ=-12, 则θ=23π.本题考查了向量数量积的定义,模与坐标之间的关系.本题属于容易题.10. -2 解析:由圆x 2+y 2-2ax +a =0的圆心(a , 0), 半径的平方为a 2-a , 圆心到直线ax +y +1=0的距离的平方为a 2+1,由勾股定理得a =-2.本题考查了点到直线的距离公式,以及利用垂径定理、勾股定理处理弦长问题.本题属于容易题.11. (0, 1)∪(4, +∞) 解析:∵ 二次函数f(x)=-x 2+2x 的对称轴为x =1, ∴ f(0)=f(2), 结合二次函数的图象可得log 2x<0或log 2x>2, 解得0<x<1或x>4, ∴ 解集为(0, 1)∪(4, +∞).本题考查了二次函数的图象与性质, 以及基本的对数不等式的解法.本题属于中等题.12. π6 解析:易知y =sin2(x +φ), 即y =sin(2x +2φ), ∵ 图象过点⎝⎛⎭⎫π6,32, ∴sin ⎝⎛⎭⎫π3+2φ=32, ∴ π3+2φ=π3+2k π或π3+2φ=2π3+2k π, k ∈Z , 即φ=k π或φ=π6+k π, k ∈Z .∵ φ>0, ∴φ的最小值为π6.本题考查了三角函数的图象变换与性质.本题属于中等题.13. 58 解析:∵ AO 为△ABC 的角平分线, ∴ 存在实数λ(λ≠0)使AO →=λ⎝ ⎛⎭⎪⎪⎫AB →||AB →+AC →||AC →,即AO →=12λAB →+13λAC →, ∴ ⎩⎨⎧12λ=x ,13λ=y ①.若AB 边上的中线与AB 交于点D , 则AO →=2xAD→+y AC →.∵ C 、O 、D 三点共线, ∴ 2x +y =1 ②, 由①②得x =38, y =14, ∴x +y =58.本题考查了平面向量的线性表示以及向量的共线定理.本题属于难题.14. [2, 3] 解析:易知函数f(x)=e x -1+x -2在R 上为单调增函数且f(1)=0, ∴ x 1=1,则|1-x 2|≤1解得0≤x ≤2, ∴ x 2-ax -a +3=0在x ∈[0, 2]上有解, ∴ a =x2+3x +1在x ∈[0,2]上有解.令t =x +1∈[1, 3], 则x =t -1, a =(t -1)2+3t , 即a =t +4t-2 在[1,2]上递减, 在[2, 3]上递增, 则当t =2时a 的最小值为2, 当t =1时a 的最大值为3, ∴ a 的取值范围为[2, 3].本题考查了函数的单调性, 分离参数构造新函数, 对数函数的性质以及换元的应用.本题属于难题.15.16解析:连续2次抛掷一枚骰子共有36种基本事件, 则事件“两次向上的数字之和等于7”共有6种,则其发生的概率为16.本题考查用列举法解决古典概型问题, 属于容易题.16. 5 解析:三个圆锥的底面周长分别为53π, 103π, 5π, 则它们的半径r 1, r 2,r 3依次为56, 53, 52,则r 1+r 2+r 3=5.本题考查圆锥的侧面展开图中弧长与底面圆周长的关系.本题属于容易题.17. -3125 解析:由sinθ-2cosθ=-25, sin 2θ+cos 2θ=1, θ是第三象限角,得sinθ=-2425, cosθ=-725,则sinθ+cosθ=-3125.本题考查同角的三角函数关系.本题属于容易题.18. 5或6 解析:由a 5=15, a 10=-10, 得d =-5, 则a n =40-5n , T n =3(a n + a n +5)=15(11-2n),则|T n |取得最小值时的n 的值为5或6.本题考查了等差数列的通项公式以及性质.本题属于中等题.19. 18 解析:由直线l 1和直线l 2将圆分成长度相等的四段弧, r =22, 知:直线l 1和直线l 2之间的距离为4, 圆心到直线l 1、直线l 2的距离都为2, 可得a =22+1, b =1-22, 则a 2+b 2=18.本题综合考查了直线和圆的位置关系和点到直线的距离公式.本题属于中等题.20. 12解析:由|sinx|-kx =0有且只有三个根, 又0为其中一个根,即y =kx 与y =|sinx|相切, 设切点为(x 0, y 0), 由导数的几何意义和斜率公式得-cosx 0=y0x0,即得tanx 0=x 0,.本题综合考查了函数的图象变换, 导数的几何意义和斜率公式, 三角变换等内容.本题综合性强, 属于难题.21. 4+423 解析:将b =14a 代入y =11-a +21-b =11-a +8a 4a -1, 其中14<a<1,求导得y′=1(1-a )2-8(4a -1)2=0, 则a =-12+342, 代入y =11-a +21-b,得y 的最小值为4+423.本题综合考查了代数式变形,以及利用导数求最值.本题属于难题.23. 1+32解析:设AB =BC =2, 由题意知2c =2, 23-2=2a , 则c =1, a =3-1,则双曲线的离心率为1+32.本题考查了双曲线的定义及离心率求法.本题属于容易题.22.33 解析:设O 到平面VAB 的距离为h , 由V VOAB =V OVAB 得13×⎝⎛⎭⎫12×1×1×1=13×⎝⎛⎭⎫12×2×2×32×h , 则h =33.本题考查了等积法求点到平面的距离, 属于容易题.24. 8 解析:b 3=a 4-a 3=-1-1=-2, 由b 3-b 2=1, 则b 2=-3, 而b 2=a 3-a 2=-3, 得a 2=4.又b 2-b 1=1, 则b 1=-4, 而b 1=a 2-a 1=4-a 1=-4, 则a 1=8.本题考查了利用列举法借助递推公式求数列中的项, 属于容易题.25. ⎝⎛⎦⎤0,233 解析:设△ABC 中, a =|β|=1, A =60°, |α|=c , 由正弦定理得a sinA =c sinC , 则asinC sinA =c , 即c =233sinC.又0<sinC ≤1, 即c 的取值范围为⎝⎛⎦⎤0,233, 则α的模的取值范围为⎝⎛⎦⎤0,233.本题考查了利用正弦定理将向量问题转化成解三角形问题,属于中等题.26. 5 解析:题考查了导数的几何意义、直线方程, 属于中等题.27. 14 解析:因为圆心C 到直线l 的距离d =322>2,所以直线l 与圆C 相离.因为点P 在直线l 上, 两点A , B 在圆C 上, 所以|PA →|>0, |PB→|>0.因为PA →·PB →=|PA →|·|PB →|·cosθ≤0, 所以cosθ≤0, 所以PA →与PB→的夹角∠APB 为钝角或直角.因为圆C 上存在两点A , B , 使得PA →·PB →≤0, 所以只要PA , PB 分别与圆C 都相切时使得∠APB 为钝角或直角,此时点P 所在的线段长即为线段EF 长度的最大值.当PA , PB 分别与圆C 都相切时, 在Rt △CAP 中, 当∠APB 为直角时, ∠CPA =45°, CA =2, 则PC =22.所以,线段EF 长度的最大值为2PC2-d2=2(22)2-⎝⎛⎭⎫3222=14.本题考查了直线与圆的位置关系、向量数量积等内容.本题属于难题.28. ⎣⎡⎦⎤1e ,1 解析:① 当t ≥1时, f(t)=lnt , 即lnt ≤kt 对于t ∈[1, +∞)恒成立,所以k ≥lnt t , t ∈[1, +∞).令g(t)=lnt t , 则g′(t)=1-lntt2, 当t ∈(1, e)时, g′(t)>0,则g(t)=lnt t 在t ∈(1, e)时为增函数;当t ∈(e , +∞)时, g′(t)<0, 则g(t)=lntt在t ∈(e ,+∞)时为减函数.所以g(t)max =g(e)=1e , 所以k ≥1e.② 当0<t<1时, f(t)=-t(t -1)2,即-t(t -1)2≤kt 对于t ∈(0, 1)恒成立, 所以k ≥-(t -1)2, t ∈(0, 1), 所以k ≥0.③ 当t ≤0时, f(t)=t(t -1)2, 即t(t -1)2≤kt 对于t ∈(-∞, 0]恒成立, 所以k ≤(t -1)2, t ∈(-∞, 0], 所以k ≤1.综上, 1e≤k ≤ 1.本题考查了分段函数、利用导数求最值,以及恒成立问题等内容, 借助分类讨论使问题得到解决.本题属于难题.29. 3 解析:三棱锥MPAD 的底面MAD 的面积为3, 高PA =3, 则体积为3, 本题主要考查锥体的体积公式, 属于容易题.30. 7.5 解析:作出可行域发现最优解为⎝⎛⎭⎫54,5, 则目标函数z =2x +y 的最大值为2.5+5=7.5.本题考查线性规划解决最值问题, 属于容易题.31. 2 解析:由4x +2x -2=0, 得2x =1, 所以x =0, 则a -b =(0, 2), |a -b|=2.本题考查了指数方程, 向量数量积的坐标运算及模的求法.本题属于容易题.32. 117 解析:设等比数列{a n }的公比为q , 由a 1+a 2=49, a 3+a 4+a 5+a 6=40, 则49q 2+49q 4=40, 则q =3, a 1+a 2+a 3+a 4+a 5+a 6=49+40, a 1+a 2+a 3+(a 1+a 2+a 3)q 3=49+40, 得a 1+a 2+a 3=139, 则a7+a8+a99=19(a 1+a 2+a 3)q 6=19×139×93=117.本题考查了等比数列中的整体思想求和, 属于中等题.33. 7+434 解析:(解法1)设AB →=a , AD →=b , 则BC →=-34a +b , 设BP →=λBC →, 则AP→=AB →+BP →=⎝⎛⎭⎫1-34λa +λb .因为AP →=m a +n b , 所以有 1-34λ=m , λ=n , 消去λ得m +34n =1, 1m +1n =⎝⎛⎭⎫m +34n ⎝⎛⎭⎫1m +1n =1+3n 4m +m n +34≥74+23n 4m ·m n=7+434.(解法2)以A 为原点, AB 为x 轴, AD 为y 轴建系, 则A(0, 0), B(4, 0), C(1,4), 设BP →=λBC →=(-3λ, 4λ), 则AP →=AB →+BP →=(4-3λ, 4λ).因为AP →=mAB →+nAD→=(4m , 4n), 所以有 4-3λ=4m , 4λ=4n , 消去λ得m +34n =1(下同解法1).本题考查了平面向量的线性表示或坐标运算, 利用基本不等式, 运用“1”的代换求最值.本题属于中等题.34. ⎝⎛⎭⎫-203,4 解析:设P 点坐标为(x , y), ∵ PB =2PA , ∴ PB 2=4PA 2, 即(x -4)2+y 2-4=4(x 2+y 2-1), 整理得3x 2+3y 2+8x -16=0.(方法1)该方程表示一个圆,圆心⎝⎛⎭⎫-43,0, r =83.因为P 点有且只有两个, 所以直线和圆相交, 故⎪⎪⎪⎪-43-b 2<83, 解得b ∈⎝⎛⎭⎫-203,4.(方法2)因为P 在直线x +3y -b =0上, 所以3y =-x +b , 代入3x 2+3y 2+8x -16=0, 得4x 2+(8-2b)x +b 2-16=0.因为P 点有且只有两个, 所以方程有两个不相等的根, 即Δ>0, 整理得3b 2+8b -80<0,所以b ∈⎝⎛⎭⎫-203,4.本题考查了直线与圆的位置关系, 以及一元二次不等式的解法, 突出了方程思想和解析法,其中方法1是利用方程对应的几何图形解决问题;方法2用代数方法算方程根的个数.本题属于难题.35. [-3, e 2] 解析:① 当x =0时, 0≥0, 所以k ∈R .② 当x<0时, 2x 2-3x ≥kx , 同除以x , 即k ≥2x -3恒成立, 所以k ≥-3.③ 当x>0时, e x +e 2≥kx , 同除以x , 即k ≤ex +e2x 恒成立, 令g(x)=ex +e2x, 下面只需求出g(x)的最小值.g′(x)=(x -1)ex -e2x2, 令g′(x)=0, 即(x -1)e x -e 2=0.令h(x)=(x -1)e x -e 2, h ′(x)=xe x >0,所以h(x)在x ∈(0, +∞)上是单调递增函数.显然x =2是方程(x -1)e x -e 2=0的根, 由单调性可知x =2是唯一实数根.当x ∈(0, 2)时g(x)单调递减, 当x ∈(2, +∞)时, g(x)单调递增, 所以g(2)是函数g(x)的最小值, 且g(2)=e 2, 所以k ≤e 2.综上, 实数k 的取值范围是[-3, e 2].本题突出了函数思想和分类讨思想, 考查了利用导数求最值和恒成立问题.本题属于难题.。
2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
2023新高考一卷数学选择填空2023新高考一卷数学选择填空一、填空题(共10小题,每小题2分,共20分)1. 设函数f(x) = x^2 + 2x - 5,那么当x = _______ 时,f(x)的值最小。
2. 若f(x) = (x + 1)(x - 2),则f(3) - f(0)的值为 _______ 。
3. 集合A = {x | 0 ≤ x ≤ 5},集合B = {y | 1 ≤ y ≤ 4},则集合A ∩ B的元素个数是 _______ 。
4. 在平面直角坐标系中,曲线y = x^2 - 2x + 3与x轴交点的个数是_______ 。
5. 设函数g(x) = a^x,其中a > 0,那么当a > 1时,函数g(x)的图像在x轴上的点的个数是 _______ 。
6. 若|a - 1| = a - 1,则a的值是 _______ 。
7. 已知函数h(x) = ax^2 - bx + c,其中a > 0,对于任意的x,h(x)的值都大于0,那么a、b、c之间的关系是 _______ 。
8. m是一正整数,若a + b + c < d + e + f,则m = _______ 。
9. 已知点A(1, -3)、B(4, 2),则直线AB的斜率为 _______ 。
10. 设点C在数轴上,若|c - 2| > 7,则C的取值范围是 _______ 。
二、应用题(共5小题,每小题10分,共50分)11. 求解方程组:2x + y = 5x + 3y = 1112. 已知一个等边三角形的面积为9√3平方单位,求其外接圆的面积。
13. 若e^x = 2,f(x) = e^x + x^2,则f(√2)的值为 _______ 。
14. 数列{a_n}满足a_1 = 1,a_{n+1} = 2a_n + 1,求a_6的值。
15. 已知函数f(x) = |x - 2| 的图像为一条直线,求f(x)在(-∞, +∞)上的解析表达式。
2023高考数学填空题2023高考数学填空题第一章:数与式整数1.整数等于________的和减去________的和。
答案:0,0解析:整数的定义是包含正整数、负整数和0,因此整数可以看作是正整数的和减去负整数的和,加上0,所以答案是0。
2.表示负整数-8的绝对值为______。
答案:8解析:负整数的绝对值是对应正整数的数值,所以负8的绝对值是8。
有理数1.有理数的定义包括________和________。
答案:整数,分数解析:有理数包括整数和分数,整数可以是正整数、负整数和0。
2.-用分数表示为______。
答案:-3/2解析:-可以理解为-1和的和或差。
将转化为分数形式为1/2,所以-用分数表示为-3/2。
第二章:函数与方程一次函数1.一次函数的函数图像为直线,直线上任意两点的连线斜率为______。
答案:恒定不变解析:一次函数的函数图像为直线,直线上任意两点的连线斜率是恒定不变的。
2.函数y = 2x + 1的解为______。
答案:无数个解析:一次函数的解是指该函数对应的方程的解。
对于y = 2x + 1,由于存在无数个(x, y)点可以满足这个方程,所以解的个数是无限个。
二次函数1.二次函数的函数图像为______。
答案:抛物线解析:二次函数的函数图像为抛物线。
2.函数y = x^2 + 4x + 4的解为______。
答案:x = -2解析:解二次函数的方程可以使用因式分解、配方法或求根公式等方法。
对于y = x^2 + 4x + 4,可以对其进行因式分解得到(x + 2)(x + 2) = 0,即x + 2 = 0,解得x = -2。
08
二、填空题:本大题共5小题,每小题5分,共25分。
把答案填在对应题号后的横线上。
11.2
1
1lim
34
x x x x →-=
+-15
.
12.已知椭圆
222
2
1
x y a
b
+
=(a >b >0)的右焦点为F ,右准线为l,离心率e 5
过顶点A (0,b )
作AM ⊥l,垂足为M ,则直线FM 的斜率等于12
.
13.设函数y =f (x )存在反函数y =f -1(x ),且函数y =x -f (x )的图象过点(1,2). 则函数y =f -1(x )-x 的图象一定过点 (-1,2) .
14.已知函数f (x )(1).1
a a ≠-
(1)若a >1,则f(x)的定义域是3,
a ⎛
⎤
-∞ ⎥⎝
⎦
; (2)若f (x )在区间(]0,1上是减函数,则实数a 的取值范围是()(],01,3-∞⋃. 15.对有n (n ≥4)个元素的总体{1,2,3,…,n }进行抽样,先将总体分成两个子总体 {1,2,…,m }和{m +1、m +2,…,n }(m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本,用P i j 表示元素i 和f 同时出现在样本中的概率,则P 1n =
4()
m n m -;所有P if (1≤i <j ≤)n 的和等于 6 .
07
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.圆心为(11),且与直线4x y +=相切的圆的方程是 .
12.在A B C △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b ,c =,
则B = .
13.函数3
()12f x x x =-在区间[33]-,上的最小值是 .
14.设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅ ,
(1)b 的取值范围是 ;
(2)若()x y A B ∈ ,,且2x y +的最大值为9,则b 的值是 .
15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1 …… ……………………………………… 图1
06
二、填空题:本大题共5小题,每小题4分(第15小题每空2分),共20分.
把答案填在答题卡中对应题号后的横线上。
11. 若5)1-ax (的展开式中3
x 的系数是80-, 则实数a 的值是__________.
12. 已知⎪⎩
⎪
⎨⎧≤--≤+-≥022011
y x y x x 则22y x +的最小值是_____________.
13. 曲线x
y 1=
和2x y =在它们的交点处的两条切线与x 轴所围成的三角形的面积是
___________. 14. 若)0)(4
sin()4
sin()(≠-
++
=ab x b x a x f π
π
是偶函数, 则有序实数对),(b a 可以
是__________.(注: 写出你认为正确的一组数字即可)
15. 如图2, AB OM //, 点P 在由射线OM , 线段OB 及AB 的延长线围成的区域内 (不含边界)运动, 且OB y OA x OP +=,则x 的取值
范围是__________; 当2
1-=x 时, y 的取值范围是
__________.
05
二、填空题:本大题共5小题,每小题4分(第15小题每空2分),共20分,把答案填在
答题卡中对应题号后的横线上. 11.一工厂生产了某种产品16800件,它们来自甲.乙.丙3条生产线,为检查这批产品的
图2
O
A
B
P
M
质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品.
12.在(1+x )+(1+x )2+……+(1+x )6的展开式中,x 2项的系数是 .(用数
字作答)
13.已知直线ax +by +c =0与圆O :x 2+y 2
=1相交于A 、B 两点,且|AB|=3,则OB OA ⋅
= .
14.设函数f (x )的图象关于点(1,2)对称,且存在反函数f -1(x ),f (4)=0,则f -1(4)= . 15.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b]上
的面积,已知函数y =sinn x 在[0,
n
π
]上的面积为
n
2(n ∈N *),(i )y =sin3x 在[0,3
2π]
上的面积为 ;(ii )y =sin (3x -π)+1在[
3
π
,
3
4π]上的面积为 .
04
(13)已知向量),sin ,(cos θθ=a 向量)1,3(-=b ,则b a -2的最大值是 . (14)同时抛掷两枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上, ξ=0表示结果中没有正面向上,则Eξ= .
(15)若n
x
x x )1(3+
的展开式中的常数项为84,则n= .
(16)设F 是椭圆
16
7
2
2
=+
y
x
的右焦点,且椭圆上至少有21个不同的点),3,2,1(1 =i P
使 ,321FP FP FP 组成公差为d 的等差数列,则d 的取值范围为 .
03
二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上
13.9
2)
21(x
x -
的展开式中9
x 系数是
14.使1)(log 2+<-x x 成立的x 的取值范围是 15.如图,一个地区分为5个行政区域,现给地图
着色,要求相邻地区不得使用同一颜色,现有
4种颜色可供选择,则不同的着色方法共有
种(以数字作答)
16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中
点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)
① ② ③ ④ ⑤
02
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是
(16)已知2
21)(x
x
x f +=
,那么)4
1
()4()3
1()3()2
1()2()1(f f f f f f f ++++++=。