2018考研数学线代总结历年重点考点
- 格式:doc
- 大小:23.00 KB
- 文档页数:1
2018考研数学高数重要知识点2018考研数学高数重要知识点(一):第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算2018考研数学高数重要知识点(二):第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))2018考研数学高数重要知识点(三):第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理2018考研数学高数重要知识点(四):第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)2018考研数学高数重要知识点(五):第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法2018考研数学高数重要知识点(六):第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线2018考研数学高数重要知识点(七):第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)2018考研数学高数重要知识点(八):第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)2018考研数学高数重要知识点(九):第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
线性代数知识点总结汇总线性代数知识点总结行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=kn|A|(2)|AB|=|A|·|B|(3)|AT|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
线性代数知识点总结线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
2018考研数学线代:矩阵合同与相似的
典型题型分析详解
合同矩阵与相似矩阵是线性代数中的两个相近概念,它们既有一定的类似性和关联性,但二者又有区别,它们的含义和性质是不同的,有些同学对这两个概念弄不清楚,搞不明白它们之间到底有什么区别,在主流线性代数教材上也没有对它们进行比较分析,在做涉及到这两个概念的习题时也不知道从何下手,为了帮助这些2018考研的同学解决这个难题,本文对合同矩阵和相似矩阵的主要判别方法做一下总结,并对往年考研数学试题中的这类题做些分析。
一、矩阵合同与相似的主要判别方法
从上面的判别方法和典型例题看到,如果两个实对称矩阵相似,则它们的特征值完全相同(包括特征值的重数也相同),因此它们的正、负惯性指数也分别相等,从而这两个矩阵是合同的,但如果不是实对称矩阵,则相似矩阵不一定是合同矩阵;另外,合同矩阵不一定是相似矩阵,这些区别希望同学们理解。
考研数学线性代数知识点总结线性代数是考研数学中的重要组成部分,对于很多考生来说,它具有一定的难度。
但只要掌握了关键的知识点和方法,就能在考试中取得较好的成绩。
以下是对考研数学线性代数的知识点总结。
一、行列式行列式是线性代数中的基本概念之一。
1、二阶和三阶行列式的计算方法要熟练掌握,通过对角线法则可以轻松计算。
2、 n 阶行列式的定义和性质需要理解清楚。
例如,行列式的某一行(列)元素乘以同一数后,加到另一行(列)的对应元素上,行列式的值不变。
3、行列式按行(列)展开定理也是重点,它可以将高阶行列式转化为低阶行列式来计算。
二、矩阵矩阵是线性代数的核心内容。
1、矩阵的运算,包括加法、数乘、乘法以及矩阵的转置。
要特别注意矩阵乘法的规则和不满足交换律的特点。
2、逆矩阵的概念和求法至关重要。
判断矩阵是否可逆,以及通过伴随矩阵或初等变换来求逆矩阵。
3、矩阵的秩是一个关键概念,它反映了矩阵中线性无关的行(列)向量的个数。
4、分块矩阵的运算和应用也需要掌握,它可以简化一些复杂矩阵的计算。
三、向量向量是线性代数中的重要工具。
1、向量组的线性相关性是常见考点。
判断向量组是线性相关还是线性无关,以及理解相关和无关的性质。
2、向量组的秩与极大线性无关组要弄清楚它们的概念和求法。
3、向量空间的基、维数和坐标等概念也需要了解。
四、线性方程组线性方程组是线性代数的重点应用。
1、线性方程组有解的判定条件,通过系数矩阵的秩和增广矩阵的秩来判断。
2、齐次线性方程组基础解系的求法,要熟练掌握通过初等行变换将系数矩阵化为行最简形。
3、非齐次线性方程组的通解结构,由一个特解加上齐次线性方程组的通解组成。
五、矩阵的特征值和特征向量这部分内容在考研中经常出现。
1、特征值和特征向量的定义和计算方法,通过求解特征方程来得到特征值,再代入方程求解特征向量。
2、相似矩阵的概念和性质,相似矩阵具有相同的特征值。
3、矩阵可对角化的条件,以及如何将矩阵对角化。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==考研数学必考知识点总结我们在进行考研数学的复习准备时,要知道必考的知识点有哪些,才能更好的提高自己的复习效率。
小编为大家精心准备了考研数学重要知识点汇总,欢迎大家前来阅读。
考研数学重要知识点高等数学:构建模型系统规划高等数学是一门很抽象的学科,理解的时候,不要纠结于表面的概念,要在思考的时候,在脑中构建一个模型,这个很像编程时,思考内存模型。
或者构建自己的复习思路,当复习到高数后面的知识点事,要结合前面的知识点,最后把学到的知识整体联系起来。
数学的复习是一项长期工程,关键在于恒心和坚持,只有如此,才能取得最后的成功,因此,希望你能严格要求自己,能够保证每天都完成相应的学习任务。
在寒假结束的时候,如果你都在稳扎稳打的看书了,高等数学的复习应该已经告一段落,考研数学复习的任务也就完成了三分之一。
线性代数:夯实知识点少量做题线性代数在考研数学中难度较高等数学来说要简单得多,但是考试题通常需要结合很多知识点才能解答出来。
所以考生要抓住寒假这段时间踏踏实实看一遍线性代数的参考书,然后自己做出总结,并将各知识点串联在一起,结合少量习题理解知识点考核重点即可。
概率论与数理统计:对照往年考纲少量题型概率论与数理统计在考研数学初试中题型比较固定,一般情况下难度中等,所以,虽然寒假难免有游玩的计划,同学们在复习这门课程时完全不必太过焦急。
花一周左右的时间对照往年考纲,安心看参考书,做少量题型就可以对后期的复习有很大帮助。
考研数学高分刷题技巧(一)单选题单选题的解题方法总结一下,也就下面这几种。
1.代入法也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。
2.演算法它适用于题干中给出的条件是解析式子。
3.图形法它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。
考研数学线代 6 大部分重点及常考题型一、行列式行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。
如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。
所以要熟练掌握行列式常用的计算方法。
1.重点内容:行列式计算(1)降阶法这是计算行列式的主要方法,即用展开定理将行列式降阶。
但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
(2)特殊的行列式有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。
2.常见题型(1)数字型行列式的计算(2)抽象行列式的计算(3)含参数的行列式的计算(4)代数余子式的线性组合二、矩阵矩阵是线性代数的核心,是后续各章的基础。
矩阵的概念、运算及理论贯穿线性代数的始终。
这部分考点较多。
涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。
有些性质得证明必须能自己推导。
这几年还经常出现有关初等变换与初等矩阵的命题。
1.重点内容:(1)矩阵的运算(2)伴随矩阵(3)可逆矩阵(4)初等变换和初等矩阵(5)矩阵的秩2.常见题型:(1)计算方阵的幂(2)与伴随矩阵相关联的命题(3)有关初等变换的命题(4)有关逆矩阵的计算与证明(5)解矩阵方程(2013 年和 2014 年连续出大题,要重视)(6)矩阵秩的计算和证明三、向量向量部分既是重点又是难点,由于n 维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。
考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。
1.重点内容:(1)向量的线性表示线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。
2018考研数学三知识点总结考研数学三复习有哪些重要知识点需要看?结合大纲和历年真题来看,凯程网考研频道为2018考生总结分享考研数学三必看知识点,大家注意不要遗漏。
2018考研数学三知识点总结考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。
下面凯程网考研频道整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度,2018考生注意参考。
2018考研数学三考前必看核心知识点科目大纲章节知识点题型高等数学第一章函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题定积分的应用用定积分计算几何量第四章多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章无穷级数级数的基本性质及收敛的必要条件,正项级数的比较判别法、比值判别法和根式判别法,交错级数的莱布尼茨判别法数项级数敛散性的判别第六章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数第一章行列式行列式的运算计算抽象矩阵的行列式第二章矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的命题第三章向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示第四章线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题相似变换、相似矩阵的概念相似矩阵的判定及逆问题及性质第六章二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵概率论与数理统计第一章随机事件和概率概率的加、减、乘公式事件概率的计算第二章随机变量及其分布常见随机变量的分布及应用常见分布的逆问题第三章多维随机变量及其分布两个随机变量函数的分布二维随机变量函数的分布随机变量的独立性和不相关性随机变量的独立性第四章随机变量的数字特征随机变量的数学期望、方差、标准差及其性质,常用分布的数字特征有关数学期望与方差的计算第五章大数定律大数定理用大数定理估计、计算概率和中心极限定理第六章数理统计常用统计量的性质求统计量的数字特征的基本概念第七章/ /参数估计。
凯程考研辅导班,中国最权威的考研辅导机构
第 1 页 共 1 页 2018考研数学线代总结历年重点考点
考研数学中很重要的一个部分就是线性代数,那么这部分在考研数学中是如何考察的,哪些知识点是考研数学较多青睐的题目呢,下面中公考研为大家做了整理,供参考!
第一章行列式,这一块唯一的重点是行列式的计算,主要有数值型和抽象型两类行列式的计算,06、08、10、12年的真题中均有抽象行列式的计算问题,而且均是以填空题的形式出现的,个别的还出现在了大题的第一问中。
第二章矩阵,重点在矩阵的秩、逆、伴随、初等变换以及初等矩阵、分块矩阵。
这一章概念和运算较多,考点也较多,而且考点以填空和选择为主,当然也会结合其他章节的知识考大题。
06、09、11、12年均考了一个小题是有关初等变换与矩阵乘法之间的关系,10年考了一个小题关于矩阵的秩,08年考了一道抽象矩阵求逆的问题。
第三章向量,可以分为三个重点,第一个是向量组的线性表示,第二个是向量组的线性相关性,第三个是向量组的秩及极大线性无关组。
这一章无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是向量组的线性表示就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题。
第四章线性方程组,有三个重点。
第一个是线性方程组解的判定问题,第二个是解的性质问题,第三个是解的结构问题。
06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题。
第五章矩阵的特征值与特征向量,也是分三个重点。
第一个是特征值与特征向量的定义、性质以及求法。
第二个为矩阵的相似对角化问题,第三是实对称矩阵的性质以及正交相似对角化的问题。
实对称矩阵的性质与正交相似对角化问题可以说每年必考,12年、11年、10年09年都考了。
第六章二次型有两个重点。
第一个是化二次型为标准形,同学们必须掌握两种方法,第一个是配方法,第二个是正交变换法。
第二个重点是正定二次型的判定。
11年考的一个小题,用通过正交变换法将二次型化为标准形,12年、11年、10年均以大题的形式出现,但主要用的是正交变换化二次型为标准形。