四川省泸县第九中学1112年八年级上学期期中考试数学试题(无答案)
- 格式:doc
- 大小:285.00 KB
- 文档页数:4
泸县九中2012年秋期初二年级半期考试题数学试题总分:100分时间:90分钟命题人:吕世伦审题人:陈红霞注意事项:请把选择题答案填在第三页答题卡表格中。
试卷Ⅰ一、单选题:(30分,每小题3分)(请将答案填在试卷Ⅱ表格里)1、下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②③④B.①③④C.①②④D.②③④2、如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是()A.B.C.D.不能确定3、下列图案是轴对称图形的有()A.1个 B.2个 C.3个 D.4个4、如果三角形一边上的中点到其它两边的距离相等,那么这个三角形一定是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形5、长方形的长为(a-2),宽为(3a+1),那么它的面积是多少?().A.2 B.2C.2 D.26、某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去 B.带②去C.带③去 D.带①②③去7、下列说法正确的是()A.两个全等的三角形合在一起是轴对称图形B.两个轴对称的三角形一定是全等的C.线段不是轴对称图形D.三角形的一条高线就是它的对称轴8、到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点9、如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A.1︰1︰1B.1︰2︰3C.2︰3︰4D.3︰4︰510、如图,和均是等边三角形,分别与交于点,有如下结论:;;.其中,正确结论的个数是()A.3个 B.2个C.1个 D.0个泸县九中2012年秋期初二年级半期考试题数学试题试卷Ⅱ一大题答题卡:题号 1 2 3 4 5 6 7 8 9 10 选项二、填空题:(24分,每小题3分)11、点A(-3,4)和B(3,4)关于对称.12、计算:.13、(2a-b)(-2ab)=__________,(-a2)3(-a3)2=__________.14、如果,则.15、如图∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是_______________________.(填出你认为适当的一个条件即可)(14题图)(16题图)16、如图,l是四边形ABCD的对称轴,如果AD∥BC,则下列结论:①;②;③AB⊥BC;④.其中正确的结论是______ .(把你认为正确的结论的序号都填上)17、△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为12cm,AC=5cm,则△ABC的周长是___________.18、数的计算中有一些有趣的对称形式,如:12×231=132×21;仿照上面的形式填空,并判断等式是否成立:(1) 12×462=____×____ ( ) , (2) 18×891=____×____ ( ) .三、解答题:(46分,)19、计算:(6分)20、先化简,再求值:(8分),其中=-3.21、如图,在平面直角坐标系中,A(—1,5),B(—1,0),C(—4,3)。
四川省泸州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)在下列几何图形中,一定是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2015八上·惠州期末) 下列线段能构成三角形的是()A . 2,2,4B . 3,4,5C . 1,2,3D . 2,3,63. (2分) (2019八上·长安月考) 如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE,下列说法①△BDF≌△CDE;②△ABD和△ACD面积相等;③BF∥CE;④CE=BF,其中正确的有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2019八上·南岗期末) 在平面直角坐标系中,点关于轴对称的点的坐标是()A .B .C .D .5. (2分) (2018八上·达孜期中) 若一个多边行的边数增加,则它的外角和()A . 随着增加B . 保持不变C . 随着减少D . 无法确定6. (2分)(2020·陕西模拟) 如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD等于()A . 20°B . 25°C . 30°D . 32.5°7. (2分) (2019八上·重庆月考) 如图,在△ABC中,∠BAC.∠BCA的平分线交于点I,若∠ACB=75°,AI=BC -AC,则∠B的度数为()A . 30°B . 35°C . 40°D . 45°8. (2分) (2020八下·西安月考) 如图所示,点E,F分别在线段AB,AC上,CF与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACF()A . ∠B=∠CB . AE=AFC . BE=CFD . ∠AEB=∠AFC二、填空题 (共7题;共7分)9. (1分)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED 的周长是________ cm.10. (1分) (2017八上·西华期中) 已知一个等腰三角形的两边长分别为3和5,则这个三角形的周长为________.11. (1分) (2019八上·德城期中) 如图所示,在等边中,剪去后, ________.12. (1分)如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是________度.13. (1分) (2017八下·东台期中) 如图,直线l1、l2、l3分别过正方形ABCD的三个顶点A,B,D,且相互平行,若l1与l2的距离为1,l2与l3的距离为1,则该正方形的面积是________.14. (1分)(2019·浙江模拟) 如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=________度.15. (1分) (2019八下·长春期中) 在矩形ABCD中,由9个边长均为1的正方形组成的“L型”模板如图放置,此时量得CF=3,则BC边的长度为________.三、解答题 (共8题;共70分)16. (10分) (2018八上·巍山期中) 作图:(1)作出∠AOB的角平分线OC.(不写作法但要保留作图痕迹)(2)把下列图形补充成关于L对称的图形.(保留作图痕迹).17. (5分)(2018·洪泽模拟) 如图,点E为矩形ABCD外一点,AE = DE ,连接EB 、EC分别与AD相交于点F、 G .求证:△ABE≌ △DCE.18. (10分)(2020·安源模拟) 如图,△ABC内接于⊙O,AB=AC,D是AC弧的中点,在下列图中使用无刻度的直尺按要求画图.(1)在图1中,画出△ABC中AC边上的中线;(2)在图2中,画出△ABC中AB边上的中线.19. (5分) (2014·无锡) 如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.20. (10分) (2020八下·永春月考) 如图,矩形ABCD中,E是AD的中点,延长CE、BA交于点F ,连接AC、DF .(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD ,且BC=6时,求CD的长.21. (10分) (2018八上·射阳月考) 如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?22. (10分) (2019八上·浦东期末) 把两个含有45°角的直角三角板如图放置,点D在BC上,连接BE、AD,AD的延长线交BE于点F.(1)求证:AD=BE;(2)判断AF和BE的位置关系并说明理由.23. (10分) (2019八上·江汉期中) 已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y 轴负半轴和x轴正半轴上的点,连接AB,AC,BC.(1)如图1,若OB=1,OC = ,且A,B,C在同一条直线上,求t的值;(2)如图 2,当 t =1,∠ACO +∠ACB = 180°时,求 BC + OC -OB 的值;参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共7题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共70分)16-1、16-2、17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。
一、选择题1.在平面直角坐标系中,下列说法正确的是( ) A .点P (3,2)到x 轴的距离是3 B .若ab =0,则点P (a ,b )表示原点C .若A (2,﹣2)、B (2,2),则直线AB ∥x 轴D .第三象限内点的坐标,横纵坐标同号2.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)3.如图,△ABC 中,AD 垂直BC 于点D ,且AD=BC ,BC 上方有一动点P 满足12PBC ABC S S ∆∆=,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90°4.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(1,1),第二次接着运动到点(2,0),第三次接着运动到点(3,2),…,按这样的运动规律经过第2020次运动后,动点P 的坐标是( )A .(2020,1)B .(2020,0)C .(2020,2)D .(2020,2020) 5.估算65 )A .2B .3C .4D .56.已知实数x 、y 满足|x -8y -0,则以x 、y 的值为两边长的等腰三角形周长是( ) A .20或16B .20C .16D .187.如x 为实数,在“31)□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( ) A .31-B .31+C .33 D .13-8.下列说法正确的是( ) A .4的平方根是2 B .16的平方根是±4 C .-36的算术平方根是6D .25的平方根是±59.下列各组数中,是勾股数的一组是( ) A .4,5,6 B .5,7,2C .10,24,26D .12,13,1510.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有( )A .1 条B .2条C .3条D .4条11.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC .17cmD .94cm 12.一个长方体盒子长24cm ,宽10cm ,在这个盒子中水平放置一根木棒,那么这根木棒最长(不计木棒粗细)可以是( )A .10cmB .24cmC .26cmD .28cm二、填空题13.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.14.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 15.计算:()235328-+---=__________.16.已知a 、b 满足2|3|0a b -++=,则(a +b )2021的值为________. 17.已知2443y x x x =-+-+,当x 分别取1,2,3,,2020⋯时,所对应的y 值的总和是_________.18.将一根24cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱体中,如图,设筷子露出在杯子外面长为h cm ,则h 的最小值__,h 的最大值__.19.如图,将两个大小、形状完全相同的ABC 和A B C '''拼在一起,其中点A '与点A 重合,点C '落在边AB 上,连接B C ',若90ACB AC B ''∠=∠=︒,2AC BC ==,则B C '=________.20.如图,一架长2.5m 的梯子斜靠在垂直的墙AO 上,这时AO 为2m .如果梯子的顶端A 沿墙下滑0.5m ,那么梯子的底端B 向外移动_________m .三、解答题21.如图,在平面直角坐标系中,O 为坐标原点,A 、B 两点的坐标分别为A (m ,0)、B (0,n ),且|m ﹣n ﹣3|+(2n ﹣6)2=0,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒. (1)OA =________,OB =_________. (2)连接PB ,若△POB 的面积为3,求t 的值;(3)过P 作直线AB 的垂线,垂足为D ,直线PD 与y 轴交于点E ,在点P 运动的过程中,是否存在这样点P ,使△EOP ≌△AOB ,若存在,请直接写出t 的值;若不存在,请说明理由.22.如图,在边长为1的正方形组成的网格中,ABC ∆的顶点均在格点上,A (-3,2),B (-4,-3),C (﹣1,﹣1).(1)画出ABC ∆关于y 轴对称的图形A B C '''∆;(2)写出A '、B '、C '的坐标(直接写出答案)A ' ;B ' ;C ' ; (3)写出A B C '''∆的面积为 .(直接写出答案)(4)在y 轴上求作一点 P ,使得点P 到点A 与点C 的距离之和最小. 23.计算:3127222(21)4-+--+- 24.(1)计算:81812+⨯; (2)如图,已知//a b ,把三角板的直角顶点放在直线b 上.若140∠=︒,求2∠的度数.25.阅读材料,并解决问题. 有趣的勾股数定义:勾股数又名毕氏三元数.凡是可以构成一个直角三角形三边长的一组正整数,称之为勾股数.一般地,若三角形三边长a ,b ,c 都是正整数,且满足222=a b c +,那么数组()a b c ,,称为勾股数.公元263年魏朝刘徽著《九章算术注》,文中除提到勾股数()3,4,5以外,还提到()5,12,13,()7,24,25,()8,15,17,()20,21,29等勾股数.数学小组的同学研究勾股数时发现:设m ,n 是两个正整数,且m n >,三角形三边长a ,b ,c 都是正整数.下表中的a ,b ,c 可以组成一些有规律的勾股数()a b c ,,.通过观察这个表格中的数据,小明发现勾股数a b c ,,可以写成()2222mn b m n -+,,.解答下列问题:(1)表中b 可以用m ,n 的代数式表示为_____________. (2)若4m =,2n =,则勾股数()a b c ,,为______________. (3)小明通过研究表中数据发现:若1c b -=,则勾股数的形式可表述为()211k b b ++,,(k 为正整数),请你通过计算求此时的b .(用含k 的代数式表示b )26.现代电视屏幕尺寸的设计,主要追求以下目标:一是更符合人体工程学要求(宽与长的比接近与0.618);二是设计适当的长宽比使屏幕的面积尽可能大现行的电视机屏幕有“宽屏”和“普屏”两种制式,宽屏的长宽比为16:9;普屏的长宽比为4:3.(1)哪种屏幕更适合人体工程学要求?请说明理由.(2)一般地,电视屏幕的“几寸”指的是这个屏幕的长方形的对角线长有多少英寸,1英寸2.54cm=,小明家想买80寸的宽屏..电视机(边框宽都为1cm),并嵌入到墙中.则需要≈,预留的长方形位置的长、宽各多少cm33718.4≈)33.7 5.8(3)在相同尺寸的电视机屏幕中,宽屏的屏幕面积大还是普屏的屏幕面积大?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据点的坐标的几何意义逐一进行判断即可得答案.【详解】A.点P(3,2)到x轴的距离是2,故本选项不符合题意.B.若ab=0,则点P(a,b)表示原点或坐标轴上的点,故本选项不符合题意.C.若A(2,﹣2)、B(2,2),则直线AB∥y轴,故本选项不符合题意.D.第三象限内点的坐标,横纵坐标都是负号,故本选项符合题意.故选:D.【点睛】本题考查点的坐标的几何意义,由坐标平面内的一点P分别向x轴,y轴作垂线,垂足M,N在x轴,y轴上的坐标分别为x和y,我们则说P点的横坐标为x,纵坐标是y,记作P(x,y);熟练掌握相关定义是解题关键.2.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),A6(0,4)…,所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A2020(0,-2),故选:B【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.3.B解析:B【分析】根据12PBC ABCS S∆∆=得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵12PBC ABCS S∆∆=,∴点P到BC的距离=12AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.4.B解析:B【分析】分析图象发现点P的运动每4次位置循环一次,每循环一次向右移动4个单位,根据这个规律先确定2020次运动是多少个循环,然后根据循环次数确定点P的位置.【详解】分析图象可以发现,点P的运动每4次位置循环一次,每循环一次向右移动4个单位.∴2020=505⨯4,当第505次循环结束时,点P的位置在(2020,0),故答案为:B.【点睛】本题主要考查了平面直角坐标系中点的运动规律问题,分析图象得出规律是解题的关键. 5.B解析:B【分析】-1,最后两边都加上6,即可求出它的整数部分.【详解】解:253<<,∴-<-,32∴<<,364∴63和4之间,它的整数部分是3,故选:B.【点睛】本题考查了估算无理数的大小,主要考查学生的计算能力,属于基础题,能够确定带根号无理数的范围是解题的关键.6.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.7.C解析:C 【分析】根据题意,添上一种运算符号后逐一判断即可. 【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意. 故选:C . 【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.8.D解析:D 【分析】根据平方根和算术平方根的定义判断即可. 【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意; C. -36没有算术平方根,故错误,不符合题意; D. 25的平方根是±5,故正确,符合题意; 故选:D . 【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.9.C解析:C 【分析】根据勾股定理的逆定理逐项分析解题即可. 【详解】 解:A.2224564,5,6∴不是勾股数,故A 不符合题意;B.222257+≠5,7,2∴不是勾股数,故B 不符合题意;C. 222102426+=10,24,26∴是勾股数,故C 符合题意;D. 222121315+≠12,13,15∴不是勾股数,故D 不符合题意,故选:C . 【点睛】本题考查勾股定理的逆定理,是重要考点,难度较易,掌握相关知识是解题关键.10.B解析:B 【分析】由勾股定理求出a 、b 、c 、d ,即可得出结果. 【详解】∵=5=,=d=2, ∴长度是无理数的线段有2条, 故选B . 【点睛】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.11.A解析:A 【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE 的长求出,再根据勾股定理列方程求解,即可得到CD 的长. 【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =,,根据折叠的性质可知:AE=AB=15cm , ∵AC=12cm , ∴CE=AE-AC=3cm , 设CD=xcm ,则BD=9-x=DE , 在Rt △CDE 中,根据勾股定理得 CD 2+CE 2=DE 2,即x 2+32=(9-x )2, 解得x=4, 即CD 长为4cm . 故选:A . 【点睛】本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.12.C解析:C【分析】根据题意可知木棒最长是底面长方形的对角线的长,利用勾股定理求解即可.【详解】解:长方体的底面是长方形,水平放置木棒,当木棒为该正方形的对角线时木棒最长,26=,则最长木棒长为26cm ,故选:C .【点睛】本题考查立体图形、勾股定理,由题意得出木棒最长是底面长方形的对角线的长是解答的关键.二、填空题13.5【分析】作BD ⊥x 轴于DCE ⊥x 轴于E 则∠ADB=∠AEC=根据点B(-11)得到BD=1CE=2OA=1OD=1OE=2求得AD=2AE=1根据代入数值计算即可【详解】作BD ⊥x 轴于DCE ⊥x 轴解析:5【分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,根据点1,0A 、B(-1,1)、()2,2C ,得到BD=1,CE=2,OA=1,OD=1,OE=2,求得AD=2,AE=1,根据BDEC ABD A ABC CE SS S S =--△梯形代入数值计算即可.【详解】 作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,∵点1,0A 、B(-1,1)、()2,2C ,∴BD=1,CE=2,OA=1,OD=1,OE=2,∴AD=2,AE=1,∴BDEC ABD A ABC CE S S S S =--△梯形 =11()2212B AD DC B ED CE D AE E -⋅-⋅+⋅ 11(12)321221122=--+⨯⨯⨯⨯⨯ =2.5,故答案为:2.5..【点睛】此题考查直角坐标系中图形面积计算,点到坐标轴的距离,理解点到坐标轴的距离得到线段长度由此利用公式计算面积是解题的关键.14.(-5-1)【分析】考查平面直角坐标系点的对称性质【详解】解:点A (mn)关于y轴对称点的坐标A′(-mn)∴点A(5-1)关于y轴对称的点的坐标为(-5-1)故答案为:(-5-1)【点睛】此题考查解析:(-5,-1).【分析】考查平面直角坐标系点的对称性质.【详解】解:点A(m,n)关于y轴对称点的坐标A′(-m,n)∴点A(5,-1)关于y轴对称的点的坐标为(-5,-1).故答案为:(-5,-1).【点睛】此题考查平面直角坐标系点对称的应用.15.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:5【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】()23--5328()--=3522=352+2=75【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.16.-1【分析】要使只有当和时成立即此时解出a和b代入中求出结果即可【详解】由题意可知∴∴故答案为:-1【点睛】本题考查非负数的性质几个非负数的和为0时那么这几个非负数都为0解析:-1【分析】30b +=0=和30b +=时成立.即此时20a -=,30b +=,解出a 和b ,代入2021()a b +中求出结果即可.【详解】由题意可知20a -=,30b +=,∴23a b ==-,.∴20212021()(23)1a b +=-=-.故答案为:-1.【点睛】本题考查非负数的性质,几个非负数的和为0时,那么这几个非负数都为0. 17.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.18.11cm12cm 【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大当筷子与杯底及杯高构成直角三角形时h 最小利用勾股定理计算即可【详解】解:当筷子与杯底垂直时h 最大h 最大=24﹣12=12(cm解析:11cm 12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大,当筷子与杯底及杯高构成直角三角形时h 最小,利用勾股定理计算即可.【详解】解:当筷子与杯底垂直时h 最大,h 最大=24﹣12=12(cm ).当筷子与杯底及杯高构成直角三角形时h 最小,此时,在杯子内的长度=13(cm ),故h =24﹣13=11(cm ).故h 的取值范围是11≤h ≤12cm .故答案为:11cm ;12cm .【点睛】此题考查勾股定理的实际应用,正确理解题意、掌握勾股定理的计算公式是解题的关键. 19.【分析】先运用勾股定理求出的长根据等腰直角三角形的性质证得∠=90°最后再利用勾股定理解答即可【详解】解:∵和大小形状完全相同∴≌∵∴和为等腰直角三角形∴∴∴和为等腰直角三角形∴∠CAB=∠C`AB解析:【分析】先运用勾股定理求出AB '的长,根据等腰直角三角形的性质证得∠CAB '=90°,最后再利用勾股定理解答即可.【详解】解:∵ABC 和A B C '''大小、形状完全相同∴ABC ≌A B C '''∵90ACB AC B ''∠=∠=︒,2AC BC ==∴ABC 和A B C '''为等腰直角三角形 ∴'''2AC B C ==,∴AB '=== ∴ABC 和A B C '''为等腰直角三角形∴∠CAB=∠C`AB`=45°,即∠CAB '=90°∴CB '===故答案为【点睛】本题考查了全等三角形的判定和性质、勾股定理等知识,掌握大小、形状完全相同的三角形是全等三角形是解答本题的关键.20.5【分析】由题意先根据勾股定理求出OB 的长再根据梯子的长度不变求出OD 的长根据BD=OD-OB 即可得出结论【详解】解:∵Rt △OAB 中AB=25mAO=2m ∴;同理Rt △OCD 中∵CD=25mOC=解析:5【分析】由题意先根据勾股定理求出OB 的长,再根据梯子的长度不变求出OD 的长,根据BD=OD-OB即可得出结论.【详解】解:∵Rt△OAB中,AB=2.5m,AO=2m,∴1.5OB m;同理,Rt△OCD中,∵CD=2.5m,OC=2-0.5=1.5m,∴2OD m,∴BD=OD-OB=2-1.5=0.5(m).答:梯子底端B向外移了0.5米.故答案为:0.5.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,解题的关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.三、解答题21.(1)6,3;(2)t=4或8;(3)当t=3或9时,△POQ与△AOB全等【分析】(1)根据非负数的性质列出方程,解方程分别求出m、n;(2)分点P在线段AO上、点P在线段AO的延长线上两种情况,根据三角形面积公式计算;(3)分点P在线段AO上、点P在线段AO的延长线上两种情况,根据全等三角形的性质列出方程,解方程得到答案.【详解】解:(1)∵|m﹣n﹣3|+(2n﹣6)2=0,|m﹣n﹣3|≥0,(2n﹣6)2≥0,∴|m﹣n﹣3|=0,(2n﹣6)2=0,∴m﹣n﹣3=0,2n﹣6=0,解得,m=6,n=3,∴OA=6,OB=3,故答案为:6;3;(2)当点P在线段AO上时,OP=6﹣t,则12×(6﹣t)×3=3,解得,t=4,当点P在线段AO的延长线上时,OP=t﹣6,则12×(t﹣6)×3=3,解得,t=8,∴当t=4或8时,△POB的面积等于3;(3)如图1,当点P在线段AO上时,∵△POE≌△BOA,∴OP=OB,即6﹣t=3,解得,t=3,如图2,当点P在线段AO的延长线上时,∵△POE≌△BOA,∴OP=OB,即t﹣6=3,解得,t=9,∴当t=3或9时,△POQ与△AOB全等.【点睛】本题主要考查了坐标与图形的性质、绝对值的非负性,准确计算是解题的关键.22.(1)作图见解析;(2)(3,2),(4,-3),(1,-1);(3)6.5;(4)作图见解析.【分析】(1)根据轴对称的性质,对应点之间的连线被对称轴垂直平分,描出对应点,依次连接即可;(2)根据点的位置写出坐标即可;(3)用矩形面积减去三个小三角形面积即可;(4)连接AC′交y轴于点P,连接PC,根据轴对称的性质,对应线段相等和两点之间线段最短点P即为所求.【详解】解:(1)如图,△A'B'C'即为所求.(2)A′(3,2),B′(4,-3),C′(1,-1).故答案为(3,2),(4,-3),(1,-1);(3)113515223 6.522A B CS'''∆=⨯-⨯⨯-⨯⨯⨯=;(4)如图,点P即为所求.【点睛】本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.5 2 -【分析】先依据相关定义分别计算,再将结果相加即可.【详解】解:原式=132222 2-+-+=5 2 -【点睛】本题考查实数的混合运算.主要考查立方根、算术平方根、化简绝对值和二次根式的乘法.熟记相关定义,分别正确计算是解题关键.24.(1)1;(2)50°【分析】(1)先化成最简二次根式,再利用二次根式混合运算的法则计算即可;(2)先利用平角的定义求得∠3的度数,再利用平行线的性质即可求解.【详解】解:(1)81812322221 52522=⨯==.(2)∵140︒∠=,∴3180190180409050︒︒︒︒︒︒∠=-∠-=--=,∵//a b ,∴2350︒∠=∠=.【点睛】本题考查了二次根式的混合运算,平行线的性质,熟记性质并准确识图是解题的关键. 25.(1)2b mn =;(2)(12,16,20);(3)222b k k =+【分析】(1)根据表格中提供的数据可得答案;(2)把4m =,2n =代入()22222m n mn m n -+,,即可求解;(3)根据勾股定理求解即可;【详解】(1)∵4=2×2×1,12=2×3×2,8=2×4×1,24=2×4×3,…,∴2b mn =,故答案为:2b mn =;(2)当4m =,2n =时, a=m 2-n 2=42-22=12,2b mn ==2×4×2=16,c=m 2+n 2=42+22=20,∴勾股数()a b c ,,为(12,16,20),故答案为:(12,16,20);(3)根据题意,得222(21)(1)k b b ++=+,∴22244121k k b b b +++=++,解得222b k k =+.【点睛】本题考查了数字类规律探究,以及勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.26.(1)宽屏更适合人体工程学要求,理由见解析;(2)需要预留的长方形位置的长为178cm ,宽为101cm ;(3)普屏的屏幕面积大,理由见解析【分析】(1)根据人体工程学要求求出宽与长的比与0.618比较大小即可(2)根据勾股定理先求出80寸的宽屏..电视机的长和宽,再分别加2即可 (3)分别求出宽屏的屏幕面积和普屏的屏幕面积比较大小即可【详解】解:(1)宽屏更适合人体工程学要求,理由如下:∵宽屏的长宽比为16:9;∴宽屏的宽与长的比为9:16=0.5625;∴0.5625-0.618=-0.0555∵普屏的长宽比为4:3.∴普屏的宽与长的比为3:4=0.75∴0.75-0.618=0.132∴宽屏更适合人体工程学要求(2)∵宽屏的长宽比为16:9;∴设长为16xcm ,则宽为9xcm(x>0),∵电视机屏幕为80寸,∴(16x )2+(9x )2=(80 2.54)⨯2, ∴18.4x=80 2.54≈⨯∴x 11≈,∴长为16x=1611=176cm ⨯,宽为9x=911=99cm ⨯∴需要预留的长方形位置的长为:176+2=178cm,宽为:99+2=101cm(3)普屏的屏幕面积大,理由如下:设相同尺寸为a 寸,宽屏电视的长宽分别为16m 和9m ,普屏电视的长宽分别为4n 和3n∴222(16m)(9m)(2.54a)+=,222(4n)(3n)(2.54a)+= ∴2222.54a m 337=,222 2.54a n =25 ∴宽屏的屏幕面积=22214416m 9m 144m =2.54a 337⨯=⨯ 普屏的屏幕面积=222124n 3n 12n =2.54a 25⨯=⨯ ∵1441233725< ∴普屏的屏幕面积大【点睛】本题考查了勾股定理的应用以及长方形的面积,读懂题意,根据已知条件得出所需内容是解题的关键。
四川省泸州市八年级数学上册期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)若定义变换:,,如:,,则=()A .B .C .D .2. (2分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为()A . 20kgB . 25 kgC . 28 kgD . 30 kg3. (2分)在用图象表示变量之间的关系时,下列说法最恰当的是()A . 用水平方向的数轴上的点表示相应的函数值B . 用竖直方向的数轴上的点表示自变量C . 用横轴上的点表示自变量D . 用横轴或纵轴上的点表示自变量4. (2分)(2017·花都模拟) 若函数y=kx﹣3的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定5. (2分) (2017八下·仙游期中) 下列y关于x的函数中,是正比例函数的为()A . y=x2B . y=C . y=D . y=6. (2分)点A(﹣5,4),B在平面直角坐标系中,且AB∥y轴,若△ABO的面积为5,则点B的坐标为()A . (﹣5,2)B . (﹣5,6)C . (﹣5,﹣6)D . (﹣5,6)或(﹣5,2)7. (2分) (2019八上·宜兴月考) 一次函数 y = mx + 的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为()A . -1B . 3C . 1D . - 1 或 38. (2分) (2011七下·广东竞赛) 点P位于x轴下方,距离x轴5个单位,位于y轴右方,距离y轴3个单位,那么P点的坐标是()A . (5,-3)B . (3,-5)C . (-5,3)D . (-3,5)9. (2分)自行车以10千米/小时的速度行驶,它所行走的路程S(千米)与所用的时间t(时)之间的关系为()A . S=10+tB .C . S=D . S=10t10. (2分)(2016·藁城模拟) 在平面直角坐标系中,将点A(m﹣1,n+2)先向右平移3个单位,再向上平移2个单位,得到点A′,若点A′位于第二象限,则m、n的取值范围分别是()A . m<0,n>0B . m<1,n>﹣2C . m<0,n<﹣2D . m<﹣2,m>﹣411. (2分) (2018九下·吉林模拟) 如图,在第一象限内,点P(2,3)、M(a,2)是双曲线上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为()A . 1.B . 3.C . 2.D . .12. (2分)(2018·遵义模拟) 今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A . 小明中途休息用了20分钟B . 小明休息前爬上的速度为每分钟70米C . 小明在上述过程中所走的路程为6600米D . 小明休息前爬山的平均速度大于休息后爬山的平均速度二、填空题 (共6题;共6分)13. (1分)(2012·朝阳) 函数中,自变量x的取值范围是________.14. (1分) (2017八上·灌云月考) 若函数y= -2xm+2是正比例函数,则m的值是________.15. (1分)(2019·武昌模拟) 若直线与函数的图象有四个公共点,则m的取值范围为________.16. (1分) (2016七上·龙口期末) 点P(x,y)是第一象限的一个动点,且满足x+y=10,点A(8,0).若△OPA的面积为S,则S关于x的函数解析式为________.17. (1分) (2019七下·南通月考) 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→,…,根据这个规律,第2019个点的坐标为________.18. (1分)(2017·兰州模拟) 在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…按这样的规律进行下去,第2017个正方形的面积为________.三、解答题 (共8题;共65分)19. (15分)已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求:(1) a的值(2) k,b的值(3)这两个函数图象与y轴所围成的三角形的面积。
初中数学试卷金戈铁骑整理制作四川省泸州市泸县五镇2012-2013学年八年级(上)期中联考数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)(2009•荆门)|﹣9|的平方根是()A.81 B.±3 C.3D.﹣3考点:平方根;绝对值.分析:先化简绝对值,再利用平方根的定义求出即可解决问题.解答:解:∵|﹣9|=9,∴|﹣9|的平方根是±3.故选B.点评:本题主要考查了平方根概念的运用.本题要注意的是|﹣9|=9,即求|﹣9|的平方根就是求9的平方根.2.(3分)下列式子成立的是()A.B.C.D.考点:立方根;算术平方根.分析:根据算术平方根的定义对A、B进行判断;根据立方根的定义对C、D进行判断.解答:解:A、==2,所以A选项错误;B、=5,所以B选项错误;C、=﹣,所以C选项错误;D、=﹣8,所以D选项正确.故选D.点评:本题考查了立方根的定义:若一个数的立方等于a,那么这个数叫a的立方根,记作.也考查了算术平方根.3.(3分)(2010•鄂尔多斯)如图,数轴上的点P表示的数可能是()A.B.﹣C.﹣3.8 D.﹣考点:估算无理数的大小;实数与数轴.分析:A、B、C、D根据数轴所表示的数在﹣2和﹣3之间,然后结合选择项分析即可求解.解答:解:A、为正数,不符合题意,故选项错误;B、∵﹣<﹣<﹣,∴﹣符合题意,故选项正确;C、﹣3.8在﹣3的左边,不符合题意,故选项错误;D、﹣<﹣,那么﹣在﹣3的左边,不符合题意,故选项错误;故选B.点评:此题主要考查了利用数轴估算无理数的大小,解决本题的关键是得到所求的点的大致的有理数的范围.4.(3分)(2009•鸡西)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP由作法得△OCP≌△ODP的根据是()A.S AS B.A SA C.A AS D.S SS考点:全等三角形的判定.专题:作图题;压轴题.分析:认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,于是两个三角形符合SSS判定方法要求的条件,答案可得.解答:解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;OP公共.故得△OCP≌△ODP的根据是SSS.故选D.点评:考查了三边对应相等的两个三角形全等(SSS)这一判定定理.做题时从作法中找有用的已知条件是正确解答本题的关键.5.(3分)如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5B.4C.3D.2考点:平行线的性质;三角形的外角性质;角平分线的性质;直角三角形斜边上的中线.专题:计算题.分析:过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.解答:解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选B.点评:本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.6.(3分)若有意义,则x的取值范围是()A.x>2 B.x≥2 C.x≥0 D.x为任何实数考点:二次根式有意义的条件.分析:根据二次根式有意义的条件可得x﹣2≥0,再解不等式即可.解答:解:由题意得:x﹣2≥0,解得:x≥2,故选:B.点评:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.7.(3分)(2011•广安)下列几何图形:①角;②平行四边形;③扇形;④正方形,其中轴对称图形是()A.①②③B.②③④C.①③④D.①②③④考点:轴对称图形.专题:应用题.分析:根据轴对称图形的定义及性质,对四个几何图形分别判断,可得出正确选项.解答:解:①角是轴对称图形,其对称轴是角的平分线所在的直线;②平行四边形不是轴对称图形;③扇形是轴对称图形,过圆心和弧中点的直线是其对称轴;④正方形是轴对称图形,过对边中点或对角线的直线是其对称轴.故选C.点评:本题考查了轴对称图形,掌握轴对称的定义及性质,能够熟练且正确的找出常见图形的对称轴.8.(3分)下列说法中不正确的是()A.有一腰长相等的两个等腰三角形全等B.有一边对应相等的两个等边三角形全等C.斜边相等、一条直角边也相等的两个直角三角形全等D.斜边相等的两个等腰直角三角形全等考点:全等三角形的判定;三角形内角和定理;等腰三角形的性质;等边三角形的性质.专题:推理填空题.分析:A、根据已知能得出AB=DE,AC=DF,不能判断两三角形全等;B、根据等边三角形性质和SSS能推出两三角形全等;根据HL能推出两三角形全等,即可判断C;根据等腰直角三角形性质推出∠A=∠D,根据AAS判断即可.解答:解:A、AB=DE,AB=AC,DF=DE,∴AB=DE,AC=DF,但是找不出第三个相等的条件,即两三角形不全等,故本选项正确;B、∵AB=AC=BC,DE=DF=EF,AB=DE,∴AB=DE,AC=DF,BC=EF,∴△ABC和△DEF全等,故本选项错误;C、根据HL推出两直角三角形全等,故本选项错误;D、∵AC=BC,∠C=90°,∴∠A=∠B=45°,同理∠D=45°,即∠A=∠D,∠C=∠E=90°,AB=DF,∴△ACB≌△DEF(AAS),故本选项错误;故选A.点评:本题考查了全等三角形的判定,等腰三角形性质,等边三角形性质等知识点的应用,能熟练地运用性质进行推理是解此题的关键,题型较好,是一道比较容易出错的题目.9.(3分)在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A ,B的距离之和最小,现有如下四种方案,其中正确的是()A.B.C.D.考点:轴对称-最短路线问题;坐标与图形性质.分析:根据在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.解答:解:若在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,则可以过点A作关于y轴的对称点,再连接B和作出的对称点连线和y轴的交点即为所求,由给出的四个选项可知选项C满足条件.故选C.点评:本题考查了轴对称﹣最短路线问题,在一条直线上找一点使它到直线同旁的两个点的距离之和最小,所找的点应是其中已知一点关于这条直线的对称点与已知另一点的交点.10.(3分)点P(1,2)关于y轴对称点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)考点:关于x轴、y轴对称的点的坐标.分析:平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.解答:解:∵点P(1,2)关于y轴对称,∴点P(1,2)关于y轴对称的点的坐标是(﹣1,2).故选A.点评:本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.二、填空题:(每小题3分,共18分)11.(3分)的相反数为﹣.化简=﹣.考点:实数的性质.分析:根据只有符号不同的两个数叫做互为相反数解答;根据负数的绝对值等于它的相反数解答.解答:解:﹣的相反数是﹣;|﹣|=﹣.故答案为:﹣;﹣.点评:本题考查了实数的性质,主要利用了相反数的定义与绝对值的性质,熟记概念与性质是解题的关键.12.(3分)已知,则a﹣b的立方根是﹣1.考点:立方根;非负数的性质:偶次方;非负数的性质:算术平方根.分析:根据已知得出方程a﹣1=0,b﹣2=0,求出a b的值,即可求出答案.解答:解:∵,∴a﹣1=0,b﹣2=0,a=1,b=2,∴a﹣b=﹣1,∴a﹣b的立方根是﹣1,故答案为:﹣1.点评:本题考查了算术平方根,偶次方,立方根的应用,关键是求出a b的值.13.(3分)已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为60或120°.考点:等腰三角形的性质.分析:等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.解答:解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.点评:此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.14.(3分)如图,在等边△ABC中,点D、E分别在BC、AB上,AD与CE交于F,且BD=AE.则∠DFC=60度.考点:等边三角形的性质;全等三角形的判定与性质.专题:探究型.分析:因为△ABC为等边三角形,所以∠BAC=∠B=∠ACB=60°,AB=BC=AC,根据SAS 易证△ABD≌△CAE,则∠BAD=∠ACE,再根据三角形内角和定理求得∠DFC的度数.解答:解:∵△ABC为等边三角形,∴∠BAC=∠B=∠ACB=60°,∴AB=BC=AC.在△ABD和△CAE中,∵BD=AE,∠ABD=∠CAE,AB=AC,∴△ABD≌△CAE,∴∠BAD=∠ACE,又∵∠BAD+∠DAC=∠BAC=60°,∴∠ACE+∠DAC=60°,∵∠ACE+∠DAC+∠AFC=180°,∴∠AFC=120°,∵∠AFC+∠DFC=180°,∴∠DFC=60°.故答案为:60.点评:本题考查了全等三角形的判定、等边三角形性质、三角形内角和定理及外角的性质,综合性强,考查学生综合运用数学知识的能力.15.(3分)如下图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB、AC于点M、N.则△BCM的周长为14.考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质,得AM=CM,则△BCM的周长即为AB+BC的值.解答:解:∵AC的垂直平分线MN交AB、AC于点M、N,∴AM=CM.∴△BCM的周长=BC+BM+CM=BC+AB=14.点评:此题主要是线段垂直平分线的性质的运用.16.(3分)(2012•武鸣县一模)如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为P n,则P4﹣P3=;P n﹣P n﹣1=.考点:等边三角形的性质.专题:计算题;压轴题;规律型.分析:根据等边三角形的性质(三边相等)求出等边三角形的周长P1,P2,P3,P4,根据周长相减的结果能找到规律即可求出答案.解答:解:P1=1+1+1=3,P2=1+1+=,P3=1+1+×3=,P4=1+1+×2+×3=,…∴p3﹣p2=﹣==;P4﹣P3=﹣==,则P n﹣P n﹣1=,故答案为:,点评:本题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好.三.解答题17.(7分)已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.考点:全等三角形的判定与性质.专题:证明题.分析:根据全等三角形的判定定理SAS推知△ADF≌△CBE;然后由全等三角形的对应边相等知,AF=CE,所以AF﹣EF=CE﹣EF,即AE=CF.解答:证明:∵AD∥BC(已知),∴∠A=∠C(两直线平行,内错角相等);在△ADF和△CBE中,,∴△ADF≌△CBE (ASA),∴AF=CE(全等三角形的对应边相等),∴AF﹣EF=CE﹣EF,即AE=CF.点评:本题主要考查了全等三角形的判定与性质.普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.做题时要根据已知条件的具体位置来选择方法.18.(7分)如图,在平面直角坐标系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1、B1、C1的坐标.考点:作图-轴对称变换.专题:作图题.分析:(1)利用轴对称性质,作出A、B、C关于y轴的对称点,A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到关于y轴对称的△A1B1C1;(2)观察图形即可得出点A1、B1、C1的坐标.解答:解:(1)所作图形如下所示:(2)点A1、B1、C1的坐标分别为:(1,5),(1,0),(4,3).点评:本题考查了轴对称变换作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.19.(8分)如图:△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,求AD的长.考点:全等三角形的判定与性质;等边三角形的性质;含30度角的直角三角形.分析:由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=6,AD=BE.则易求.解答:解:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,∴△ABE≌△CAD;∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,则∠PBQ=90°﹣60°=30°;∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=7.点评:本题主要考查全等三角形的判定与性质及等边三角形的性质及含30°的角的直角三角形的性质;巧妙借助三角形全等和直角三角形中30°的性质求解是正确解答本题的关键.20.(5分)若x,y都是实数,且满足y<,化简:.考点:二次根式有意义的条件.专题:计算题.分析:要化简,先确定题中各式在实数范围内有意义,应把握好以下几点:一是分母不能为零;二是二次根号下为非负数.解答:解:依题意,有,得x=1,此时y<,所以1﹣y>>0,所以=﹣1.点评:正数的绝对值是它本身,负数的绝对值等于它的相反数.21.(5分)设2+的小数部分是a,求a(a+2)的值.考点:估算无理数的大小.分析:求出2+的范围,即可求出a的值,代入求出即可.解答:解:∵1<<2,∴2+1<2+<2+1,∴3<2+<4,∴a=2+﹣3=﹣1,∴a(a+2)=(﹣1)×(﹣1+2)=(﹣1)×(+1)=3﹣1=2.点评:本题考查了估算无理数的大小和求代数式的值的应用,关键是求出a的值.22.(8分)已知:在平面直角坐标系中,△ABC的顶点A、C分别在y轴、x轴上,且∠ACB=90°,AC=BC.(1)如图1,当A(0,﹣2),C(1,0),点B在第四象限时,则点B的坐标为(3,﹣1),;(2)如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.考点:全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.分析:(1)过B作BE⊥x轴于E,推出∠2=∠OAC,∠AOC=∠BEC,根据AAS证△AOC≌△CEB,推出OA=CE,OC=BE,根据A、C的坐标即可求出答案;(2)作BE⊥x轴于E,得出矩形OEBD,推出BD=OE,证△CEB≌△AOC,推出AO=CE,求出OC﹣BD=OA,代入求出即可.解答:(1)解:过B作BE⊥x轴于E,则∠BEC=∠ACB=∠AOC=90°,∴∠1+∠2=90°,∠1+∠OAC=90°,∴∠2=∠OAC,在△AOC和△CEB中∵,∴△AOC≌△CEB(AAS),∴OA=CE,OC=BE,∵A(0,﹣2),C(1,0),∴OA=CE=2,OC=BE=1,∴OE=1+2=3,∴点B的坐标为(3,﹣1 );(2)结论:,证明:作BE⊥x轴于E,∴∠1=90°=∠2,∴∠3+∠4=90°,∵∠ACB=90°,∴∠5+∠3=90°,∴∠5=∠4,在△CEB和△AOC中,∵∴△CEB≌△AOC,∴AO=CE,∵BE⊥x轴于E,∴BE∥y轴,∵BD⊥y轴于点D,EO⊥y轴于点O,∴BD∥OE,∴四边形OEBD是矩形,∴EO=BD,∴OC﹣BD=OC﹣EO=CE=AO,∴.点评:本题考查了全等三角形的性质和判定,坐标与图形性质,等腰直角三角形性质,主要考查学生运用定理进行推理和计算,题目比较好.23.(12分)(2010•无锡)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=时,结论AM=MN仍然成立.(直接写出答案,不需要证明)考点:全等三角形的判定与性质;等边三角形的性质;正方形的性质.专题:证明题.分析:(1)要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.(2)同(1),要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB 上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.(3)由(1)(2)可知,∠AMN等于它所在的正多边形的一个内角即等于时,结论AM=MN仍然成立.解答:(1)证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分线上一点,∴∠NCP=45°,∴∠MCN=135°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:结论AM=MN还成立证明:在边AB上截取AE=MC,连接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)解:若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,则当∠AMN=时,结论AM=MN仍然成立.点评:本题综合考查了正方形、等边三角形的性质及全等三角形的判定,同时考查了学生的归纳能力及分析、解决问题的能力.难度较大.。
四川省2022-2022学年人教版八年级上期中数学试卷含答案解析八年级(上)期中数学试卷一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6B.6C.﹣8D.82.单项式﹣4πr2的系数是()A.4B.﹣4C.4πD.﹣4π3.下列运算正确的是()A.a4a5=a20B.某8÷某2=某4C.(a3)2=a9D.(3a2)2=9a44.下列运算中结果正确的是()A.3a+2b=5abB.﹣4某y+2某y=﹣2某yC.3y2﹣2y2=1D.3某2+2某=5某35.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间某(小时)的函数关系用图象表示为下图中的()A.B.C.D.二、仔细填一填(每小题2分,共20分)6.两个单项式a5b2m与﹣anb4是同类项,则m=,n=.7.2a+3(b﹣c)=,a3a4÷a5=.8.﹣(2某2y3)2=;4某2﹣(﹣2某y)=.9.因式分解:a2﹣3a=.10.计算﹣6某(某﹣3y)=;(某﹣1)(某+1)﹣某2=.11.函数的自变量某的取值范围是.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m(kg)的函数关系式为.当载重2kg时,弹簧长度为cm.13.2)如果正比例函数的图象经过点(1,,那么这个正比例函数的解析式为.14.如图,直线y=5某+10与某轴、y轴交于点A,B,则△AOB的面积为.第1页(共17页)15.观察下列各式1某3=3=22﹣1,3某5=15=42﹣1,5某7=35=62﹣1,11某13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来.三、耐心算一算.16.计算下列各题(1)2(某﹣3某2+1)﹣3(2某2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2a4(3)(某+3)2﹣(某+2)(某﹣1)(4)(﹣8某3y2+12某2y﹣4某2)÷(﹣2某)2(5)用简便方法计算:2022某2006﹣20072.17.分解因式(1)25m2﹣n2(2)a某2﹣2a某y+ay2(3)某3﹣9某.18.先化简(2某﹣1)2﹣(3某+1)(3某﹣1)+5(某﹣1),再选取一个你喜欢的数代入求值.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了分钟(2)乌龟在这次赛跑中的平均速度为米/分.(3)比先达到终点,你有何感想.第2页(共17页)20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中某表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)某+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与某轴相交于(2,0)(3)图象经过一、三、四象限?六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.第3页(共17页)。
四川省泸州泸县2020-2021学年八年级数学上学期期中试题试卷满分:100分 考试时间:90分钟注意事项:1.答题前请在答题卡上填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(共12个小题;3分每题,共36分) 1.在ABC ∆中, 802=∠=∠B A ,则=∠C ( )40⋅A 60⋅B 80⋅C 120⋅D2.如图,已知NDC MBA ND MB ∠=∠=,,下列条件中不能判定ABM ∆≌CDN ∆的是( )N M A ∠=∠⋅ AM B ⋅∥CN CD AB C =⋅ CN AM D =⋅3.一个多边形的每一个内角都等于 144,则这个多边形的内角和是( )720⋅A 900⋅B 1440⋅C 1620⋅D4.下列计算的结果正确的是( )933a a a A =⋅ 5322a a a B =+⋅ 53227)3(x x C -=-⋅ n n n b a b a D 22)(=⋅2题图5.已知一个等腰三角形内角的度数之比为4:1,则它的顶角的度数为( )20⋅A 36⋅B 7236或⋅C12020或⋅D6.分式22224222,,11,434b ab aba y x y xy x a a a x y -+++--++中,最简分式个数为( )个. 1⋅A 2⋅B 3⋅C 4⋅D7.如图,ABC Rt ∆中, 90=∠C ,,5,4,3===AB BC AC AD 平分BAC ∠.则=∆∆ABD ACD S S :( )4:3⋅A 5:3⋅B 5:4⋅C 3:2⋅D 8.下列多项式中,能分解因式的是:224b a A +-⋅ 22b a B --⋅ 4424--⋅x x C 22b ab a D +-⋅9.无论a 取何值,下列分式总有意义的是( )21a A a +⋅211a B a -⋅+ 211C a ⋅- 11D a ⋅+ 10.若31=+x x ,则221x x+的值为( ). 9⋅A 7⋅B 11⋅C 6⋅D11.如图所示,在ABC Rt ∆中,E 为斜边AB 的中点,AB ED ⊥,且7:1:=∠∠BAD CAD ,则=∠BAC ( )7题图70⋅A 45⋅B 60⋅C 48⋅D12.如图是55⨯的正方形网格,以点E D ,为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )个4⋅A 5⋅B 个 6⋅C 个 8⋅D 个二、填空题(共10个小题,每题2分,共20分)13.人体中红细胞的直径大约为0000077.0米,则数据0000077.0 用科学记数法表示为_____________________. 14.计算:()232b b a a ÷= .15.若点)2,3(-a M ,),(a b N 关于x 轴对称,则=+b a .. 16.分式:211a -,21+a a ,21a 的最简公分母是 . 17.若代数式2102a a a -=+-,则代数式()()22124a a +--的值是 .18.化简: 29333a a a a a ⎛⎫++÷⎪--⎝⎭= . 19.分解因式: ()2224a a +--= .11题图12题图20.如图,B 在AC 上,D 在CE 上,BC BD AD ==, 25=∠ACE ,则=∠ADE .21.如图,等腰三角形ABC 中AC AB =, 20=∠A ,线段AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则=∠CBE .22.若1142,22a ab b a b a ab b+--==--则 .三、计算题(共3个小题,4分每题,共12分) 23.计算:()()()23411x x x x -+--+().24.因式分解:)(16)(2x y y x a -+-20题图21题图25.化简:322(1)12a a a a -+-⋅-+.四、解答题(本大题共2个小题,5分每题,共10分)26.先化简,再求值:144)113(2++-÷+-+a a a a a ,其中4=a .27.如图,在长度为1个单位长度的小正方形组成的正方形中,点C B A ,,在小正方形的顶点上.(1)在图中画出与ABC ∆关于直线l 成轴对称的C B A '''∆ (2)三角形ABC 的面积为;(3)在直线l 上找一点P ,使PB PA +的长最短.五.(本大题共3个小题,28、29题7分每题,30题8分,共22分)28.如图,在ABC∆与DCB∆中,DCAB=,BDAC=,AC与BD交于M.求证:CMBM=.29.解方程:112 22xx x-=---30.如图,在等腰ABC Rt ∆中, 90=∠C ,D 是斜边上AB 上任一点,CD AE ⊥于E ,CD BF ⊥交CD 的延长线于F ,AB CH ⊥于点H ,交AE 于G .(1)求证:CG BD =.(2)探索AE 与EF 、BF 之间的数量关系参考答案一.选择题题号 1 2 3 4 5 6 选项 B D C D D C 题号 7 8 9 10 11 12 选项BABBDA13.67.710-⨯ 14.54a b15.4 16.a 2(a+1)(a ﹣1)17.-24. 18.a19.)2)(4(-+a a 20.75°21. 60° 22.23-23.解:()()()23411x x x x -+--+() =2x 2+8x-3x-12-x 2+1 =(2x 2-x 2)+(8x-3x)+(1-12) =2511x x +-)4)(4)(()16)(()(16)(.2422-+-=--=---=a a y x a y x y x y x a 解:原式25.解:原式=(1)(1)32(1)12a a a a a +---⋅-+=(2)(2)2(1)12a a a a a +--⋅-+=24a -.26.试题解析:1441132++-÷⎪⎭⎫⎝⎛+-+a a a a a ()2221113-+⨯++-=a a a a , ()2211)2)(2(-+⨯+-+-=a a a a a =22-+-a a , 当a=4时,原式=-3. 27.(1)图形见解析(2)252(3)3(4)图形见解析 解: (1)(2)11125656141552222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=;(3)28.证明:∵AB =DC ,AC =DB ,BC =CB ,∴△ABC ≌△DCB (SSS ),∴∠ACB =∠DBC ,BM =CM .29.解:方程两边同时乘以()2x -得:()1122x x -=---, 解得:2x =,检验:当2x =时, 2220x -=-=, ∴2x =是增根, ∴原方程无解.30.(1)∵ABC为等腰直角三角形,且CH⊥AB ∴∠ACG=45°∵∠CAG+∠ACE=90°,∠BCF+∠ACE=90°∴∠CAG=∠BCF在△ACG和△CBD中{CAG BCDAC CB ACG CBD ∠∠∠∠===∴△ACG≌△CBD(ASA)∴BD=CG(2)AE=EF+BF理由如下:在△ACE和△CBF中,{CAE BCF AEC CFBAC CB∠∠∠∠===∴△ACE≌△CBF,∴AE=CF,CE=BF,∴AE=CF=CE+EF=BF+EF.11 / 11。
八年级上册泸州数学期中精选试卷模拟练习卷(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明2.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF , ∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.3.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm==.(1)求BE的长;(2)将CE所在直线旋转到ABC∆的外部,如图②,猜想AD DE BE、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC∆中,,AC BC D C E=、、三点在同一直线上,并且BEC ADC BCAα∠=∠=∠=,其中α为任意钝角.猜想AD DE BE、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE≅,得到AD CE=,CD BE=,再根据2.5, 1.7AD cm DE cm==,CD CE DE=-,易求出BE的值;(2)先证明ACD CBE≅,得到AD CE=,CD BE=,由图②ED=EC+CD,等量代换易得到AD DE BE、、之间的关系;(3)本题先证明EBC DCA∠=∠,然后运用“AAS”定理判定BEC CDA≅,从而得到,BE CD EC AD==,再结合图③中线段ED的特点易找到AD DE BE、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE⊥⊥∴90ADC E︒∠=∠=∴90ACD DAC︒∠+∠=∵90ACB︒∠=∴90ACD BCE︒∠+∠=∴ACD BCE∠=∠在ACD与CBE△中,90ADC EACD BCEAC BC︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE≅∴,AD CE CD BE==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.4.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD ≌△CAE(AAS),∴BD=AE ,AD=CE ,∵DE=AD+AE ,∴DE=CE+BD ,故答案为:DE=CE+BD ;(2)(1)中结论还仍然成立,理由如下:∵BDA AEC BAC α∠=∠=∠=,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD ,在△ADB 与△CEA 中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.5.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF =12EC =2. 【点睛】 本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.二、八年级数学 轴对称解答题压轴题(难)6.如图,在ABC △中,已知AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于点F ,求证:AF EF =.【答案】证明见解析【解析】【分析】延长AD 到点G ,使得AD DG =,连接BG ,结合D 是BC 的中点,易证△ADC 和△GDB 全等,利用全等三角形性质以及等量代换,得到△AEF 中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD 到点G ,延长AD 到点G ,使得AD DG =,连接BG .∵AD 是BC 边上的中线,∴DC DB =.在ADC 和GDB △中,AD DG ADC GDB DC DB=⎧⎪∠=∠⎨⎪=⎩(对顶角相等),∴ADC ≌GDB △(SAS ).∴CAD G ∠=∠,BG AC =.又BE AC =,∴BE BG =.∴BED G ∠=∠.∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.7.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==- 在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.8.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 . 探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.9.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【解析】【分析】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,如图1,∵∠ABC=23°,∠BAC=90°,∴∠C=90°-23°=67°,∵MN垂直平分AB,∴BD=AD,∴△ABD是等腰三角形,∴∠BAD=∠ABC=23°,∴∠ADC=2∠ABC=46°,∵∠BAC=90°,∴∠DAC=∠BAC-∠BAD=67°,∴∠DAC=∠C,∴△DAC是等腰三角形,同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,∵点O是三角形垂直平分线的交点,∴OA=OB=OC,∴△OAB、△OAC、△OBC是等腰三角形,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∴AD是BC的垂直平分线,∴∠BAD=∠CAD=22.5°,∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,∴∠OBC=∠OCB=45°.(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,∴∠ABP=∠A=30°,∴∠APB=120°,∵PB=PQ,PQ=CQ,∴∠PQB=∠PBQ,∠C=∠CPQ,∴∠PBQ=2∠C,∴∠APB=∠PBQ+∠C=3∠C=120°,解得:∠C=40°.②如图,当PB=PA,PB=BQ,PQ=CQ时,∴∠PQB=2∠C,∠PQB=∠BPQ,∴∠PBQ=180°-2∠PQB=180°-4∠C,∴180°-4∠C+∠C=120°,解得:∠C=20°,③如图,当PA=PB,BQ=PQ,CQ=CP时,∵∠PQC=2∠PBQ,∠PQC=12(180°-∠C),∴∠PBQ=14(180°-∠C),∴14(180°-∠C)+∠C=120°,解得:∠C=100°.④如图,当PA=PB,BQ=PQ,PQ=CP时,∵∠PQC=∠C=2∠PBQ,又∵∠C+∠PBQ=120°,∴∠C=80°;⑤如图,当AB=AP,BP=BQ,PQ=QC时,∵∠A=30°,∴∠APB=12(180°-30°)=75°,∵BP=BQ,PQ=CQ,∴∠BPQ=∠BQP,∠QPC=∠QCP,∴∠BQP=2∠C,∴∠PBQ=180°-4∠C,∴∠C+180°-4∠C=75°,解得:∠C=35°.⑥如图,当AB=AP,BQ=PQ,PC=QC时,∴∠PQC=2∠PBC,∠PQC=12(180°-∠C),∴∠PBC=14(180°-∠C),∴14(180°-∠C)+∠C=75°,解得:∠C=40°.⑦如图,当AB=AP,BQ=PQ,PC=QP时,∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,∴∠C=50°;⑧当AB=AP,BP=PQ,PQ=CQ时,∵AB=BP,∠A=30°,∴∠ABP=∠APB=75°,又∵∠PBQ=∠PQB=2∠C,且有∠PBQ+∠C=180°-30°-75°=75°,∴3∠C=75°,∴∠C=25°;⑨当AB=BP,BP=PQ,PQ=CQ时,∵AB=BP,∴∠BPA=∠A=30°,∵∠PBQ=∠PQB=2∠C,∴2∠C+∠C=30°,解得:∠C=10°.⑩当AB=BP,BQ=PQ,PQ=CQ时,∴∠PQC=∠C=2∠PBQ,∴12∠C+∠C=30°,解得:∠C=20°.综上所述:∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【点睛】本题考查复杂作图及等腰三角形的性质,熟练掌握等腰三角形的性质是解题关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=B D.连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸) (2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠ 60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD == ()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+PQ ∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.(1)你能求出(a ﹣1)(a 99+a 98+a 97+…+a 2+a +1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.(a ﹣1)(a +1)= ;(a ﹣1)(a 2+a +1)= ;(a ﹣1)(a 3+a 2+a +1)= ;…由此我们可以得到:(a ﹣1)(a 99+a 98+…+a +1)= .(2)利用(1)的结论,完成下面的计算:2199+2198+2197+…+22+2+1.【答案】(1)21a -,31a -,41a -,1001a -(2)20021-【解析】【分析】根据简单的多项式运算推出同类复杂多项式运算结果的一般规律,然后根据找出的规律进行解决较难的运算问题.【详解】解:(1)21a - 31a - 41a - 1001a -(2)1991981972222221+++⋅⋅⋅++=()21- ⨯(1991981972222221+++⋅⋅⋅++)=20021-.【点睛】考查了学生的基础运算能力和对同一类运算问题计算结果的一般规律性洞察力.12.把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法通常被称为配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:若代数式M =a 2﹣2ab +2b 2﹣2b +2,利用配方法求M 的最小值:a 2﹣2ab +2b 2﹣2b +2=a 2﹣2ab +b 2+b 2﹣2b +1+1=(a ﹣b )2+(b ﹣1)2+1.∵(a ﹣b )2≥0,(b ﹣1)2≥0,∴当a =b =1时,代数式M 有最小值1.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ;(2)若代数式M =214a +2a +1,求M 的最小值; (3)已知a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c +2=0,求代数式a +b +c 的值. 【答案】(1)4;(2)M 的最小值为﹣3;(3)a +b +c=122. 【解析】【分析】(1)根据常数项等于一次项系数的一半进行配方即可;(2)先提取14,将二次项系数化为1,再配成完全平方,即可得答案; (3)将等式左边进行配方,利用偶次方的非负性可得a ,b ,c 的值,从而问题得解.【详解】(1)∵a 2+4a+4=(a+2)2故答案为:4;(2)M =21a 4+2a+1 =14(a 2+8a+16)﹣3 =14(a+4)2﹣3 ∴M 的最小值为﹣3(3)∵a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c+2=0,∴(a ﹣b )2+(b ﹣1)2+(2c ﹣1)2=0,∴a ﹣b =0,b ﹣1=0,2c ﹣1=0∴a =b =1,1c=2 , ∴a+b+c=122.. 【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.13.请你观察下列式子:2(1)(1)1x x x -+=-()()23111x x x x -++=-()()324111x x x x x -+++=-()()4325111x x x x x x -++++=-……根据上面的规律,解答下列问题:(1)当3x =时,计算201720162015(31)(333-+++…323331)++++=_________;(2)设201720162015222a =+++…322221++++,则a 的个位数字为 ;(3)求式子201720162015555+++…32555+++的和.【答案】(1)201831-;(2)3;(3)2018554- 【解析】【分析】(1)根据已知的等式发现规律即可求解;(2)先根据x=2,求出a=20182-1,再发现2的幂个位数字的规律,即可求出a 的个位数字;(3)利用已知的等式运算规律构造(5-1)×(2016201520142555...551++++++)即可求解.【详解】(1)∵2(1)(1)1x x x -+=- ()()23111x x x x -++=-()()324111x x x x x -+++=-()()4325111x x x x x x -++++=-……∴()()1122.1..11n n n n x x x x x x x --+-+++++=-+故x=3时,201720162015(31)(333-+++…323331)++++=201831-故填:201831-; (2)201720162015222a =+++…322221++++=(2-1)201720162015(222+++…322221)++++=201821-∵21=2,22=4,23=8,24=16,25=32,26=64∴2n 的个位数按2,4,8,6,依次循环排列,∵2018÷4=504…2,∴20182的个位数为4,∴201821-的个位数为3,故填:3;(3)201720162015555+++…32555+++ =1(51)54-⨯⨯(201620152014555+++…2551+++) =54×(5-1)(201620152014555+++…2551+++) =54×(201751-) =2018554- 【点睛】此题主要考查等式的规律探索及应用,解题的关键是根据已知等式找到规律.14.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2﹣1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____.(3)化简:(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).【答案】232﹣1 32312-; 【解析】【分析】(1)原式变形后,利用题中的规律计算即可得到结果;(2)原式变形后,利用题中的规律计算即可得到结果;(3)分m=n 与m≠n 两种情况,化简得到结果即可.【详解】(1)原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=232-1;(2)原式=12(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=32312-; (3)(m+n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).当m≠n时,原式=1m n-(m-n)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16)=3232m nm n--;当m=n时,原式=2m•2m2…2m16=32m31.【点睛】此题考查了平方差公式,弄清题中的规律是解本题的关键.15.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【答案】解:(1)①275;572.②63;36.(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),证明见解析.【解析】【分析】根据题意可得三位数中间的数等于两数的和,根据这一规律然后进行填空,从而得出答案;根据题意得出一般性的规律,然后根据多项式的计算法则进行说明理由.【详解】(1)①275,572; ②63,36;(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).证明如下:∵左边两位数的十位数字为a,个位数字为b,∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,∴左边=(10a+b )×[100b+10(a+b )+a]=(10a+b )(100b+10a+10b+a )=(10a+b )(110b+11a )=11(10a+b )(10b+a ),右边=[100a+10(a+b )+b]×(10b+a )=(100a+10a+10b+b )(10b+a )=(110a+11b )(10b+a )=11(10a+b )(10b+a ),∴左边=右边.∴“数字对称等式”一般规律的式子为:(10a+b )×[100b+10(a+b )+a]=[100a+10(a+b )+b]×(10b+a ).考点:规律题四、八年级数学分式解答题压轴题(难)16.小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的m 倍,两人在同起点,同时出发,结果小强先到目的地n 分钟.①当3m =,6n =时,求小强跑了多少分钟?②小明的跑步速度为_______米/分(直接用含m n ,的式子表示).【答案】(1)小强的速度为80米/分,小明的速度为300米/分;(2)①小强跑的时间为3分;②1000(1)m mn-. 【解析】【分析】 (1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;(2)①设小明的速度为y 米/分,由m =3,n =6,根据小明的时间-小强的时间=6列方程解答;②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.【详解】(1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分, 根据题意得:1200x =4500220x +. 解得:x =80.经检验,x =80是原方程的根,且符合题意.∴x+220=300.答:小强的速度为80米/分,小明的速度为300米/分.(2)①设小明的速度为y 米/分,∵m =3,n =6, ∴1000100063y y -=,解之得10009y =. 经检验,10009y =是原方程的解,且符合题意, ∴小强跑的时间为:10001000(3)39÷⨯=(分) ②小强跑的时间:1n m -分钟,小明跑的时间:11n mn n m m +=--分钟, 小明的跑步速度为: 1000(1)10001mn m m mn -÷=-分. 故答案为:1000(1)m mn-. 【点睛】 此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.17.已知分式A=2344(1)11a a a a a -++-÷--. (1) 化简这个分式;(2) 当a >2时,把分式A 化简结果的分子与分母同时..加上3后得到分式B ,问:分式B 的值较原来分式A 的值是变大了还是变小了?试说明理由.(3) 若A 的值是整数,且a 也为整数,求出符合条件的所有a 值的和.【答案】(1)22a A a +=-;(2)变小了,理由见解析;(3)符合条件的所有a 值的和为11.【解析】分析:(1)分解因式,再通分化简.(2)用作差法比较二者大小关系.(3)先分离常数,再尝试让分子能被分母整除.详解: (1)A =2344111a a a a a -+⎛⎫+-÷ ⎪--⎝⎭=()()()2113211a a a a a -+--÷--=22a a +-. (2)变小了,理由如下:()()()()()()()()21522512212121a a a a a a A B a a a a a a ++-+-++-=-==-+-+-+ .∵a >2 ∴a -2>0,a+1>0,∴()()1221A B a a -=-+>0,即A >B (3) 24122a A a a +==+-- 根据题意,21,2,4a -=±±± 则a =1、0、-2、3、4、6, 又1a ≠ ∴0+(-2)+3+4+6=11 ,即:符合条件的所有a 值的和为11.点睛:比较大小的方法:(1)作差比较法:0a b a b ->>;0a b a b -<⇒<(a b ,可以是数,也可以是一个式子)(2)作商比较法:若a >0,b >0,且1a b >,则a >b ;若a <0,b <0,且1a b>,则a <b .18.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x 件产品,则乙工厂每天加工(x+8)件产品, 根据题意得:48728x x =+, 解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24, 答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y 元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y 的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.19.为了迎接运动会,某校八年级学生开展了“短跑比赛”。
八年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.在实数7,3.1415926,−16,1.010010001,227中,无理数有( )A. 1个B. 2个C. 3个D. 4个2.下列计算正确的是( )A. 2a+3b=5abB. (a2)3=a5C. (2a)2=4aD. a4⋅a3=a73.下列等式从左到右的变形,属于因式分解的是( )A. x2+2x−1=x(x+2)−1B. (a+b)(a−b)=a2−b2C. x2+4x+4=(x+2)2D. ax2−a=a(x2−1)4.下列命题中,为真命题的是( )A. 同位角相等B. 若a>b,则−2a>−2bC. 若a2=b2,则a=bD. 对顶角相等5.下列选项中的整数,与17最接近的是( )A. 3B. 4C. 5D. 66.已知a−2+(b+3)2=0,则(a+b)2019的值为( )A. 0B. −2019C. −1D. 17.已知2a=3,8b=4,23a-3b+1的值为( )A. 25B. −2C. −1D. 2728.已知a2-2a-1=0,则a4-2a3-2a+1等于( )A. 0B. 1C. 2D. 3二、填空题(本大题共8小题,共24.0分)9.81的平方根为______.10.若4−aa+2有意义,则a的取值范围为______11.若(ax+2y)(x-y)展开式中,不含xy项,则a的值为______.12.若x2+kx+16是完全平方式,则k的值为______.13.把命题“等角的余角相等”写成“如果…,那么….”的形式为______.14.规定一种新运算“⊗”,则有a⊗b=a2÷b,当x=-1时,代数式(3x2-x)⊗x2=______.15.月球距地球的距离大约3.84×105千米,一架飞船的速度为6×102千米/小时,则乘坐飞船大约需要的时间为______小时.16.某同学在计算3(4+1)(42+1)时,把3写成(4-1)后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=(42)2-12=256-1=255.请借鉴该同学的方法计算(2+1)(22+1)(24+1)(28+1)…(22048+1)=______三、计算题(本大题共1小题,共6.0分)17.小明在计算一个多项式乘-2x2+x-1时,因看错运算符号,变成了加上-2x2+x-1,得到的结果为4x2-2x-1,那么正确的计算结果为多少?四、解答题(本大题共7小题,共66.0分)18.计算:(1)25−327+214-(-1)2018-|1-2|(2)(-2x2)3•(-xy)÷(2x)(3)(2y-x)(x+2y)-2(x+2y)2(4)20182-2017×201919.把下列多项式分解因式:(1)27xy2-3x(2)12x2+xy+12y2(3)a2-b2-1+2b(4)x2+3x-420.先化简,再求值[(xy+2)(xy-2)-2x2y2+4]÷xy,其中x=4,y=-12.21.已知a+b=5,ab=2,求a-b的值.22.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.23.已知:如图,AB=AE,∠1=∠2,AD=AC求证:BC=ED.24.(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:______;方法②:______;(2)根据(1)写出一个等式:______;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.答案和解析1.【答案】A【解析】解:∵=-4,∴在实数,3.1415926,,1.010010001,中,无理数有.故选:A.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可求解.此题主要考查了无理数的定义,初中范围内常见的无理数有三类:①π类,如2π,等;②开方开不尽的数,如,等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.【答案】D【解析】解:A、2a+3b,无法计算,故此选项错误;B、(a2)3=a6,故此选项错误;C、(2a)2=4a2,故此选项错误;D、a4•a3=a7,正确;故选:D.直接利用合并同类项法则以及积的乘方运算法则和同底数幂的乘法运算法则分别计算得出答案.此题主要考查了合并同类项以及积的乘方运算和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.3.【答案】C【解析】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C.根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.本题考查了因式分解的意义,解答本题的关键是掌握因式分解的意义即因式分解后右边是整式积的形式,且每一个因式都要分解彻底.4.【答案】D【解析】解:A、两直线平行,同位角相等,故为假命题;B、若a>b,则-2a<-2b,故为假命题;C、a2=b2,则a=±b,故为假命题;D、对顶角相等为真命题;故选:D.分别判断四个选项的正确与否即可确定真命题.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.【答案】B【解析】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.依据被开放数越大对应的算术平方根越大进行解答即可.本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.6.【答案】C【解析】解:∵=0,∴a-2=0,b+3=0,解得:a=2,b=-3,∴(a+b)2019=(a+b)2019=-1.故选:C.直接利用互为相反数的定义结合绝对值的性质得出a,b的值,进而得出答案.此题主要考查了非负数的性质,正确应用绝对值的性质是解题关键.7.【答案】D【解析】解:∵2a=3,8b=4,∴23a-3b+1=(2a)3÷(8b)×2=33÷4×2=.故选:D.直接利用同底数幂的乘除运算法则将原式变形计算得出答案.此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.8.【答案】C【解析】解:∵a2-2a-1=0,∴a2-2a=1,∴a4-2a3-2a+1=a2(a2-2a)-2a+1=a2-2a+1=1+1=2.故选:C.由a2-2a-1=0,得出a2-2a=1,逐步分解代入求得答案即可.此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.9.【答案】±3【解析】解:的平方根为±3.故答案为:±3.根据平方根的定义即可得出答案.此题考查了平方根的知识,属于基础题,掌握定义是关键.10.【答案】a≤4且a≠-2【解析】解:依题意得:4-a≥0且a+2≠0,解得a≤4且a≠-2.故答案是:a≤4且a≠-2.二次根式的被开方数是非负数且分式的分母不等于零.考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.【答案】2【解析】解:(ax+2y)(x-y)=ax2+(2-a)xy-2y2,含xy的项系数是2-a.∵展开式中不含xy的项,∴2-a=0,解得a=2.故答案为:2.将(ax+2y)(x-y)展开,然后合并同类项,得到含xy的项系数,根据题意列出关于a的方程,求解即可.本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.12.【答案】±8【解析】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.13.【答案】如果两个角是相等角的余角,那么这两个角相等【解析】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为如果两个角是相等角的余角,那么这两个角相等.把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.14.【答案】16【解析】解:当x=-1时,(3x2-x)⊗x2=4⊗1=42÷1=16,故答案为:16.根据“⊗”的运算方法对题目整理,再根据有理数的混合运算求解即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.15.【答案】6.4×102【解析】解:(3.84×105)÷(6×102)=6.4×102小时.故乘坐飞船大约需要的时间为小时.故答案为:6.4×102.根据时间=路程÷速度,可得单项式的除法,再根据单项式除以单项式的法则计算.本题考查了单项式除以单项式,科学记数法的运算实际上可以利用单项式的相关运算计算,最后结果要用科学记数法表示.16.【答案】24096-1【解析】解:(2+1)(22+1)(24+1)(28+1)…(22048+1)=(2+1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(22-1)(22+1)(24+1)(28+1)…(22048+1)=(24-1)(24+1)(28+1)…(22048+1)=(28-1)(28+1)…(22048+1)=(22048-1)(22048+1)=24096-1,故答案为:24096-1.先乘以(2-1),再依次根据平方差公式求出即可.本题考查了平方差公式,能熟记平方差公式的内容是解此题的关键,注意:平方差公式为:(a+b)(a-b)=a2-b2.17.【答案】解:原多项式为:(4x2-2x-1)-(-2x2+x-1)=4x2-2x-1+2x2-x+1=6x2-3x(6x2-3x)(-2x2+x-1)=-12x4+6x3-6x2+6x3-3x2+3x=-12x4+12x3-9x2+3x.【解析】根据整式的加减混合运算求出原多项式,根据多项式乘多项式法则求出正确的结果.本题考查的是多项式乘多项式,整式的加减混合运算,多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.18.【答案】解:(1)25−327+214-(-1)2018-|1-2|=5-3+1-1-(2-1)=5-3+1-1-2+1=3-2;(2)(-2x2)3•(-xy)÷(2x)=-8x6•(-xy)÷(2x)=8x7y÷2x=4x6y;(3)(2y-x)(x+2y)-2(x+2y)2=4y2-x2-2x2-8y2-8xy=-4y2-3x2-8xy;(4)20182-2017×2019=20182-(2018-1)×(2018+1)=20182-(20182-1)=1.【解析】(1)直接利用二次根式以及立方根的性质、绝对值的性质化简进而得出答案;(2)直接利用整式的乘除运算法则计算得出答案;(3)直接利用乘法公式化简,进而得出答案;(4)直接利用乘法公式将原式变形,进而得出答案.此题主要考查了实数运算以及整式的混合运算,正确化简各式是解题关键.19.【答案】解:(1)27xy2-3x=3x(9y2-1)=3x(3y+1)(3y-1);(2)12x2+xy+12y2=12(x2+2xy+y2)=12(x+y)2;(3)a2-b2-1+2b=a2-(b2-2b+1)=a2-(b-1)2=(a+b-1)(a-b+1);(4)x2+3x-4=(x+4)(x-1).【解析】(1)先提取公因式,再根据平方差公式分解即可;(2)先提取公因式,再根据完全平方公式分解即可;(3)先分组,再根据完全平方公式进行变形,最后根据平方差公式分解即可;(4)根据十字相乘法分解即可.本题考查了分解因式,能选择适当的方法分解因式是解此题的关键.20.【答案】解:原式=(x2y2-4+2x2y2+4)÷xy=3x2y2÷xy=3xy,当x=4,y=-12时,原式=3×4×(-12)=-6【解析】先根据整式的混合运算顺序和法则化简原式,再代入求值可得.本题主要考查整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和法则.21.【答案】解:∵a+b=5,ab=2,∴(a-b)2=(a+b)2-4ab=25-4×2=17,∴a-b=±17.【解析】根据完全平方公式可得(a-b)2=(a+b)2-4ab,将a+b=5,ab=2代入求出(a-b)2的值,再开平方即可.本题考查的是完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.熟记完全平方公式是解答此题的关键.22.【答案】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=FE,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,AC=DF∠ACB=∠DFEBC=EF,∴△ABC≌△DEF(SAS).【解析】求出BC=FE,∠ACB=∠DFE,根据SAS推出全等即可.本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.23.【答案】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠CAB=∠EAD,在△ACB和△ADE中,AB=AE∠CAB=∠EADAC=AD,∴△ACB≌△ADE(SAS),∴BC=DE.【解析】根据题干中条件易证∠CAB=∠EAD,即可证明△ACB≌△ADE,可得BC=DE.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证三角形全等是解题的关键.24.【答案】(m+n)2-4mn(m-n)2(m+n)2-4mn=(m-n)2【解析】解:(1)方法①:(m+n)2-4mn,方法②:(m-n)2;故答案为:(m+n)2-4mn,(m-n)2;(2)由①可得:(m+n)2-4mn=(m-n)2;故答案为:(m+n)2-4mn=(m-n)2;(3)由②可得:(x-y)2=(x+y)2-4xy,∵x+y=-8,xy=3.75,∴(x-y)2=64-15=49,∴x-y=±7;又∵x+y=8,∴或;(4)如图,表示(2m+n)(m+2n)=2m2+5mn+2n2:(1)第一种方法为:大正方形面积-4个小长方形面积,第二种表示方法为:阴影部分为小正方形的面积;(2)依据大正方形面积-4个小长方形面积=阴影部分为小正方形的面积,即可得到等式;(3)利用(x-y)2=(x+y)2-4xy,再求x-y,即可解答;(4)根据多项式画出长方形,即可解答.本题考查了完全平分公式的几何背景,解决问题的关键是读懂题意,找到所求的量的等量关系.本题更需注意要根据所找到的规律做题.。
说明:1、本题分填空,选择题和解答题共计100分。
2、考试时间:90分钟。
3、命题制卷:耿文秀审题:唐任芳朱芳
一、选择题(每题2分,共20分)
1.下列图形中不是轴对称图形的是()
A B C D
2. 如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带去配的玻璃是( )
A.① B.② C.③ D.①和②
图1 图2 图3 图4
3.如图2,AB=AD,BC=CD,E是AC上一点,连接BE,DE,则全等三角形共有()
A、1对
B、2对
C、3对
D、4对
4.如图3,直线m、n、x分别表示三条相交的公路,现在要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()
A、1处
B、2处
C、3处
D、4处
5.下列条件中,不能判定两个直角三角形全等的是()
A.一锐角和斜边对应相等
B.两条直角边对应相等
C.斜边和一直角边对应相等
D.两个锐角对应相等
6.如图4,在△ABC中,AB=AC,∠A=36°,BD,CE分别是△ABC,△BCD的角平分线,则图中的等腰三角形有()
A、4个
B、5个
C、6个
D、7个
7.在△ABC中,∠B :∠A:∠C =1:2:3,且AB=6cm,则AC=()
A、3cm
B、4cm
C、5cm
D、6cm
8.三角形的三边长分别为:a,b,c,它们满足(a-b)2 + ∣b-c∣=0,则该三角形是()
A、直角三角形
B、等腰三角形
C、等边三角形
D、等腰直角三角形9.一个数的平方等于这个数的算术平方根,则这个数是()
A、1
B、-1
C、0
D、1或0
10.估计68的立方根的大小在()
A 、2与3之间
B 、3与4之间
C 、4与5之间
D 、5与6之间 二、填空题(每题2分,共20分)
1.如图5,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD= ; 2.如图6,已知AB=AC,要使△ABD ≌△ACD,还需要添加一个条件是 ; 3.如图7,在△ABC 中,∠C=90°,AD 是∠BAC 的角平分线,CD=3 cm ,则点D 到AB 边的距离是 ;
图5 图6
图7
4.如图8,在△ABC 中,DE 垂直平分AC 交AB 于点E, ∠A=30°,∠ACB=80°,则∠BCE= ; 5.已知点A (a,b )关于x 轴的点的坐标是(a ,-5),关于y 轴的点的坐标是(8,b ),则点A 的坐标是 ;
6.已知等腰三角形一腰上的高与另一腰的夹角为50°,则它的三个内角度数分别为 ;
7.16的算术平方根是 ;81的平方根是 ; 8.如果1.1621.259=,则=5921.2 ; 三:解答题(8小题,共60分)
1.( 6分)计算:38- 2)1(--|1-2|
2、( 10分)求下列各式中的X 的值
(1)2X 2=18 (2)(X-1)3=125
图8
3、(7分)如图:△ABC 中,DE 是AC 的垂直平分线,△ABC 的周长为18cm ,AE=4 cm ,△ABD 的周长为15 cm ,求AE 的长。
4、( 7分)如图,在平面直角坐标系xoy 中,(15)
A -,,(10)
B -,,(43)
C -,. (1)在图中作出ABC △关于y 轴的对称图形
(2)写出点111A B C ,,的坐标.
5、( 7分)如图,请你从下面三个条件中,选出两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).①AB =CD ,②AO =CO ,③∠A =∠C
已知: 求证: 证明:
6、( 7分)如图:已知,∠A=∠B ,CE ∥DA ,CE 交AB 于E ,求证:△CEB 是等腰梯形。
7、( 7分)如图,已知,CD=CA,∠1=∠2,EC=BC,求证:DE=AB
8.(9分)如图,ABC
△是等边三角
形,点D,E,F分别是线段AB,BC,CA
上的点,(1)若AD=BE=CF,问△DEF
是等边三角形吗?试证明你的结论;
(2)若△DEF是等边三角形,问
AD=BE=CF成立吗?并说明理由。