高二选修2-2导数1.3单调性测试
- 格式:doc
- 大小:243.50 KB
- 文档页数:2
高中数学专题1.3.1 函数的单调性与导数测试(含解析)新人教A版选修2-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题1.3.1 函数的单调性与导数测试(含解析)新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题1.3.1 函数的单调性与导数测试(含解析)新人教A版选修2-2的全部内容。
函数的单调性与导数(时间:25分,满分50分)班级姓名得分1.(5分)函数f(x)=x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0时,f(x)是( )A.增函数B.减函数C.常数D.既不是增函数也不是减函数【答案】A2.(5分)下列函数中,在(0,+∞)内为增函数的是()A.y=sin x B.y=x e2C.y=x3-x D.y=ln x-x【答案】B【解析】显然y=sin x在(0,+∞)上既有增又有减,故排除A;对于函数y=x e2,因e2为大于零的常数,不用求导就知y=x e2在(0,+∞)内为单调增函数;对于C,y′=3x2-1=3(x+错误!)(x-错误!),故函数在(-∞,-错误!),(错误!,+∞)上为单调增函数,在(-错误!,错误!)上为单调减函数;对于D,y′=错误!-1 (x〉0).故函数在(1,+∞)上为单调减函数,在(0,1)上为单调增函数.故选B.3.(5分)如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是()【答案】A【解析】由f(x)与f′(x)关系可选A。
4.(5分)设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是() A.b2-4ac〉0 B.b>0,c>0C.b=0,c>0 D.b2-3ac〈0【答案】D5。
1.3导数的应用1.3.1 利用导数判断函数的单调性已知函数y 1=x ,y 2=x 2,y 3=1x的图像如图所示.问题1:试结合图像指出以上三个函数的单调性.提示:函数y 1=x 在R 上为增函数,y 2=x 2在(-∞,0)上为减函数,在(0,+∞)上为增函数,y 3=1x在(-∞,0),(0,+∞)上为减函数.问题2:判断它们的导数在其单调区间上的正、负.提示:y 1′=1在R 上为正,y 2′=2x ,在(-∞,0)上为负,在(0,+∞)上为正,y 3′=-1x2在 (-∞,0)及(0,+∞)上均为负.问题3:结合问题1、2探讨函数的单调性与其导函数正负有什么关系? 提示:当f ′(x )>0时,f (x )为增函数,当f ′(x )<0时,f (x )为减函数.利用导数判断函数单调性的法则函数的单调性与其导数正负的关系(1)利用导数研究函数的单调性比用函数单调性的定义要方便,但应注意f ′(x )>0(或f ′(x )<0)仅是函数f (x )在某个区间上递增(或递减)的充分条件.(2)在区间(a ,b )内可导的函数f (x )在区间(a ,b )上递增(或递减)的充要条件应是[对应学生用书P14]f ′(x )≥0(或f ′(x )≤0)(x ∈(a ,b ))恒成立且f ′(x )在区间(a ,b )的任意子区间内都不恒等于0.(3)特别地,如果f ′(x )=0,那么函数y =f (x )在这个区间内是常数函数.[例1] 求证:函数f (x )=e x -x -1在(0,+∞)内是增函数,在(-∞,0)内是减函数. [思路点拨] 根据函数的单调性与导数正负的关系,只要证明f ′(x )在(0,+∞)上为正,在(-∞,0)上为负即可.[精解详析] 由于f (x )=e x -x -1, 所以f ′(x )=e x -1,当x ∈(0,+∞)时,e x >1,即f ′(x )=e x -1>0. 故函数f (x )在(0,+∞)内为增函数,当x ∈(-∞,0)时,e x <1,即f ′(x )=e x -1<0. 故函数f (x )在(-∞,0)内为减函数.[一点通] 利用导数判断可导函数f (x )在(a ,b )内的单调性,步骤是:①求f ′(x );②确定f ′(x )在(a ,b )内的符号;③得出结论.1.下列函数中,在(0,+∞)内为增函数的是( ) A .y =sin 2x B .y =x e xC .y =x 3-xD .y =-x +ln (1+x )解析:y =x e x ,则y ′=e x +x e x =e x (1+x )在(0,+∞)上恒大于0. 答案:B2.证明函数f (x )=x +sin x 在R 上是增函数. 证明:f ′(x )=1+cos x ,∵-1≤cos x ≤1,∴0≤1+cos x ≤2,当且仅当cos x =-1,即x =(2k +1)π(k ∈Z )时,f ′(x )=0. ∴f (x )=x +sin x 在R 上是增函数.3.讨论函数f (x )=bxx 2-1(-1<x <1,b ≠0)的单调性.[对应学生用书P15]解:∵f ′(x )=b (x 2-1)-bx ·2x (x 2-1)2=-b (x 2+1)(x 2-1)2,∴当b <0时,f ′(x )>0,故f (x )在(-1,1)上是增函数, 当b >0时,f ′(x )<0,故f (x )在(-1,1)上是减函数.[例2] 求函数f (x )=x 2-ln x 2的单调区间.[思路点拨] 求定义域―→求导数f ′(x )并分解因式―→ 在定义域内议论导数f ′(x )的符号―→写出单调区间[精解详析] 函数f (x )=x 2-ln x 2的定义域为(-∞,0)∪(0,+∞),又f ′(x )=2x -2x =2(x 2-1)x =2(x -1)(x +1)x,由f ′(x )>0得-1<x <0或x >1;由f ′(x )<0得x <-1或0<x <1.因此,函数f (x )的单调递增区间是(-1,0),(1,+∞);单调递减区间是(-∞,-1),(0,1). [一点通] 确定可导函数f (x )的单调区间应遵循下列步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)解不等式f ′(x )>0,f ′(x )<0; (4)写出函数的单调区间.4.函数f (x )=5x 2-2x 的单调增区间是( ) A.⎝⎛⎭⎫15,+∞ B.⎝⎛⎭⎫-∞,15 C.⎝⎛⎭⎫-15,+∞ D.⎝⎛⎭⎫-∞,-15 解析:由f ′(x )=10x -2>0得x >15,即增区间为⎝⎛⎭⎫15,+∞. 答案:A5.求函数f (x )=e xx -2的单调区间.解:函数f (x )的定义域为(-∞,2)∪(2,+∞). f ′(x )=e x (x -2)-e x (x -2)2=e x (x -3)(x -2)2. 因为x ∈(-∞,2)∪(2,+∞), 所以e x >0,(x -2)2>0. 由f ′(x )>0得x >3,所以函数f (x )的单调递增区间为(3,+∞);由f ′(x )<0得x <3,又定义域为(-∞,2)∪(2,+∞), 所以函数f (x )的单调递减区间为(-∞,2)和(2,3).[例3] (12分)已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a 的取值范围.[精解详析] f ′(x )=2x -a x 2=2x 3-ax2.⇨(2分)要使f (x )在[2,+∞)上是单调递增的, 则f ′(x )≥0在x ∈[2,+∞)时恒成立, 即2x 3-ax 2≥0在x ∈[2,+∞)时恒成立.⇨(5分)∵x 2>0,∴2x 3-a ≥0,∴a ≤2x 3在x ∈[2,+∞)上恒成立, ∴a ≤(2x 3)min .⇨(7分)∵x ∈[2,+∞),y =2x 3是单调递增的, ∴(2x 3)min =16,∴a ≤16.⇨(10分)当a =16时,f ′(x )=2x 3-16x 2≥0(x ∈[2,+∞)),有且只有f ′(2)=0,∴a 的取值范围是(-∞,16].⇨(12分)[一点通] 已知f (x )在区间(a ,b )上的单调性,求参数范围的方法:(1)利用集合的包含关系处理:f (x )在(a ,b )上单调递增(减),则区间(a ,b )是相应单调区间的子集;(2)利用不等式的恒成立处理:f (x )在(a ,b )上单调递增(减),则f ′(x )≥0(f ′(x )≤0)在(a ,b )内恒成立,注意验证等号对有限个x 成立.6.如果函数f (x )=2x 3+ax 2+1(a ≠0)在区间(-∞,0)和(2,+∞)内单调递增,且在区间(0,2)内单调递减,则常数a 的值为( )A .1B .2C .-6D .-12解析:f ′(x )=6x 2+2ax ,令6x 2+2ax <0,当a >0时,解得-a3<x <0,不合题意;当a <0时,解得0<x <-a 3,由题意知-a3=2,a =-6.答案:C7.若函数f (x )=ax 3-x 2-x -5的单调递减区间是⎝⎛⎭⎫-13,1,求实数a 的值. 解:因为f ′(x )=3ax 2-2x -1,且函数f (x )=ax 3-x 2-x -5的单调递减区间是⎝⎛⎭⎫-13,1,所以3ax 2-2x -1<0的解集为⎝⎛⎭⎫-13,1,则-13,1是方程3ax 2-2x -1=0的两根且a >0,代入可得a =1.8.已知f (x )=x 3-ax -1,若f (x )在区间(-1,1)上不单调,求a 的取值范围. 解:∵f (x )=x 3-ax -1,∴f ′(x )=3x 2-a . 由f ′(x )=0,得x =±3a3(a ≥0), ∵f (x )在区间(-1,1)上不单调, ∴0<3a3<1,即0<a <3.1.在利用导数来讨论函数的单调区间时,首先要确定函数的定义域,只能在定义域内通过讨论导数的符号来确定函数的单调区间.2.一般利用使导数等于零的点来对函数划分单调区间. 3.当给定问题中含有字母参数时,需要分类讨论确定单调区间. 4.两个单调性相同的区间,不能用并集符号连接.[对应课时跟踪训练(六)]1.函数y =12x 2-ln x 的单调减区间为( )A .(0,1)B .(0,1)∪(-∞,-1)C .(0,1)∪(1,+∞)D .(0,+∞)解析:y ′=x -1x =(x -1)(x +1)x ,∵x >0,∴由y ′<0得x <1,∴0<x <1.答案:A2.设f ′(x )是函数f (x )的导数,y =f ′(x )的图像如图所示,则y =f (x )的图像最有可能是选项中的( )解析:由y =f ′(x )的图像得:当-1<x <1时,f ′(x )>0,所以y =f (x )在(-1,1)上单调递增.因为当x <-1和x >1时,f ′(x )<0,所以y =f (x )在(-∞,-1),(1 ,+∞)上分别单调递减.综合选项得只有B 正确.答案:B3.已知函数f (x )=x +ln x ,则有( ) A .f (2)<f (e)<f (3) B .f (e)<f (2)<f (3) C .f (3)<f (e)<f (2)D .f (e)<f (3)<f (2)解析:在(0,+∞)上,f ′(x )=12x +1x>0,所以f (x )在(0,+∞)上是增函数,所以有f (2)<f (e)<f (3).答案:A4.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( ) A .[1,+∞) B .[0,1] C .(-∞,1]D .(0,1)解析:f ′(x )=3x 2-2ax -1,∵f (x )在(0,1)内单调递减,∴不等式3x 2-2ax -1≤0在(0,1)内恒成立,∴f ′(0)≤0,f ′(1)≤0,∴a ≥1. 答案:A5.函数f (x )=sin x -2x 的单调递减区间是________. 解析:∵f ′(x )=cos x -2<0,∴f (x )在R 上为减函数. 答案:(-∞,+∞)6.若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是________.解析:若函数y =-43x 3+bx 有三个单调区间,则y ′=-4x 2+b =0有两个不相等的实数根,所以b >0.答案:(0,+∞)7.已知函数y =ax 与y =-bx 在(0,+∞)上都是减函数,试确定函数y =ax 3+bx 2+5的单调区间.解:∵函数y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0.由y =ax 3+bx 2+5,得y ′=3ax 2+2bx . 令y ′>0,得3ax 2+2bx >0, ∴-2b3a<x <0.令y ′<0,得3ax 2+2bx <0, ∴x <-2b3a或x >0.∴函数y =ax 3+bx 2+5的单调递增区间为⎝⎛⎭⎫-2b 3a ,0,单调递减区间为⎝⎛⎭⎫-∞,-2b 3a 和(0,+∞).8.已知函数f (x )=13x 3+ax 2+bx ,且f ′(-1)=-4,f ′(1)=0.(1)求a 和b ;(2)试确定函数f (x )的单调区间; (3)求证当x >3时,f (x )>9.解:(1)∵f (x )=13x 3+ax 2+bx ,∴f ′(x )=x 2+2ax +b ,由f ′(-1)=-4,f ′(1)=0得⎩⎪⎨⎪⎧1-2a +b =-4,1+2a +b =0.解得a =1,b =-3.(2)由(1)得f (x )=13x 3+x 2-3x ,f ′(x )=x 2+2x -3=(x -1)(x +3). 由f ′(x )>0得x >1或x <-3; 由f ′(x )<0得-3<x <1.∴f (x )的单调递增区间为(-∞,-3),(1,+∞),单调递减区间为(-3,1). (3)证明:由(2)知f (x )在(3,+∞)上是增函数, ∴x >3时,f (x )>f (3)=9.。
选修2-2 1.3.1一、选择题1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是()A.b2-4ac>0B.b>0,c>0C.b=0,c>0 D.b2-3ac<0[答案] D[解析]∵a>0,f(x)为增函数,∴f′(x)=3ax2+2bx+c>0恒成立,∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0.2.(2009·广东文,8)函数f(x)=(x-3)e x的单调递增区间是() A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)[答案] D[解析]考查导数的简单应用.f′(x)=(x-3)′e x+(x-3)(e x)′=(x-2)e x,令f′(x)>0,解得x>2,故选D.3.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则该函数的单调递减区间为()A.[-1,+∞) B.(-∞,2]C.(-∞,-1)和(1,2) D.[2,+∞)[答案] B[解析]令k≤0得x0≤2,由导数的几何意义可知,函数的单调减区间为(-∞,2].4.已知函数y=xf′(x)的图象如图(1)所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是()[答案] C[解析]当0<x<1时xf′(x)<0∴f′(x)<0,故y=f(x)在(0,1)上为减函数当x>1时xf′(x)>0,∴f′(x)>0,故y=f(x)在(1,+∞)上为增函数,因此否定A、B、D故选C.7.(2007·福建理,11)已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时() A.f′(x)>0,g′(x)>0 B.f′(x)>0,g′(x)<0C .f ′(x )<0,g ′(x )>0D .f ′(x )<0,g ′(x )<0[答案] B [解析] f (x )为奇函数,g (x )为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),∴x <0时,f ′(x )>0,g ′(x )<0.8.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .af (b )≤bf (a )D .bf (a )≤af (b ) [答案] C[解析] ∵xf ′(x )+f (x )≤0,且x >0,f (x )≥0,∴f ′(x )≤-f (x )x ,即f (x )在(0,+∞)上是减函数,又0<a <b ,∴af (b )≤bf (a ).9.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)[答案] C[解析] 由(x -1)f ′(x )≥0得f (x )在[1,+∞)上单调递增,在(-∞,1]上单调递减或f (x )恒为常数,故f (0)+f (2)≥2f (1).故应选C.10.(2010·江西理,12)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为S (t )(S (0)=0),则导函数y =S ′(t )的图像大致为( )[答案] A[解析] 由图象知,五角星露出水面的面积的变化率是增→减→增→减,其中恰露出一个角时变化不连续,故选A. 二、填空题11.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b的范围为________.[答案] b <-1或b >2[解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +2)≤0,∴-1≤b ≤2,由题意b <-1或b >2.12.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,实数a 的取值范围为________.[答案] a ≥1[解析] 由已知a >1+ln x x 在区间(1,+∞)内恒成立.设g (x )=1+ln x x ,则g ′(x )=-ln x x 2<0 (x >1),∴g (x )=1+ln x x 在区间(1,+∞)内单调递减,∴g (x )<g (1),∵g (1)=1,∴1+ln x x <1在区间(1,+∞)内恒成立,∴a ≥1.14.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是____________.[答案] [3,+∞)[解析] y ′=3x 2-2ax ,由题意知3x 2-2ax <0在区间(0,2)内恒成立,即a >32x 在区间(0,2)上恒成立,∴a ≥3.三、解答题15.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11).(1)求a 、b 的值;(2)讨论函数f (x )的单调性.[解析] (1)求导得f ′(x )=3x 2-6ax +3b .由于f (x )的图象与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12,即⎩⎨⎧ 1-3a +3b =-113-6a +3b =-12,解得a =1,b =-3. (2)由a =1,b =-3得f ′(x )=3x 2-6ax +3b =3(x 2-2x -3)=3(x +1)(x -3).令f ′(x )>0,解得x <-1或x >3;又令f ′(x )<0,解得-1<x <3. 所以当x ∈(-∞,-1)时,f (x )是增函数;当x ∈(3,+∞)时,f (x )也是增函数;当x ∈(-1,3)时,f (x )是减函数.18.(2010·新课标全国文,21)设函数f (x )=x (e x -1)-ax 2.(1)若a =12,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.[解析] (1)a =12时,f (x )=x (e x -1)-12x 2,f ′(x )=e x -1+xe x -x =(e x -1)(x +1).当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,-1],[0,+∞)上单调递增,在[-1,0]上单调递减.(2)f(x)=x(e x-1-ax).令g(x)=e x-1-ax,则g′(x)=e x-a.若a≤1,则当x∈(0,+∞)时,g′(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.当a>1,则当x∈(0,ln a)时,g′(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,ln a)时g(x)<0,即f(x)<0.综合得a的取值范围为(-∞,1].。
选修2-2 第一章 1.3 1.3.2一、选择题1.已知函数f (x )在点x 0处连续,下列命题中,正确的是( ) A .导数为零的点一定是极值点B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值 [答案] C[解析] 导数为0的点不一定是极值点,例如f (x )=x 3,f ′(x )=3x 2,f ′(0)=0,但x =0不是f (x )的极值点,故A 错;由极值的定义可知C 正确,故应选C.2.(2013·北师大附中高二期中)函数y =14x 4-13x 3的极值点的个数为( )A .0B .1C .2D .3[答案] B[解析] y ′=x 3-x 2=x 2(x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表3.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0[答案] D[解析] y ′=3ax 2+2bx 由题设0和13是方程3ax 2+2bx =0的两根,∴a +2b =0.4.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9[答案] D[解析] f ′(x )=12x 2-2ax -2b =0的一根为x =1,即12-2a -2b =0. ∴a +b =6,∴ab ≤(a +b 2)2=9,当且仅当a =b =3时“=”号成立.5.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad 等于( )A .2B .1C .-1D .-2[答案] A[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3的极大值点, ∴c =3b -b 3,且0=3-3b 2,∴⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =-1,c =-2.∴ad =2. 6.(2013·辽宁实验中学期中)函数f (x )=-x e x (a <b <1),则( )A .f (a )=f (b )B .f (a )<f (b )C .f (a )>f (b )D .f (a ),f (b )的大小关系不能确定[答案] C[解析] f ′(x )=(-x e x )′=(-x )′·e x -(-x )·(e x )′(e x )2=x -1e x. 当x <1时,f ′(x )<0,∴f (x )为减函数, ∵a <b <1,∴f (a )>f (b ). 二、填空题7.(2014·福建安溪一中、养正中学联考)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.[答案] 4x -y -3=0[解析] y ′|x =1=(3ln x +4)|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0. 8.(2014·河北冀州中学期中)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.[答案] [-1,1][解析] f ′(x )=1+a cos x ,由条件知f ′(x )≥0在R 上恒成立,∴1+a cos x ≥0,a =0时显然成立;a >0时,∵-1a ≤cos x 恒成立,∴-1a ≤-1,∴a ≤1,∴0<a ≤1;a <0时,∵-1a≥cos x 恒成立,∴-1a≥1,∴a ≥-1,即-1≤a <0,综上知-1≤a ≤1.9.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =________. [答案] -23[解析] f ′(x )=ax +2bx +1,由题意得⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0.∴a =-23.三、解答题10.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由. [解析] (1)由f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1. [点评] 若函数f (x )在x 0处取得极值,则一定有f ′(x 0)=0,因此我们可根据极值得到两个方程,再由f (1)=-1得到一个方程,解上述方程组成的方程组可求出参数.一、选择题11.(2014·山东省德州市期中)已知函数f (x )=e x (sin x -cos x ),x ∈(0,2013π),则函数f (x )的极大值之和为( )A .e 2π(1-e 2012π)e 2π-1B .e π(1-e 2012π)1-e 2πC .e π(1-e 1006π)1-e 2πD .e π(1-e 1006π)1-e π[答案] B[解析] f ′(x )=2e x sin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增,当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2013π),∴0<(2k +1)π<2013π,∴0≤k <1006,k ∈Z .∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2011π)=e π+e 3π+e 5π+…+e 2011π=e π[1-(e 2π)1006]1-e 2π=e π(1-e 2012π)1-e 2π,故选B.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0B .0,427C .-427,0D .0,-427[答案] A[解析] f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x . 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427.当x =1时f (x )取极小值0.13.(2014·西川中学高二期中)已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( )A .-1<a <2B .-3<a <6C .a <-3或a >6D .a <-1或a >2[答案] C[解析] f ′(x )=3x 2+2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6. 二、填空题14.已知函数y =x 3+ax 2+bx +27在x =-1处有极大值,在x =3处有极小值,则a =________________,b =________.[答案] -3 -9[解析] y ′=3x 2+2ax +b ,方程y ′=0有根-1及3,由韦达定理应有⎩⎨⎧-1+3=-2a3,-3=b 3.∴⎩⎪⎨⎪⎧a =-3,b =-9.经检验a =-3,b =-9符合题意. 三、解答题15.(2013·新课标Ⅰ文,20)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. [解析] (1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)(e x -12).令f ′(x )=0得,x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).16.(2014·三峡名校联盟联考)已知函数f (x )=ln x +x 2+ax . (1)当a =-3时,求函数y =f (x )的极值点;(2)当a =-4时,求方程f (x )+x 2=0在(1,+∞)上的根的个数. [解析] (1)f (x )=ln x +x 2-3x ,f ′(x )=1x +2x -3,令f ′(x )=0,则x =1或x =12,由f ′(x )>0得0<x <12,或x >1,∴f (x )在(0,12)和(1,+∞)上单调递增,在(12,1)上单调递减,∴f (x )的极大值点x =12,极小值点x =1.(2)当a =-4时,f (x )+x 2=0,即ln x +2x 2-4x =0, 设g (x )=ln x +2x 2-4x ,则g ′(x )=1x +4x -4=4x 2-4x +1x ≥0,则g (x )在(0,+∞)上单调递增,又g (1)=-2<0,g (2)=ln2>0, 所以g (x )在(1,+∞)上有唯一实数根.17.(2014·温州八校联考)已知函数f (x )=-x 3+ax 2+b (a 、b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,求实数b 的取值范围. [解析] (1)∵f (x )=-x 3+ax 2+b , ∴f ′(x )=-3x 2+2ax =-3x (x -2a 3).当a =0时,f ′(x )≤0函数f (x )没有单调递增区间; 当a >0时,令f ′(x )>0,得0<x <2a3,函数f (x )的单调递增区间为(0,23a );当a <0时,令f ′(x )>0,得2a3<x <0, 函数f (x )的单调递增区间为(23a,0).(2)由(1)知,a ∈[3,4]时,x 、f ′(x )、f (x )的取值变化情况如下:∴f (x )极小值=f (0)=b ,f (x )极大值=f (2a 3)=4a 327+b ,∵对任意a ∈[3,4],f (x )在R 上都有三个零点, ∴⎩⎪⎨⎪⎧ f (0)<0,f (2a 3)>0,即⎩⎪⎨⎪⎧b <0,4a 327+b >0.得-4a 327<b <0.∵对任意a ∈[3,4],b >-4a 327恒成立,∴b >(-4a 327)max =-4×3327=-4.∴实数b 的取值范围是(-4,0).。
学业分层测评(建议用时: 45 分钟 )[ 学业达标 ]一、选择题1.函数 y= x+ xln x 的单一递减区间是 ()-2)- 2A.(-∞,e B.(0,e )- 2,+∞)2,+∞)C.(e D.(e【分析】因为 y=x+xln x,所以定义域为 (0,+∞).令 y′= 2+ ln x<0,解得 0<x<e-2,即函数 y=x+xln x 的单一递减区间是 (0, e-2),应选 B.【答案】B2.(2016 ·深圳高二检测 )如图 1-3-3 是函数 y= f(x)的导函数 f′(x)的图象,则下面判断正确的选项是 ()图 1-3-3A.在区间 (-2,1)上 f(x)是增函数B.在区间 (1,3)上 f(x)是减函数C.在区间 (4,5)上 f(x)是增函数D.在区间 (3,5)上 f(x)是增函数【分析】由导函数 f′(x)的图象知在区间 (4,5)上,f′(x)>0,所以函数 f(x)在(4,5)上单一递加.应选 C.【答案】C3.若函数 f(x)=ax3-x 在R上是减函数,则 ()A.a≤0B.a<11C.a<2D.a≤3【分析】 f ′(x)=3ax2-1.因为函数 f(x)在R上是减函数,所以f′(x)=3ax2-1≤0 恒建立,所以 a≤0.应选 A.【答案】A4.函数f(x)的定义域为R,f(-1)=2,对随意x∈R,f′(x)>2.则f(x)>2x+4的解集为()A.(-1,1)C.(-∞,-1)【分析】结构函数B.(-1,+∞)D.(-∞,+∞) g(x)=f(x)- (2x+ 4),则 g(-1)=2-(-2+4)=0,又 f′(x)>2.∴g′(x)=f′(x)-2>0,∴ g(x)是R上的增函数.∴f(x)>2x+4? g(x)>0? g(x)>g(-1),∴x>-1.【答案】B5.已知函数 f(x)=- x3+ax2-x-1 在 (-∞,+∞)上是单一函数,则实数a 的取值范围是 ()A.(-∞,-3)∪[ 3,+∞)B.[ -3,3]C.(-∞,-3)∪( 3,+∞)D.(-3,3)【分析】f′(x)=- 3x2+2ax-1≤0 在(-∞,+∞)上恒建立且不恒为0,=4a -12≤0?-3≤a≤3.【答案】B二、填空题6.函数f(x)=x-2sin x在 (0,π)上的单一递加区间为__________.【分析】1令 f′(x)= 1-2cos x>0,则 cos x<2,又πx∈ (0,π),解得 3<x<π,π所以函数的单一递加区间为3,π.π【答案】3,π7.(2016 ·佛山高二检测)函数 1 3 2y = 3x -ax +x -2a 在R 上不是单一函数,则a 的取值范围是【分析】________.2 2a 2>1,解得 a<-1 或 a>1.【答案】 (- ∞,- 1)∪(1,+ ∞)4 38.若函数 y =- 3x + bx 有三个单一区间,则 b 的取值范围是 __________.【导学号: 60030018】4 32【分析】 若函数 y =- 3x+bx 有三个单一区间,则 y ′=- 4x +b =0 有两个不相等的实数根,所以 b>0.【答案】 (0,+ ∞)三、解答题9.(2016 ·林高二检测吉 )定义在 R 上的函数 f(x)=ax 3+bx 2+cx +3 同时知足以下条件:① f (x)在(-∞,- 1)上是增函数,在 (- 1,0)上是减函数; ②f(x)的导函数是偶函数;③f(x)在 x = 0 处的切线与第一、三象限的角均分线垂直. 求函数 y =f(x)的分析式. 【解】 f ′(x)= 3ax 2+2bx +c ,因为 f(x)在(- ∞,- 1)上是增函数,在 (-1,0)上是减函数,所以 f ′(-1)= 3a -2b +c = 0.① 由 f(x)的导函数是偶函数,得 b = 0,②又 f(x)在 x =0 处的切线与第一、三象限的角均分线垂直, 所以 f ′(0)=c =- 1,③1由①②③得 a = 3, b = 0, c =- 1,1 3即 f(x)= 3x - x + 3.10.若函数 f(x)=x 3-mx 2+ 2m 2-5 的单一递减区间是 (-9,0),求 m 的值及函数的其余单一区间.【解】因为 f′(x)= 3x2- 2mx,所以 f′(x)<0,即 3x2-2mx<0.由题意,知 3x2- 2mx<0 的解集为 (- 9,0),即方程 3x2-2mx= 0 的两根为 x1=- 9, x2=0.- 2m27.由根与系数的关系,得-3=- 9,即 m=-2所以 f′(x)=3x2+27x.令 3x2+ 27x>0,解得 x>0 或 x<- 9.故(-∞,- 9),(0,+∞)是函数 f(x)的单一递加区间.27综上所述,m 的值为-2,函数 f(x)的单一递加区间是 (-∞,-9),(0,+∞).[ 能力提高 ]1.已知函数 y=f(x),y=g(x)的导函数的图象如图1-3-4 所示,那么 y=f′(x),y=g′(x)的图象可能是 ()图 1-3-4【分析】由题图,知函数 g′(x)为增函数, f′(x)为减函数,且都在 x 轴上方,所以 g(x)的图象上任一点的切线的斜率都大于0 且在增大,而 f(x)的图象上任一点的切线的斜率都大于0 且在减小.又由 f′(x0=′(0,知选)g x )D.【答案】D2.设 f(x),g(x)是定义在R上的恒大于 0 的可导函数,且 f′(x)g(x)-f(x)g′(x)<0,则当 a<x<b 时有 () A.f(x)g(x)>f(b)g(b)B.f(x)g(a)>f(a)g(x)C.f(x)g(b)>f(b)g(x)D.f(x)g(x)>f(a)g(a)【分析】因为fx′=g xf xg x -f x g x f xg2x.又因为 f ′(x)g(x)- f(x)g′(x)<0,所以g x在 Rf a f x f b上为减函数.又因为 a<x<b,所以g a>g x>g b,又因为 f(x)>0,g(x)>0,所以 f(x)g(b)>f(b)g(x).所以选 C.【答案】 C32是 R 上的单一函数,则3.(2016 亳·州高二检测 )若函数 f(x)=x+x + mx+1实数 m 的取值范围为 ________.【分析】 f′(x)=3x2+2x+m,因为 f(x)是R上的单一函数,所以f′(x)≥0 或f′(x)≤0 恒建立.因为导函数的二次项系数3>0,所以只好有 f′(x)≥0 恒建立.法一由上述议论可知要使f′(x)≥0 恒建立,只需使方程 3x2+2x+ m=0 的判13经查验,当 m=13时,只有个别点使f′(x)=0,切合题意.1所以实数 m 的取值范围是 m≥ .3法二3x2+2x+ m≥0 恒建立,即 m≥-3x2-2x 恒建立.设 g(x)=- 3x2-2x=- 3 x+132+13,易知函数 g(x)在R上的最大值为13,所1以 m≥ .31经查验,当 m=3时,只有个别点使f′(x)=0,切合题意.1所以实数 m 的取值范围是 m≥ .31【答案】3,+∞224.设函数 f(x)=a ln x- x +ax(a>0).(1)求 f(x)的单一区间;2(2)求全部的实数a,使 e-1≤f(x) ≤e对 x∈[1,e]恒建立.【解】(1)∵f(x)=a2ln x-x2+ ax,此中 x>0,a2∴f′(x)=x-2x+ a=-x- ax+ a,x因为 a>0,∴ f(x)的增区间为 (0,a),减区间为 (a,+∞).(2)由题意得, f(1)=a- 1≥e-1,即 a≥e,由(1)知 f(x)在 [1,e]上单一递加,要使 e- 1≤f(x)≤e2对 x∈[1 ,e]恒建立,f=a-1≥e-1,只需222f=a -e +ae≤e ,。
选修2-2导数练习题及答案1.下列说法正确的是( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D. 闭区间上的连续函数一定存在最大值与最小值2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3。
如果质点A 按规律s=2t 3运动,则在t=3 s 时的瞬时速度为( )A. 6m/sB. 18m/sC. 54m/sD. 81m/s 4已知xf x f x x f x ∆-∆+=→∆)2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 41 D. -2 5.11||x dx -⎰=( )A .0B .12C .1D .2 6. 下列求导运算正确的是 ( )A 、211()1x x xB 、3(3)3log x x eC 、 2(cos )2sin x x x xD 、 21(log )ln 2x x 7.一物体在力10,02F()3x 4,(2)x x x ≤≤⎧=⎨+>⎩()(单位:N )的作用下沿与力F 相同方向,从x=0处运动到x=4(单位:m )处,则力F (x )做的功为( )A .44B .46C .48D .508、下列函数中,在),0(+∞上为增函数的是( )A.x y 2sin =B.x xe y =C.x x y -=3D.x x y -+=)1ln(9.方程3269m 0x x x -++=恰有三个不等的实根,则实数m 的取值范围是( ) A .(,4)-∞- B. (4,0)- C .,4)0-∞-+∞((,) D.0+∞(,)s OA . s O s O sO B . C . D .10.若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( ) A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞-11.已知数列{}n a 的首项11a =,且()1212n n a a n -=+≥,则5a = 。
一、选择题1.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( )A .()1,+∞B .[)3,+∞C .(],1-∞D .(],3-∞2.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( )A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞3.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞D .()8,+∞4.若曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e5.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .6.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞7.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r8.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃9.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e) 10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .1212.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln2+ D .ln21-二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫= ⎪⎝⎭()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.15.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____.16.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .17.函数()()21xf x x =-的最小值是______.18.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.19.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;22.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为 (米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升). (1)求y 关于v 的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v 取什么值时,总用氧量最少. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.25.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计? 26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.2.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x=-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减, ∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 3.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-, 故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.4.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由xy e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>. ∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.5.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.6.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立, 即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.7.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=,得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.8.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.9.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】 由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x=有两个交点, 又由()312ln xg x x-'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.A解析:A【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论.【详解】设函数()()()2ln 0=-=->y f x g x x x x , ()212120-'∴=-=>x y x x x x, 令0y '<,0x,02∴<<x,函数在2⎛⎫ ⎪⎝⎭上为单调减函数; 令0y '>,0x,∴>x,函数在⎫+∞⎪⎪⎝⎭上为单调增函数.2x ∴=时,函数取得极小值,也是最小值为111ln ln 22222-=+. 故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+.故选:A.【点睛】本题主要考查利用导数研究函数的最值,属于中档题.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m > 【分析】 转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果.【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点,当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m >【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x'-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()6sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.15.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭, 【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围.【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnx f x x-=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ; 故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.16.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可.【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为22GE x = cm , 因为302x AE AH -== cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm , 所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.17.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为解析:14- 【分析】对()f x 求导,利用导数即可求得函数单调性和最小值,【详解】因为()()21xf xx=-,故可得()()311xf xx---'=,令()0f x'=,解得1x=-;故当(),1x∈-∞-时,()f x单调递减;当()1,1x∈-时,()f x单调递增;当()1,x∈+∞时,()f x单调递减.且()114f-=-,当x趋近于1时()f x趋近于正无穷;当x趋近于正无穷时,()f x趋近于零.函数图像如下所示:故()f x的最小值为14-.故答案为:14-.【点睛】本题考查利用导数研究函数的最值,属综合基础题.18.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln,0()log,0xxf x xx x+⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m的取值范围.【详解】当0x >时,2ln ()x f x x'=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →; 作出函数21ln ,0()log ,0x x f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<; 故答案为:1(0,)2.【点睛】 本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.19.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x +=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】 ()1ln 2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-. ∴ln 1x a x+=在0x >时有两个根,令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==- 当01x <<时,'()0g x >,当1x >时,'()0g x <, ∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<.【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导 解析:18a ≥ 【分析】依题意可得()210a f x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210a f x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x = 所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题. 三、解答题21.(1)答案见解析;(2)[)1,+∞.【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果.【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x a h x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>; ()h x ∴在(上单调递减,在)+∞上单调递增. (2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2a t x x x '=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200a x x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max 21x x-+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】 关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22.(1)见解析;(2)若c<3102,则当v =3102时,总用氧量最少;若c≥3102,则当v =c 时,总用氧量最少.【分析】(1)结合题意可得y 关于v 的函数关系式.(2)由(1)中的函数关系,求导后得到当0<v<3102时,函数单调递减;当v>3102时,函数单调递增.然后再根据c 的取值情况得到所求的速度. 【详解】(1)由题意,下潜用时 (单位时间),用氧量为×=+ (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时= (单位时间),用氧量为×1.5= (升), 因此总用氧量232409,(0)50v y v v=++>. (2)由(1)得232409,(0)50v y v v=++>, ∴y′=-=,令y′=0得v =32当0<v<3102y′<0,函数单调递减;当v>32y′>0,函数单调递增.①若c<32 ,则函数在(c ,32上单调递减,在(310215)上单调递增, ∴ 当v =32②若c≥32,则y 在[c ,15]上单调递增,∴ 当v =c 时,总用氧量最少.【点睛】(1)在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.(2)用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间.(2)m <0 .【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+ 令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m, 令:21()(2)022xxx e f x xe x e x x =+'=+= ∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e-===∴∈, ∴m <0 25.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+- 因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,.【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x ≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122m x x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解.【详解】(1)()f x 的定义域为(0,)+∞,∵()f x 在(0,)+∞上单调递增, ∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=, ∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122m x x +=,121x x ⋅=, ∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+ ()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+- 2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x ---+--=-+='=<, ∴()g x 在1,12⎛⎫ ⎪⎝⎭上为减函数, 又1111544ln 4ln 22424g ⎛⎫=-+=- ⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。
(完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改)的全部内容。
1.3。
1函数的单调性与导数[学习目标] 1.结合实例,直观探索并掌握函数的单调性与导数的关系。
2。
能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数的最高次数一般不超过三次).知识点一函数的单调性与其导数的关系在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)〉0单调递增f′(x)<0单调递减f′(x)=0常函数思考以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易,如何利用导数来判断函数的单调性?答案根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减。
知识点二利用导数求函数的单调区间利用导数确定函数的单调区间的步骤:(1)确定函数f(x)的定义域.(2)求出函数的导数f′(x).(3)解不等式f′(x)>0,得函数的单调递增区间;解不等式f′(x)<0,得函数的单调递减区间。
导学案利用导数判断函数的单调性(练习课)——导数运算中的函数构造高考对导数的考查常以函数为依托,将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机的结合在一起,设计综合试题,从而考查函数、导数的基础知识和基本方法. 解决这类有关的问题,需要借助构造函数,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题. 一、相关知识回顾与例题(一)、利用导数的运算法则构造函数1. 若()()0f x f x '+>(或0<),则可构造函数()F x =________________________;2. 若()()0f x f x '->(或0<),则可构造函数()F x =________________________;3. 若()()0f x nf x '+>(或0<),则可构造函数()F x =_______________________(*n N ∈). 4. 若()()0f x nf x '->(或0<),则可构造函数()F x =________________________(*n N ∈). 5. 若()()0nf x f x '+>(或0<),则可构造函数()F x =________________________,(*n N ∈).6. 若()()0nf x f x '->(或0<),则可构造函数()F x =________________________ (*n N ∈).7. 若()()mf x nf x t '+=(,,m n t 为常数),则可设()f x =_________________________________. 8. 若()()0f x x f x '+⋅>(或0<),则可构造函数()F x =________________________; 9. 若()()0f x x f x '-⋅>(或0<),则可构造函数()F x =________________________;例:1、(2015全国II 卷,理12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A . (,1)(0,1)-∞-⋃ B. (1,0)(1,)-⋃+∞ C. (,1)(1,0)-∞-⋃- D.(0,1)(1,)⋃+∞例:2、设函数()f x '是函数()()f x x R ∈的导函数,()f x 不是常函数,且(1)()()x f x x f x '++≥,对任意[0,)x ∈+∞恒成立,则下列不等式一定成立的是A . (1)2(2)f ef < B. (1)(2)ef f < C. (1)0f < D. ()2(2)ef e f <例:3、设函数()f x '是函数()()f x x R ∈的导函数,(0)1f =,且1()()13f x f x '=-,则4()()f x f x '>的解集为A. ln 4(,)3+∞ B . ln 2(,)3+∞ C. )+∞ D. )+∞(二)、利用已知条件中的不等式构造函数例:4、函数()()f x x R ∈的导函数为()f x ',对于任意的实数x ,都有()4034f x x '<,若(1)()40342017f t f t t +--<+,则实数t 的取值范围是A . 1(,)2-+∞ B. 3(,)2-+∞ C. 1(,)2-∞- D. 3(,)2-∞-(三)、变形构造函数例:5、设函数()1x f x e -=-.证明:当x >-1时,()1xf x x ≥+.(四)、分离含相同变量的表达式构造函数例:6、已知函数2()2ln f x x a x =+,若对任意两个不等的正数12,x x (12x x >),都有1212()()8()f x f x x x ->-成立,则实数a 的取值范围是A . 4a ≥ B. 3a ≥ C. 2a ≥ D.以上答案均不对(五)、化离散为连续构造函数例:7、 证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>- ⎪⎝⎭都成立.二、练习1、已知,a b R ∈是实数,且e a b <<,其中e 是自然对数的底数,则b a 与a b 的大小关系是 ( )A .b a a b >B .b a a b <C .b a a b =D .b a 与a b 的大小关系不确定2、(2017大连二模12)已知函数()f x 的导函数()f x '满足(2)[()()]0x f x f x '-->,且42(4)()x f x e f x --=,则下列关于()f x 的命题正确的是( )A. 2(3)(1)f e f > B .(3)(2)f ef < C .4(4)(0)f e f < D .5(4)(1)f e f <-3、已知定义在R 上的可导函数()f x 的导函数为()'f x ,满足()()'f x f x <,且()3f x +为偶函数, ()61f =,则不等式()x f x e >的解集为( )A . (),0-∞ B. ()0,+∞ C. ()1,+∞ D. ()4,+∞4、已知定义在R 上的函数()f x 满足()21f =,且()f x 的导函数()'1f x x >-,则不等式()2112f x x x <-+的解集为( ) A. {|22}x x -<< B. {|2}x x > C . {|2}x x < D. {|2x x <-或2}x >三、课后作业1、函数()f x 的定义域是R , ()02f =,对任意x R ∈, ()()'1f x f x +>,则不等式()•1x x e f x e >+的解集为( )A . {|0}x x > B. {|0}x x < C. { |1x x <-,或1x >} D. { |1x x <-,或01x <<}2、已知()f x 是定义在R 上的函数,导函数()'f x 满足()()'f x f x <对于x R ∈恒成立,则( )A. ()()220e f f -<, ()()201720170f ef < B. ()()220e f f -<, ()()201720170f e f > C . ()()220e f f ->, ()()201720170f ef < D. ()()220e f f ->, ()()201720170f e f >3、当0m n >>时,证明:n m me n ne m +<+.4、已知函数()ln f x x =,()212g x x bx =-(b 为常数). 若2b ≥,[]12,1,2x x ∀∈,且12x x ≠,都有()()()()1212f x f x g x g x ->-成立,求实数b 的取值范围.5、已知函数()()2131ln 2f x x x a x =-+-,()g x ax =,()()()3h x f x g x x =-+,其中a R ∈且1a >.若对任意的()12,0,x x ∈+∞,12x x ≠,函数()h x 满足()()12121h x h x x x ->--,求实数a 的取值范围.四、思考与总结:哪些问题可以通过构造函数解决?。
1.3 导数在研究函数中的应用1.3.1单调性1.利用导数研究函数的单调性.(重点)2.含有字母参数的函数单调性的讨论,单调区间的求解.(难点)3.由单调性求参数的取值范围.(易错点)[基础·初探]教材整理函数的单调性与其导数的关系阅读教材P28“例1”以上部分,完成下列问题.1.函数的单调性与其导数的关系(1)一般地,在某区间上函数y=f(x)的单调性与导数有如下关系:(2)2.导数与函数图象间的关系(1)导函数图象在x轴上方的区间为原函数的单调增区间,导函数图象在x轴下方的区间为原函数的单调减区间.(2)一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”;反之,函数的图象就“平缓”一些.1.判断正误:(1)若函数f(x)在(a,b)上是增函数,则对任意x∈(a,b),都有f′(x)>0.( )(2)函数f(x)=1x在其定义域上是单调减函数.( )(3)函数f(x)=x3-2x在(1,+∞)上单调递增.( )(4)若存在x∈(a,b)有f′(x)=0成立,则函数f(x)为常数函数.( )【答案】(1)×(2)×(3)√(4)×2.函数f(x)=(x-3)e x的单调递增区间是________.【解析】f′(x)=(x-3)′e x+(x-3)(e x)′=(x-2)e x,令f′(x)>0,解得x>2.【答案】(2,+∞)[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_______________________________________________解惑:_______________________________________________疑问2:_______________________________________________解惑:_______________________________________________疑问3:_______________________________________________解惑:_______________________________________________[小组合作型](1)0)内是减函数.(2)判断函数f(x)=ln xx在区间(0,2)上的单调性.【精彩点拨】求出导数f′(x),然后判断导数的符号即可.【自主解答】(1)证明:由于f(x)=e x-x-1,所以f′(x)=e x-1,当x∈(0,+∞)时,e x>1,即f′(x)=e x-1>0.故函数f(x)在(0,+∞)内为增函数,当x∈(-∞,0)时,e x<1,即f′(x)=e x-1<0. 故函数f(x)在(-∞,0)内为减函数.(2)由于f(x)=ln x x,所以f′(x)=1x·x-ln xx2=1-ln xx2.由于0<x<2,所以ln x<ln 2<1,x2>0.故f′(x)=1-ln xx2>0.∴函数f(x)在区间(0,2)上是单调递增函数.1.利用导数证明函数f(x)在给定区间上的单调性,实质上就是证明f′(x)>0(或f′(x)<0)在给定区间上恒成立.2.利用导数判断可导函数f(x)在(a,b)内的单调性,步骤是:(1)求f′(x);(2)确定f′(x)在( a,b)内的符号;(3)得出结论.[再练一题]1.证明:函数y=ln x+x在其定义域内为增函数.【证明】显然函数的定义域为{x|x>0},又f′(x)=(ln x+x)′=1x+1,当x>0时,f′(x)>1>0,故y=ln x+x在其定义域内为增函数.(1)f(x)=x2-ln x;(2)f(x)=exx-2;(3)f (x )=-x 3+3x 2.【精彩点拨】 首先确定函数的定义域,再求导数,进而解不等式得单调区间. 【自主解答】 (1)函数f (x )的定义域为(0,+∞). f ′(x )=2x -1x=错误!.因为x >0,所以2x +1>0,由f ′(x )>0,解得x >22,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎪⎫22,+∞; 由f ′(x )<0,解得x <22,又x ∈(0,+∞),所以函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎪⎫0,22. (2)函数f (x )的定义域为(-∞,2)∪(2,+∞). f ′(x )=错误!=错误!.因为x ∈(-∞,2)∪(2,+∞), 所以e x >0,(x -2)2>0.由f ′(x )>0,解得x >3,所以函数f (x )的单调递增区间为(3,+∞);由f ′(x )<0,解得x <3,又x ∈(-∞,2)∪(2,+∞),所以函数f (x )的单调递减区间为(-∞,2)和(2,3).(3)函数f (x )的定义域为R . f ′(x )=-3x 2+6x =-3x (x -2).当0<x <2时,f ′(x )>0,所以函数f (x )的单调递增区间为(0,2);当x <0或x >2时,f ′(x )<0,所以函数f (x )的单调递减区间为(-∞,0)和(2,+∞).利用导数求函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)由f ′(x )>0(或f ′(x )<0),解出相应的x 的范围;当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应区间上是减函数.(4)结合定义域写出单调区间.[再练一题]2.若函数f (x )=x 2-2x -4ln x ,则函数f (x )的单调递增区间为________.【导学号:01580011】【解析】 由已知f (x )的定义域为(0,+∞), f ′(x )=2x -2-4x =2x2-2x -4x,由f ′(x )>0得x 2-x -2>0,解得x <-1或x >2, 又x >0,所以函数f (x )的单调递增区间为(2,+∞). 【答案】 (2,+∞)[探究共研型]探究【提示】 由已知得f ′(x )=3x 2-a , 因为f (x )在(-∞,+∞)上是单调增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立,因为3x 2≥0,所以只需a ≤0. 又因为a =0时,f ′(x )=3x 2≥0, f (x )=x 3-1在R 上是增函数,所以a ≤0.探究2 若函数f (x )=x +ax +ln x (a ∈R )在(1,+∞)上单调递增,求a 的取值范围.【提示】 函数f (x )的定义域为(0,+∞),f ′(x )=1-ax2+1x =x2+x -ax由题意知,f ′(x )≥0在(1,+∞)上恒成立, 即x 2+x -a ≥0在(1,+∞)上恒成立, 令g (x )=x 2+x -a =⎝ ⎛⎭⎪⎪⎫x +122-14-a ,则g (x )>2-a ,从而2-a ≥0,∴a ≤2. 当a =2时,f ′(x )>0在(1,+∞)上恒成立, 因此实数a 的取值范围是(-∞,2].已知关于x 的函数y =x 3-ax +b .(1)若函数y 在(1,+∞)内是增函数,求a 的取值范围; (2)若函数y 的一个单调递增区间为(1,+∞),求a 的值.【精彩点拨】 (1)函数在区间(1,+∞)内是增函数,则必有y ′≥0在(1,+∞)上恒成立,由此即可求出a 的取值范围.(2)函数y 的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值.【自主解答】 y ′=3x 2-a .(1)若函数y =x 3-ax +b 在(1,+∞)内是增函数. 则y ′=3x 2-a ≥0在x ∈(1,+∞)时恒成立, 即a ≤3x 2在x ∈(1,+∞)时恒成立, 则a ≤(3x 2)最小值. 因为x >1,所以3x 2>3.所以a ≤3,即a 的取值范围是(-∞,3]. (2)令y ′>0,得x 2>a3.若a ≤0,则x 2>a3恒成立,即y ′>0恒成立,此时,函数y =x 3-ax +b 在R 上是增函数,与题意不符. 若a >0,令y ′>0,得x >a 3或x <-a 3.因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a =3.1.解答本题注意:可导函数f (x )在(a ,b )上单调递增(或单调递减)的充要条件是f ′(x )≥0(或f ′(x )≤0)在(a ,b )上恒成立,且f ′(x )在(a ,b )的任何子区间内都不恒等于0.2.已知f (x )在区间(a ,b )上的单调性,求参数范围的方法(1)利用集合的包含关系处理f (x )在(a ,b )上单调递增(减)的问题,则区间(a ,b )是相应单调区间的子集;(2)利用不等式的恒成立处理f (x )在(a ,b )上单调递增(减)的问题,则f ′(x )≥0(f ′(x )≤0)在(a,b)内恒成立,注意验证等号是否成立.[再练一题]3.将上例(1)改为“若函数y在(1,+∞)上不单调”,则a的取值范围又如何?【解】y′=3x2-a,当a<0时,y′=3x2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y在(1,+∞)上不单调,即y′=3x2-a=0在区间(1,+∞)上有根.由3x2-a=0可得x=a3或x=-a3(舍去).依题意,有a3>1,∴a>3,所以a的取值范围是(3,+∞).[构建·体系]1.设函数f(x)在定义域内可导,y=f(x)的图象如图1-3-1所示,则导函数y=f′(x)的图象可能是( )图1-3-1【解析】当x<0时,f(x)为增函数,f′(x)>0,排除①,③;当x>0时,f(x)先增后减再增,对应f ′(x )先正后负再正.故选④.【答案】 ④2.下列函数中,在区间(-1,1)上是减函数的有________(填序号). ①y =2-3x 2;②y =ln x ;③y =1x -2;④y =sin x .【解析】 显然,函数y =2-3x 2在区间(-1,1)上是不单调的; 函数y =ln x 的定义域为(0,+∞),不满足题目要求; 对于函数y =1x -2,其导数y ′=错误!<0,且函数在区间(-1,1)上有意义,所以函数y =错误!在区间(-1,1)上是减函数;函数y =sin x 在⎝ ⎛⎭⎪⎪⎫-π2,π2上是增函数,所以函数y =sin x 在区间(-1,1)上也是增函数.【答案】 ③3.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.【解析】 f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2. 【答案】 (1,2)4.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________.【解析】 f ′(x )=错误!,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,12.【答案】 ⎝⎛⎭⎪⎪⎫-∞,125.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x2-2x恒成立,所以a ≥G (x )最大值,而G (x )=⎝ ⎛⎭⎪⎪⎫1x -12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎢⎡⎦⎥⎥⎤14,1,所以G (x )最大值=-716(此时x =4), 所以a ≥-716. 当a =-716时,h ′(x )=1x +716x -2=16+7x2-32x16x=错误!.因为x ∈[1,4],所以h ′(x )=错误!≤0, 即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫-716,+∞.我还有这些不足:(1)_______________________________________________ (2)_______________________________________________我的课下提升方案:(1)_______________________________________________(2)_______________________________________________。
高二选修2-1 第一章导数 1.3函数的单调性与导数 1.已知函数1
()ln(1)f x x x =+-;则()y f x =的图像大致为
2 .设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是“函数
3()(2)g x a x =-在R 上是增函数”的
( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
3.已知函数()f x 满足满足121
()(1)(0)2x f x f e
f x x -'=-+; (1)求()f x 的解析式及单调区间;
4.已知函数ln ()x x k
f x e +=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线
()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;
(Ⅱ)求()f x 的单调区间;
5.已知函数2
()()x f x e ax ex a R =+-∈. (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求函数()f x 的单调区间;
6.已知函数2()1f x ax =+(0a >),3()g x x bx =+.
(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c )处具有公共切线,求,a b 的值;
(2)当24a b =时,求函数()()f x g x +的单调区间。