1.5可化为一元一次方程的分式方程
- 格式:ppt
- 大小:3.16 MB
- 文档页数:12
1.5可化为一元一次方程的分式方程学习目标教学目标:1、 熟练掌握可化为一元一次方程的分式方程的解法.2、进一步了解分式方程增根产生的原因,掌握验根的方法.3、渗透转化思想。
教学重点: 分式方程的去分母及根的检验教学难点: 方程根的检验及产生增根的原因自主学习 1、分式方程的定义.2、解分式方程的主要思想和一般解法是什么?3、解分式方程应注意什么?怎样验根?合作探究1、解方程1317-=+-x xx(1)怎样去分母?(2) 解方程后应注意什么?检验:把x=-2代入分式方程分母中不为零2、当______时,15x x ++的值等于12.3、当______时,424x x --的值与54x x --的值相等.4、若方程212x ax +=--的解是最小的正整数,则a 的值为________.5、若关于x 的分式方程311x ax x --=-无解,则 .6、解分式方程12133x x x +-=,去分母后所得的方程是( )(A )13(21)3x -+= (B )13(21)3x x -+=(C )13(21)9x x -+= (D )1639x x -+=7、化分式方程2213405511x x x --=---为整式方程时,方程两边必须同乘( )(A )22(55)(1)(1)x x x --- (B )25(1)(1)x x --(C )25(1)(1)x x -- (D )5(1)(1)x x +-8、下列说法中错误的是( )(A )分式方程的解等于0,就说明这个分式方程无解(B )解分式方程的基本思路是把分式方程转化为整式方程(C )检验是解分式方程必不可少的步骤(D )能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解. 归纳整理1、解分式方程的步骤:2、分式方程的检验:检测训练课堂目标达成1、解方程:(1)512552x x x +=-- (2) 2373226x x +=++2、若关于x 的方程233x k x x =+--无解,求k 的值.课后巩固提升1、方程2512x x=-的解是 . 2、当m 取 时,方程323-=--x m x x 会产生增根.学习后记。
1.5 可化为一元一次方程的分式方程第2课时分式方程的应用【学习目标】1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用;2.通过用分式方程解决实际问题,发展分析和解决问题的能力【重点】能将实际问题中的等量关系用分式方程表示,并能正确地解出分式方程【难点】根据题意列出分式方程一、自主学习学一学:阅读教材P57-58的内容填一填:1.行程问题:路程=_______________________________顺风(水)速度=静风(水)速度风(水)速;逆风(水)速度=静风(水)速度风(水)速2.工程问题:工作量=_______________________________议一议:解分式方程应该注意什么?归纳总结:用分式方程解决实际问题的步骤:做一做:为了改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支援,每日比原计划多种1/3,结果提前4天完成任务,原计划每天种多少棵数?二、合作探究1.飞机沿直线顺风飞行450千米后,按原来的路线飞回原处(风向不变),一共用去5.5小时,如果飞机在无风时每小时飞行165千米,那么风速是多少?(只要求列方程)分析:设,可列表分析:顺风逆风速度路程时间等量关系方程2.某市从今年1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月份的水费是15元,而今年7月份的水费则是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.(1)这一问题中的等量关系是(2)水费= ×,所以用水量= /(3)列方程解答:3.为了方便广大游客到昆明参加游览“世博会”,铁道部临时增开了一列南宁——昆明的直达快车,已知南宁——昆明两地相距828km,一列普通列车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h,比普通快车早4h到达昆明,求两车的平均速度?四、拓展提升4.小红妈:“售货员,请帮我买些梨.”售货员:“您上次买的那种梨卖完了,建议这次您买些苹果,价格比梨贵一点,不过营养价值更高.”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.。
1.5可化为一元一次方程的分式方程同步测试一、选择题1.若关于x的分式方程﹣2=有增根,则m的值为()A. 3B. 0C. -3D. 22.用换元法解分式方程时,如果设,将原方程化为关于y的整式方程,那么这个整式方程是()A. y2+y-3=0B. y2-3y+1=0C. 3y2-y+1=0D. 3y2-y-1=03.一列火车自2018年全国铁路第10次大提速后,速度提高了26千米/小时,现在该列火车从甲站到乙站所用的时间比原来减少了1个小时。
已知甲、乙两个车站的路程是312千米,设火车提速前的速度为x千米/小时,根据题意所列方程正确的是( )A. B.C. D.4.一本书共280页,小颖要用14天把它读完,当她读了一半时,发现平均每天需多读21页才能恰好在规定的时间内读完,如果读前一半时,小颖平均每天读x页,则下列方程中正确的是( )A. =14B. =14C. =14D. +=145.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下列所列方程正确的是 ( )A. =+2B. =C. =+2D. =6.若关于x的方程=0无解,则m的值是()A. 3B. 2C. 1D. -17.若关于x的方程+ =0有增根,则m的值是()A. ﹣2B. ﹣3C. 5D. 38.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为( ).A. +=18B. +=18C. +=18D. +=189.把分式方程−=1的两边同时乘以(x-2),约去分母,得()A. 1-(1-x)=1B. 1+(1-x)=1C. 1-(1-x)=x-2D. 1+(1-x)=x-210.若关于x的方程有增根,则m的值为()A. 2B. 0C. -1D. 1二、填空题11.甲、乙两地相距48千米,一艘轮船从甲地顺流航行至乙地,又立即从乙地逆流返回甲地,共用时9小时,已知水流的速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则根据题意列出的方程为________.12.分式方程=的解是________ .13.若关于的分式方程无解,则m的值为________ .14.若关于x的分式方程= 有增根,则增根为________.15.若解分式方程产生增根,则m=________16.若关于x的分式方程的解为正数,那么字母a的取值范围是________.17.若关于x的分式方程无解,则a=________.18.分式方程的解为x=________.三、解答题19.某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,现在报名参加的学生有多少人?20.如图,点A,B在数轴上,它们所对应的数分别是﹣3和,且点A,B到原点的距离相等,求x的值.21.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.22.自2018年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.23.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.求第一次每支铅笔的进价是多少元?参考答案一、选择题1. A2.A3.A4.D5.D6.B7.D8.B9.D 10.D二、填空题11.=9 12.x=2 13.1或14.2或﹣2 15.-5 16.a>1且a≠2 17.1或﹣2 18.2三、解答题19.解:设原来报名参加的学生有x人,依题意,得﹣=4,解这个方程,得x=20.经检验,x=20是原方程的解且符合题意.答:现在报名参加的学生有40人20.解:依题意可得:=3去分母得:1﹣x=3(2﹣x),去括号得:1﹣x=6﹣3x,移项得:﹣x+3x=6﹣1,解得:x=经检验,x= 是原方程的解.答:x的值是.21.解:设原计划每天生产的零件x个,依题意有= ,解得x=2400,经检验,x=2400是原方程的根,且符合题意.则规定的天数为24000÷2400=10(天).答:原计划每天生产的零件是2400个,规定的天数是10天22.解:设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,由题意得+=30解得:x=200经检验x=200是原方程的解.则(1+50%)x=300=20(棵)答:樱花树的单价为200元,有20棵.23.解:设第一次每支铅笔进价为x元,根据题意列方程得,﹣=30,解得:x=4,检验:当x=4时,分母不为0,故x=4是原分式方程的解.答:第一次每只铅笔的进价为4元.。
可化为一元一次方程的分式方程的解法教学目标1.理解分式方程的概念;2.掌握可化为一元一次方程的分式方程的解法;(重点)3.理解分式方程产生增根的原因,掌握分式方程验根的方法.(难点)教学过程一、情境导入甲、乙两名同学同时从学校出发,去15千米外的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?设甲同学每小时行x 千米,你能列出相应的方程吗?这个方程是我们以前学过的方程吗?如果不是,你能给它取个名字吗?二、合作探究探究点一:分式方程的概念【类型一】 分式方程的定义下列方程是分式方程的是( )A.2x +1=3x -1B.23x -1=32x +2 C.12x2-x =1 D.2x -3解析:根据分式方程的定义,分母含有未知数的方程是分式方程,B ,C 选项是整式方程,D 选项是分式,只有A 选项分母含有未知数,并且是方程,故选A.方法总结:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数,如果分母中含有未知数就是分式方程,分母中不含未知数就不是分式方程.【类型二】 分式方程的根已知x =1是分式方程1x +1=3k x的根,求k 的值. 解析:根据分式方程根的定义,把x =1代入1x +1=3k x得到关于k 的一元一次方程,解之即可.解:将x =1代入1x +1=3k x 得,11+1=3k 1,解得k =16. 方法总结:分式方程的解也叫作分式方程的根,已知方程的根求字母系数的值时,可把方程的根代入原方程,得到关于字母系数的方程,再解之即可.探究点二:分式方程的解法解关于x 的方程:(1)5-x x -4+14-x=1; (2)x x +3=1+2x -1. 解析:(1)小题先把方程两边乘最简公分母(x -4),(2)小题先把方程两边乘最简公分母(x +3)(x -1),把分式方程转化为整式方程求解,最后必须要检验.解:(1)方程的两边同乘(x -4),得5-x -1=x -4,解得x =4.检验:把x =4代入x -4得x -4=0.∴x =4是原方程的增根,∴原方程无解.(2)方程的两边同乘(x +3)(x -1),得x(x -1)=(x +3)(x -1)+2(x +3),整理得5x +3=0,解得x =-35. 检验:把x =-35代入得(x +3)(x -1)≠0. ∴原方程的解为:x =-35. 方法总结:解分式方程的一般步骤:①方程两边都乘最简公分母,化分式方程为整式方程;②解这个整式方程;③把整式方程的根代入最简公分母,看结果是否为0,使最简公分母为0的根是原方程的增根,应舍去;④写出原方程的根.探究点三:分式方程的增根【类型一】 利用增根求字母的值若关于x 的分式方程4x x -5=a 5-x-1有增根,那么增根是________,这时 a =________ .解析:分式方程的增根是使最简公分母为0的数,即x -5=0,所以增根是x =5.把原方程去分母得:4x =-a -(x -5),所以a =-5x +5,又因为x =5,因此a =-20.方法总结:分式方程的增根是使最简公分母为0的数.【类型二】 利用分式方程无解求字母的值若关于x 的分式方程2x -2+mx x2-4=3x +2无解,求m 的值. 解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x +2)(x -2)得:2(x +2)+mx =3(x -2),即(m -1)x =-10,①当m -1=0时,此方程无解,此时m =1,②方程有增根,则x =2或x =-2,当x =2时,(m -1)×2=-10,m =-4;当x =-2时,(m -1)×(-2)=-10,解得m =6,∴m 的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的概念2.分式方程的解法:方程两边同乘最简公分母,化为整式方程求解,再检验.3.增根:(1)解分式方程为什么会产生增根;(2)解分式方程检验的方法.教学反思在解分式方程的过程中,应突出转化思想:把分式方程转化为整式方程求解.通过实例,让学生切实理解,解分式方程可能会产生增根,所以必须要检验.在解分式方程的过程中,要求学生按步骤解题,养成良好的解题习惯.本节课的易错点是解分式方程时忘记验根.。
湘教版八年级数学上册知识点总结第1章分式1.1 分式1.2 分式的乘法和除法1.3 整数指数幂1.4 分式的加法和减法1.5 可化为一元一次方程的分式方程本章复习与测试第2章三角形2.1 三角形2.2 命题与证明2.3 等腰三角形2.4 线段的垂直平分线2.5 全等三角形2.6 用尺规作三角形本章复习与测试第3章实数3.1 平方根3.2 立方根3.3 实数第4章一元一次不等式(组)4.1 不等式4.2 不等式的基本性质4.3 一元一次不等式的解法4.4 一元一次不等式的应用4.5 一元一次不等式组本章复习与测试第5章二次根式5.1 二次根式5.2 二次根式的乘法和除法5.3 二次根式的加法和减法本章复习与测试知识点总结第一章:分式一、课前构建:回顾相关知识:认真阅读教材P1-40二、课堂点拨:知识点一:分式的概念★考点1:分式的定义:知识点二:分式的性质★考点4:分式的基本性质:分式的分子与分母都乘,所得分式与原分式相等。
即(其中)分式的分子与分母约去公因式,所得分式与原分式相等。
即(其中)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中的任何两个,分式的值不变。
即。
★考点5:最简分式(1)约分:把一个分式的分子与分母的公因式约去,称为分式的约分。
约分的方法:先把分子与分母因式分解,再约去公因式。
(2)最简分式:分子与分母没有分式,叫做最简分式。
知识点三:分式的运算★考点6:分式的加减法①同分母分式相加减,分母,把分子。
即。
②异分母分式相加减,要先,即把各个分式的分子与分母都乘适当的同一个非零多项式,化为同分母的分式,再加减。
即。
①最简公分母的系数是各分母系数的最小公倍数;②最简公分母的字母和式子是各分母的所有字母和式子。
③最简公分母的每个字母或式子的指数是它在各分母中次数最高。
例7、计算的结果是。
★考点7:分式的乘除法乘:分式乘分式,把分子乘分子,分母乘分母,分别作为积的分子、分母,然后约去分子与分母的公因式。