三相变压器绕组线、相电阻的换算与分析
- 格式:pdf
- 大小:175.35 KB
- 文档页数:2
变压器知识习题及答案一、填空题1、油浸式电力变压器一般是由铁芯、绕组、()绝缘套管和冷却系统五大部分组成。
2、变压器油起着散热和()的作用。
3、将连接组别为y , dl 的三相变压器改接为Y, Yno。
如果一次侧的额定电电压不变,则二次侧的额定电压为原来的√3倍,其容量不变。
4、变压器空载运行时,由于()很小,铜损近似为零。
5、变压器空载运行时的主磁通与额定运行时主磁通相同,所以变压压器的空载损耗似等于()损耗。
6、变压器运行中温度最高的部位是(),温度最低的是变压器油。
7、当变压器负载系数为()时,其效率最高。
8、变压器绕组损耗分为基本损耗和附加损耗,其中基本损耗耗是()。
9、一台油浸自冷式变压器,当周围围空气温度为 32℃时,其上层油温为I 60°'C ,则上层油的温升为()。
10.变压器空载电流的无功分量很大,而()分量很小,因此变压器空载运行行时的功率因素很低。
11.变压器空载试验的目的是测量()损耗和空载电流。
12、变压器并列运行的目的是:()和提高供电可靠性。
13、变压器的相电压变比等于原边、副边绕组的()之比。
14、变压器过负荷时的声音是()。
15、变压器呼吸器中的硅胶受潮后,其颜色变为()。
16、电力变压器的交流耐压试验,是考核变压器的()绝缘。
17、测定电力变压器的变压比,一般采用的试验仪器是()。
18、常用的电压互感器在运行时相当于一个空载运行的降压变压器,它的二次电压基本上等于二次()。
19、电压互感器按其工作原理可分为()原理和电容分压原理。
20、电流互感器二次侧的额定电流一般为()安培,电压互感器二次侧的电压一般为()伏,这样,可使测量仪表标准化。
二、选择题1、并列运行变压器的变压比不宜超过()。
A、 2:1 B:3:1 C:4:1 D:5:12、变压器轻瓦斯保护正确的说法是()。
A.作用于跳闸 B、作用于信号 C.作用于信号及跳闸 D.都不对3、带有瓦斯继电器的变压器,安装时其顶盖沿瓦斯继电器方向的的升高场坡度为()。
第4章思考题及答案4-1 变压器能否对直流电压进行变换?答:不能。
变压器的基本工作原理是电磁感应原理,如果变压器一次绕组外接直流电压,则在变压器一次绕组会建立恒定不变的直流电流i1,则根据F1= i1N1,我们知道直流电流i1会建立直流磁动势F1,该直流磁动势F1就不会在铁芯中产生交变的磁通,也就不会在二次绕组中产生感应电动势,故不会在负载侧有电压输出。
4-2变压器铁芯的主要作用是什么?其结构特点怎样?答:变压器铁芯的作用是为变压器正常工作时提供磁路,为变压器交变主磁通提供流通回路。
为了减小磁阻,一般变压器的铁芯都是由硅钢片叠成的,硅钢片的厚度通常是在0.35mm-0.5mm之间,表面涂有绝缘漆。
4-3为分析变压器方便,通常会规定变压器的正方向,本书中正方向是如何规定的?答:变压器正方向的选取可以任意。
正方向规定不同,只影响相应变量在电磁关系中的表达式为正还是为负,并不影响各个变量之间的物理关系。
变压器的一次侧正方向规定符合电动机习惯,将变压器的一次绕组看成是外接交流电源的负载,一次侧的正方向以外接交流电源的正方向为准,即一次侧电路中电流的方向与一次侧绕组感应电动势方向相同;而变压器的二次侧正方向则与一次侧规定刚好相反,符合发电机习惯,将变压器的二次绕组看成是外接负载的电源,二次侧的正方向以二次绕组的感应电动势的正方向为准,即二次侧电路中电流方向与二次侧负载电压方向相同。
感应电动势的正方向和产生感应电动势的磁通正方向符合右手螺旋定理,而磁通的正方向和产生该磁通的电流正方向也符合右手螺旋定理。
各个电压变量的正方向是由高电平指向低电平,各个电动势正方向则由低电平指向高电平。
4-4 变压器空载运行时,为什么功率因数不会很高?答:变压器空载运行时,一次绕组电流就称为空载电流,一般空载电流的大小不会超过额定电流的10%,变压器空载电流∙0I可以分为两个分量:建立主磁通∙mφ所需要的励磁电流∙μI 和由磁通交变造成铁损耗从而使铁芯发热的铁耗电流∙FeI 。
大型变压器出厂前的试验根据技术规范、最新版的IEC有关标准及其补充说明进行变压器试验,试验应出具详细记载测试数据的正式试验报告,并有招标方代表或第三方人员在场监试或见证,并提供变压器及其附件相应的型式试验报告和例行试验报告,同时执行下列要求。
1例行试验1.1绕组电阻测量测量所有绕组的直流电阻,对于带分接的绕组,应测量每一分接位置的直流电阻。
变压器绕组电阻不平衡率:相间应小于2%,三相变压器线间应小于1%。
即(RmaX-Rmin)‰e<2%(1%)1.2电压比测量和联结组标号检定应在所有绕组对间及所有分接位置进行电压比测量。
电压比允许偏差应符合GB1094.1中表1规定。
应检定变压器的联结组标号。
1.3短路阻抗及负载损耗测量1)短路阻抗测量。
应在各绕组对间,在主分接和最大、最小分接位置测量。
短路阻抗的允许偏差不能超过合同规定值,并在主分接位置进行低电流(例如5A)下的短路阻抗测量。
2)负载损耗测量。
负载损耗应在各绕组对间,在主分接和最大、最小分接位置上,按GB1094.1的方法进行测量。
所用互感器的误差和试验接线的电阻损耗(包括线损和表损)必须予以校正。
短路阻抗和负载损耗应换算到参考温度(75℃)时的值。
1.4空载损耗和空载电流测量在10%~115%的额定电压下进行空载损耗和空载电流测量,并绘制出励磁曲线。
空载损耗和空载电流值应按照GB1094.1中的方法进行测量,并予以校正。
提供空载电流和空载损耗。
1.5长时间空载试验在绝缘强度试验后,应对变压器施加1.1倍额定电压至少运行12h,然后进行与初次测量条件相同下的100%和110%额定电压的空载损耗和空载电流测量。
测量结果应与初次值基本相同。
1.6绕组连同套管的绝缘电阻测量每一绕组对地及其余绕组之间的绝缘电阻都要进行测量,测量时使用5000V 兆欧表。
吸收比(塌]不小于1.3或极化指数不小于1.5。
当极化指数或吸收比达不到规定值时,而绝缘电阻绝对值比较高(例如>10000MC),应根据绕组介质损耗因数等数据综合判断。
变压器线圈直流电阻测量及其结果分析[摘要]:本文主要分析探讨变压器直流电阻的多种测量方法以及注明相关的注意事项,之后对测量得到的电阻进行分析,观察理论值与实际值之间的差距,最后详细的对电路中出现的一些小故障进行分析,并提出一些相关问题的解决方法。
[关键词]:变压器直流电阻电桥法规范要求结果分析一、变压器线圈直流电阻测量的方法1.选用的测量方法到目前为止,有电压降法和电桥法能够对变压器线圈的直流电阻进行测量,而在实验室最常用的是电桥法,这是因为电压降法有一定的局限性,不能十分精确地测出变压器线圈的直流电阻。
由于变压器中的每相绕组相当于电感与定值电阻相串联,电感的阻值在短时间内难以达到稳定,所以最后得到的阻值并不准确。
为什么电感的阻值会发生变化呢?在通电后,电感中的电流逐渐增大,由楞次定律可知,电感中产生了反向阻碍电流,但这并不能改变电感中电流增大的趋势,经过一段时间后,电流会达到一个稳定值,此时电感电压也会达到稳定值,到了这个时候才能利用测量数据进行计算,最后可以得到比较精确的变压器线圈直流电阻。
这种方式明显效率太低,不符合当今高效率的理念,因此我们常常采用另外一种测量方式――电桥法,电桥法可分为单臂电桥法和双臂电桥法,利用相关设备我们可以直接读数得到变压器直流阻值(线圈电阻值等于测量的臂电阻值乘以倍率数)。
除了以上两种方法以外,还可以采用三相绕组同时加压法,该方法可以说是电压降法的升级版,原理是根据楞次定律,使电感中最终产生的合磁通量为零,也就是说将各相电流产生的磁通量相互抵消,使之不产生阻碍电流,因此可以减少直流电阻的测量时间,能够提高测量效率。
具体操作为:对三相绕组同时加电压,其中各相绕组中的电流逐渐增大,根据右手定则,三相电流各个铁芯产生的磁通作用相互抵消,最后几乎不产生感应电流,所以该方法能够在短时间获得稳定的电流,大大缩短了操作时间。
2.测量相关注意的事项就电桥法来说,单线桥适用于测量1欧以上阻值的电阻,若测量的阻值低于1欧则会影响精确度,这是因为使用单线桥法测量时,它测出的阻值是有误差的,其中包含了实测电阻两边的导线的电阻,当被测的电阻越小,对最后得出的阻值影响越大。
一起变压器低压绕组匝间短路故障分析叶 芳 朱旻哲(苏州供电公司)摘 要:介绍了一起110kV变压器短路故障,结合油中溶解气体分析、单相低电压空载、变比、绕组直流电阻、解体检查详细分析了故障原因,最后给出相关对策及建议,以供同行参考。
关键词:变压器;油中溶解气体;匝间短路;空载试验;直流电阻0 引言电力变压器作为变电站最主要的电力设备之一,其状态、性能与电力系统运行的安全性、可靠性和稳定性直接相关。
近年来随着电力系统容量的增长,电力变压器的数量日益增多,变压器故障的数量也有上升趋势,其中变压器短路故障就是十分常见的一种。
文献[1]针对某220kV变压器在下级输出线路相间短路故障切除后重瓦斯保护动作的问题,通过诊断性试验及返厂解体,判断半截油道垫块引起线圈局部绝缘薄弱,匝间短路最终造成重瓦斯保护动作。
文献[2]对一起500kV变压器主变短路故障的原因进行了分析,并详细介绍了故障概况、试验结果及分析过程,提出了相应的处理措施和预防措施。
本文就一起110kV变压器低压绕组匝间短路故障,结合油中溶解气体、单相低电压空载、变比、绕组直流电阻、解体检查详细分析了故障原因。
1 故障实例1.1 故障描述2022年8月18日下午17: 30左右, 110kV某变电站#3主变轻瓦斯、重瓦斯保护动作发生跳闸。
故障变压器为某电力变压器有限公司产品,型号SZ10-50000/110,接线组别YNd11,额定电压110+5-3×2%/10.5kV, 2017年7月投运,铭牌信息如表1所示。
投运前该变压器的各项电气试验、油化试验结果均正常,本体瓦斯继电器校核结果合格。
表1 故障变压器铭牌信息1.2 分析处理根据故障现象,从气体继电器的动作原理分析,当变压器内部出现匝间短路、绝缘损坏、接触不良、铁心多点接地等故障时,都将产生大量的热能,使油分解出可燃性气体,向储油柜方向流动。
当气体沿油面上升,聚集在气体继电器内超过一定量,将造成轻瓦斯保护动作。
变压器试验基本计算公式一、电阻温度换算:不同温度下的电阻可按下式进行换算:R=Rt(T+θ)/(T+t)θ:要换算到的温度;t:测量时的温度;Rt:t温度时测量的电阻值; T :系数,铜绕组时为234.5,铝绕组为224.5。
二、电阻率计算:ρ=RtS/L R=(T+θ)/(T+t)电阻参考温度20℃三、感应耐压时间计算:试验通常施加两倍的额定电压,为减少励磁容量,试验电压的频率应大于100Hz,最好频率为150-400Hz,持续时间按下式计算:t=120×fn/f,公式中:t为试验时间,s;fn为额定频率,Hz;f为试验频率, Hz。
如果试验频率超过400 Hz,持续时间应不低于15 s。
四、负载试验计算公式:通常用下面的公式计算:Pk =(Pkt+∑In2R×(Kt2-1))/Kt式中:Pk为参考温度下的负载损耗;Pkt为绕组试验温度下的负载损耗;Kt为温度系数;∑In2R为被测一对绕组的电阻损耗。
三相变压器的一对绕组的电阻损耗应为两绕组电阻损耗之和,计算方法如下:“Y”或“Yn ”联结的绕组:Pr=1.5In2Rxn=3 In2Rxg;“D”联结的绕组:Pr=1.5In2Rxn=In2Rxg。
式中:Pr为电阻损耗;In为绕组的额定电流;Rxn为线电阻;Rxg为相电阻。
五、阻抗计算公式:阻抗电压是绕组通过额定电流时的电压降,标准规定以该压降占额定电压的百分数表示。
阻抗电压测量时应以三相电流的算术平均值为准,如果试验电流无法达到额定电流时,阻抗电压应按下列公式折算并校准到表四所列的参考温度。
ekt=(Ukt ×In)/(Un×Ik)×100%, ek=1)-(K)/10S(Pe22Nkt2kt %式中:ekt为绕组温度为t℃时的阻抗电压,%;U kt 为绕组温度为t℃时流过试验电流Ik的电压降,V;Un为施加电压侧的额定电压,V;In为施加电压侧的额定电流,A;ek为参考温度时的阻抗电压,%;P kt 为t℃的负载损耗,W;Sn为额定容量,kVA;Kt为温度系数。
变压器绕组直流电阻不平衡的原因分析及处理措施摘要:变压器绕组直流电阻的测量是变压器试验中的一个重要试验项目。
直流电阻试验,可以检查出绕组内部导线的焊接质量,引线与导线的焊接质量,分接开关、引线、与套管等载流部件的接触是否良好,三相电阻是否平衡等。
直流电阻不平衡会导致变压器相间或相对地间产生循环电流,增加变压器的附加损耗,甚至导致变压器的不对称运行,引发电力事故。
本文主要分析变压器绕组直流电阻不平衡的原因分析及处理措施。
关键词:变压器绕组;直流电阻不平衡的原因分析;处理措施引言在变压器检修和预防试验过程中,如果测量变压器三相绕组直流电阻不平衡率超过规定标准,维修试验者应引起高度重视,根据实验要求与实际相结合,对直流电阻进行分段综合考虑。
判断故障点,变压器和变压器高压套管应防止军帽潜伏性金属热,引起设备故障或事故。
1、变压器绕组直流电阻不平衡的原因分析根据试验数据,初步判断1至4档直流电阻值不平衡系数普遍偏大,4档至7档各档位直流电阻值不平衡系数变小均合格。
进一步分析1至4档电阻的极差基本保持一致,AO、BO数据基本大小平衡,可以判断有载开关状态良好,中性点线圈及A、B两相绕组正常,但C相存在问题。
接着,我们对试验接线、接线桩头连接处进行反复检查、打磨,发现试验接线正确,接线桩头与套管连接紧密,表面没有油膜等污物,打磨后测量,其测量值与前次测量值基本一致,可以基本排除由测量接线错误、引线电阻及其接线电阻过大而引起的C相直流电阻偏大这个可能性,初步怀疑有载开关可能存在问题。
接下来,为了确定变压器绕组内部是否存在故障,我们通过油色谱组分分析试验来检查确定。
变压器绝缘材料主要是绝缘油和绝缘纸,变压器在故障下产生的气体主要是来源于油和纸的热裂分解,气相色谱分析就是根据故障时产生的气体在绝缘油中含量的多少,判断其故障类型。
由于变压器油在高温下会分解出甲烷、乙烷、乙烯,乙炔更是要在上千度温度下才会生成,根据油样结果,乙炔数值为0,其他各气体成分均没有超标,也就是说变压器内部没有出现短路而引起的发热现象,那么由线圈匝间、层间、相间短路所引起的变压器内部故障可以基本排除。
变压器绕组直流电阻不平衡的原因分析及处理措施发表时间:2020-07-30T16:11:01.557Z 来源:《当代电力文化》2020年第7期作者:姜治国[导读] 变压器直流电阻的测试是变压器交接和预试试验的重要项目之一,通过此项试验摘要:变压器直流电阻的测试是变压器交接和预试试验的重要项目之一,通过此项试验,可对变压器绕组接头焊接是否存在质量问题,绕组有无层间、匝间短路,引出线有无断路,多股导线并绕的绕组是否有断股,分接开关的各位置接触是否良好,分接开关的位置是否符合变压器实际运行状况等问题进行检查。
关键词:变压器;绕组直流电阻不平衡;处理措施引言变压器绕组直流电阻试验是查找变压器故障的主要手段,直流电阻不平衡会导致变压器相间或相对地间产生循环电流,增加变压器的附加损耗,甚至导致变压器的不对称运行,可能导致变压器烧毁,引发电力事故。
中国变压器技术标准《油浸式电力变压器技术参数和要求》(GB/T6451—2015)和《干式电力变压器技术参数和要求》(GB/T10228—2015)对变压器绕组直流电阻的不平衡率作了要求,明确规定了绕组直流电阻不平衡率的线间差和相间差的偏差限值。
1变压器绕组直流电阻不平衡原因分析 1.1试验方法及测量方式不合理在试验过程中试验方法及测量方式主要涉及仪器的选择不当、试验接线错误和残余电荷的影响等。
介于这些技术上的问题,在预试时采取更换其他合格的试验仪器,详细检查试验接线确保其正确,在试验开始前对被试品充分放电等相关措施,在确保排除试验方法和测量方式不存在问题的前提下重新进行试验,确保所测试验数据的准确性和可靠性。
1.2变压器自身存在缺陷(1)由于制造工艺不良,引线和绕组焊接处接触不良,造成电阻偏大,从而导致绕组引线的长短、截面尺寸等的偏差进而影响各相绕组直流电阻不平衡。
(2)由于变压器运行时间较长导致绕组与套管导电杆连接处存在氧化层或紧固螺丝松动;套管导电杆与外引线接触不良;变压器绕组断股或变形等。
变压器绕组的直流电阻测试摘要:变压器是电力系统的核心设备,而变压器绕组的直流电阻测试又是变压器非常重要的试验项目。
变压器直流电阻试验可以检查引线的焊接或连接质量、绕组有无匝间短路或开路以及分接开关的接触是否良好等缺陷。
同时介绍了对直流电阻测量结果的判断方法和实际工作中经常遇到的几种典型的三相电阻不平衡原因,最后总结了这些年来对测量直流电阻试验时的注意事项。
关键词:变压器;直流电阻;分析判断1引言变压器绕组的直流电阻是变压器出厂交接和预防性试验的基本项目之一,也是变压器发生故障后的重要检查项目。
在规程中,其次序排在变压器试验项目的第二位,这是因为直流电阻及其不平衡率对综合判断变压器绕组(包括导杆和引线,分接开关及绕组)的故障可提供重要的信息。
通过直流电阻的试验可以检查:绕组回路是否有短路、开路或接错线;绕组焊接质量;分接开关各个位置接触是否良好;绕组或引出线有无折断处;并联支路的正确性。
是否存在由几条并联导线绕成的绕组发生一处或几处断线的情况以及层、匝间有无短路的现象。
此测试项目对发现上述缺陷具有重要意义。
2变压器绕组的直流电阻测试周期《电力设备预防性试验规程》中规定变压器绕组直流电阻的测量周期为:(1)1~3年;(2)无励磁调压变压器变换分接位置后;(3)有载调压变压器的分接开关检修后(在所有分接侧);(4)大修后;(5)必要时。
3变压器绕组连同套管的直流电阻测试方法及注意事项3.1测试方法使用变压器直流电阻测试仪进行测量。
3.2试验步骤(1)变压器各绕组短路接地充分放电;(2)记录变压器编号、铭牌等相关参数;(3)测量并记录上层油温及环境温度和湿度;(4)将测量设备或仪表通过测试线与被测绕组有效连接,开始测量;(5)直阻显示测量数据后,一般应继续等待2min-3min,进一步确认数据稳定后方可记录,对大容量变压器的低压绕组尤其要如此;(6)测试完毕应使用测量设备或仪表上的“放电”或“复位”键对被测绕组充分放电;(7)在更改接线或拆线前,还应用接地线人为放电。